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Polyphenol Oxidases (PPOs) catalyze the conversion of phenolic substrates to quinones,

leading to the formation of dark-colored precipitates in fruits and vegetables. This process,

known as enzymatic browning, is the cause of undesirable changes in organoleptic

properties and the loss of nutritional quality in plant-derived products. In potato (Solanum

tubersoum L.), PPOs are encoded by a multi-gene family with different expression

patterns. Here, we have studied the application of the CRISPR/Cas9 system to induce

mutations in the StPPO2 gene in the tetraploid cultivar Desiree. We hypothesized that the

specific editing of this target gene would result in a lower PPO activity in the tuber with the

consequent reduction of the enzymatic browning. Ribonucleoprotein complexes (RNPs),

formed by two sgRNAs and Cas9 nuclease, were transfected to potato protoplasts. Up to

68% of regenerated plants contained mutations in at least one allele of the target gene,

while 24% of edited lines carried mutations in all four alleles. No off-target mutations were

identified in other analyzed StPPO genes. Mutations induced in the four alleles of StPPO2

gene, led to lines with a reduction of up to 69% in tuber PPO activity and a reduction of

73% in enzymatic browning, compared to the control. Our results demonstrate that the

CRISPR/Cas9 system can be applied to develop potato varieties with reduced enzymatic

browning in tubers, by the specific editing of a single member of the StPPO gene family.

Keywords: CRISPR/Cas9, potato, genome editing, enzymatic browning, polyphenol oxidase,

ribonucleoprotein complexes

INTRODUCTION

Polyphenol Oxidases (PPOs; E.C.1.10.3.1, E.C.1.10.3.2, or E.C.1.14.18.1) are copper-containing
enzymes, widely distributed among higher plants (Yoruk and Marshall, 2003), that catalyze the
oxidation of an extensive range of phenolic compounds to their respective quinones. The quinones
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generated by action of PPOs can undergo self-polymerization or
react with amino acids or free radicals in proteins leading to the
formation of dark-colored precipitates (Mayer, 2006). This
process, known as Enzymatic Browning, is the cause of
reduction in quality that alters the color, taste, texture and
nutritional value of several fresh and processed fruits and
vegetables (Jukanti, 2017). In addition, the oxidation of
polyphenolic compounds by PPOs in plant derived products
for human consumption is highly undesirable, since polyphenols
are natural antioxidants with possible protective effects against
cancer and card iovascu la r d i sease s (Shah id i and
Ambigaipalan, 2015).

In potato (Solanum tuberosum L.), enzymatic browning is a
serious problem for both, producers and the industry, because
the tubers can be affected during harvest and post-harvest
procedures such as shipping, storage, distribution and
blanching (Bachem et al., 1994). This undesired process is
controlled in industry by using chemical and/or physical
agents (Zhang et al., 2018b). However, these methods have
important disadvantages including alterations of organoleptic
and nutritional quality of the final products and some of them
can even represent a potential risks for human health (Tinello
and Lante, 2018). Therefore, the development of new
technologies to control PPOs activity in planta is the most
promising and safest approach to avoid undesirable browning
compounds in fresh and processed potato derived products.

In most of plant species, PPOs are encoded by multi-gene
families, which suggests their implication in a variety of cell
processes (Tran et al., 2012). PPOs have been associated with
several metabolic and biosynthetic processes (Jukanti, 2017) as
well as with plant defense responses (Li and Steffens, 2002;
Thipyapong et al., 2004; Wang and Constabel, 2004;
Kampatsikas et al., 2019). Five PPO genes have been originally
described in potato (StPPO), each one having a special pattern of
tissue induction and expression (Thygesen et al., 1995). Once the
potato genome sequence data was available (Potato Genome
Sequencing Consortium, 2011), a genome-wide survey revealed
nine StPPO-like genes (named StPPO1 to 9), with differential
prevalence of ESTs found from different potato tissues (Chi et al.,
2014). Several reports have described the use of different RNA
silencing technologies to down regulate StPPO genes, in order to
reduce the enzymatic browning in the tubers (Bachem et al.,
1994; Coetzer et al., 2001; Rommens et al., 2006; Llorente et al.,
2011). Most of these reports are based on down-regulation of
multiple StPPO genes, which could have a negative impact on
other functions of the enzyme in the plant. Moreover, with this
strategy, the gene constructs of the silencing machinery need to
be stably inserted into the genome, which represents a drawback
considering the time-consuming and costly process of
deregulation of a Genetically Modified Organism (GMO) in
several countries (Eckerstorfer et al., 2019).

Chi et al. (2014) studied the contribution of each member of
the StPPO gene family to the total PPO protein activity in the
potato tuber. By using artificial micro-RNAs (amiRNAs) authors
down-regulated StPPO genes individually or in combinations,
concluding that four genes are the main responsible for PPO

activity in the tuber. StPPO2 (PGSC0003DMG400018916) gene
is the principal contributor to PPO total protein content, with
55% o f t h e t o t a l e n z yme , f o l l owed by S tPPO1

(PGSC0003DMG400029575) with 25–30% and StPPO4

( P G S C 0 0 0 3 D M G 4 0 0 0 1 8 9 1 7 ) a n d S t P P O 3

(PGSC0003DMG400018914), together with less than 15%.
Genome editing using the CRISPR/Cas9 system is a powerful

tool for crop improvement and has been applied to add or
modify several traits in many economically important plant
species (Arora and Narula, 2017; Baltes et al., 2017; Scheben
et al., 2017; Gao, 2018). In its simplest form, the Cas9 nuclease is
guided by one or more RNA molecule/s (sgRNA/s) to a specific
target site in the host genome to introduce a double stranded
break (DSB) in the DNA (Jinek et al., 2012). Following the
induction of this DSB, mutations are introduced by the error-
prone DNA repair mechanism of Non Homologous End Joining
(NHEJ), (Puchta, 2005). When performed in an exon, this can
produce a loss of gene function due to frame shifts or deletions of
specific fragments of the coding sequence. Cas9 and sgRNAs can
be directly delivered to the cell as a Ribonucleoprotein complex
(RNPs), (Woo et al., 2015) an approach that avoids foreign DNA
insertions in the plant genome. This strategy has been
successfully applied to modify genes in several important crops
like maize (Svitashev et al., 2016), bread wheat (Liang et al., 2017)
and, more recently, potato (Andersson et al., 2018). Considering
the current criteria for the determination of the regulatory status
of genome edited crops in Argentina and other countries
(Whelan and Lema, 2015; Lema, 2019), this approach could
result in the development of crop varieties not subjected to the
cumbersome GMO regulation process, and treated under the
same regulatory framework as varieties obtained by conventional
breeding, which includes chemical or radiation mutagenesis
(Eckerstorfer et al., 2019).

In this work, we have studied the editing of the StPPO2 gene
in the tetraploid cultivar Desiree, by using the CRISPR/Cas9
system. The reagents for genome editing were delivered in the
form of RNPs into potato protoplasts, aiming to avoid the
insertion of foreign DNA. Regenerated lines were screened for
induced mutations in the target gene and potential off target
activity on other members of StPPO gene family. Selected lines
with mutations in the four alleles of the target gene were grown
and assayed for enzymatic browning and PPO activity levels
in tubers.

RESULTS

SgRNA Design on StPPO2 Gene and Off
Target Prediction
In order to find targets to direct Cas9 nuclease to the StPPO2

gene, a fragment covering the 5´end of the coding sequence was
amplified from S. tuberosum cv. Desiree and sequenced. The
amplified fragment was predicted to encode the N-terminal of
the enzyme, including the first copper-binding site (CuA;
Supplementary Figure S1), which forms part of the active site
(Marusek et al., 2006). Two sgRNAs were selected on the
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resulting sequence with strict absence of allelic variation and
named sgRNA157 and sgRNA564 (Figure 1A). The expected
cutting sites for Cas9 on each target were estimated to be
separated by 111 bp on the StPPO2 sequence (Supplementary

Figure S1).
In order to avoid inducing mutations in other StPPO genes,

the two selected sgRNAs were analyzed for possible off target
activity. Considering up to four mismatches (Hahn and
Nekrasov, 2019) StPPO1 and StPPO4 genes were identified as
possible off targets of sgRNA564 (Figure 1B and Supplementary

Figures S2 and S3). Four mismatches at positions +1, +2, +8, and
+13 from the Protospacer Adjacent Motif (PAM) were identified
in the potential off target site on StPPO1 and four mismatches at
positions +1, +8, +13, and +20, in the potential off target site on
StPPO4 (Figure 1B).

No putative off targets on StPPO genes were found for
sgRNA157 considering four or less mismatches. Figure 1C

shows the alignment of sgRNA157 with the corresponding
sequences of StPPO1 and StPPO4. Although not considered as
possible off targets according to the mentioned parameters, both
regions were included for further analysis. As highlighted, five
mismatches were identified between StPPO1 and sgRNA157. In
addition, a non-canonical PAM sequence (NAG) was found at
the 3′ end of the StPPO1 gene sequence (Figure 1C). Eight
mismatches were identified between sgRNA157 and the
corresponding sequence of the StPPO4 gene (Figure 1C).

Protoplast Transfection With RNPs and
Mutation Screening of Regenerated Lines
CRISPR/Cas9 was delivered in the form of Ribonucleoprotein
complexes (RNPs, Andersson et al., 2018) into protoplasts by
transfections with 25 or 40% Polyethylenglycol 4000 (PEG) and

incubations times of 3 or 30 min, respectively. After
regeneration, the identification of edited lines was carried out
using the High Resolution Fragment Analysis (HRFA, Figure
2A). Based on the analysis of 64 lines regenerated from the 25%
PEG transfection, the genome editing efficiency was 27%, defined
as the percentage of analyzed lines carrying mutations in at least
one allele of the target gene. On the other hand, from the 40%
PEG transfection, 28 regenerated lines were analyzed and 68%
were found to carry mutations. Taking both transfections
together, nine edited lines displayed mutations in all the four
alleles of the target gene, with eight of these lines originated from
the 40% PEG transfection (Table 1). The majority of mutations
were small deletions, but in several lines, larger deletions from
102 to 118 nucleotides were observed (Table 1), suggesting that
Cas9 nuclease introduced cuts at both targets sites, leading to the
elimination of the fragment in between. In addition, insertions
ranging from 22 to 302 bp were identified in nine lines (Table 1).
Finally, more than four allelic variants suggesting chimerism was
not observed in any of the 92 analyzed lines (Table 1).

Sequence Analysis of StPPO2 in Selected
Lines
Sequence analysis was performed on selected lines to confirm
HRFA results (Figure 2B and Supplementary Figure S4). In
lines M07056, M08001 and M08002, small deletions were
identified, which in most alleles were the product of mutations
induced at both target sites, without the elimination of the
fragment in between (Figure 2B and Supplementary Figure

S4). In the case of M07056, all mutations are predicted to change
the reading frame of the StPPO2 coding sequence
(Supplementary Figure S4). The loss of the fragment spanned
by the two sgRNAs target sites, was confirmed in alleles of lines

FIGURE 1 | sgRNA design on the StPPO2 gene and off target prediction (A) The structure of StPPO2 gene is shown with the theoretical positions of the start (ATG,

green box) and stop codons (TAA, red box). The partial sequence used for sgRNA design is shown above the gene structure. Targets sites for sgRNAs are marked

in green letters and the PAM (5′-NGG-3′) of each target site is indicated. Black arrowheads indicate the predicted cut site for the Cas9 nuclease (B) Predicted off

target sites for sgRNA564 on StPPO1 and StPPO4 genes, with mismatches marked in red letters (C) Alignment of sgRNA157 with StPPO1 and StPPO4 genes, with

mismatches marked in red letters.
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M08001, M08002 (Figure 2B), and M08008 (Supplementary

Figure S4), as was indicated by the HRFA results. The presence
of the wild type allele was confirmed in line M08003, along with
at least one allele carrying a deletion of 4 bp on the target site of
sgRNA157 (Figure 2B). Moreover, the lower prevalence of the
mutated allele in comparison with the wild type in the sequence
analysis, suggest that M08003 possess multiple copies of the wild
type allele (Figure 2B).

Finally, insertions observed in the HRFA were analyzed in
lines M08008 and M08002. The larger insertions were found to
correspond to fragments of genomic DNA of potato as well as
elements of DNA used for the in vitro transcription of the
sgRNAs (Figure 2B and Supplementary Figure S4).

Analysis of Off Target Mutations in StPPO
Genes
Unexpected mutations have been reported in plants using
CRISPR/Cas9 as a genome editing tool (Zhang et al., 2018a).
With the aim of analyzing the presence of off target mutations on
other StPPO genes, HRFA was performed on StPPO1 and
StPPO4 genes in selected lines carrying mutations in all the
four alleles of StPPO2 gene. The electropherograms analysis
revealed no differences in fragments length between the edited
lines and the control (Figures 3A, B and Supplementary Figure

S5), indicating no insertions or deletions introduced on the
possible recognition sites for the two sgRNAs.

Enzymatic Browning and PPO Activity
Analysis in Tubers
Selected lines carrying mutations in all four alleles of the StPPO2
gene were subjected to phenotypic analysis of enzymatic
browning and PPO activity in tubers. A wild type line obtained
from the regeneration of non-transfected protoplasts were used
as a control (Desiree RC). Line M08003 was also included, since
it presents a mutation in at least one allele of the target gene,
together with at least one copy of the wild type allele (Figure 2B).
All lines were grown in a growth chamber and displayed no
evident phenotypic abnormalities during plant development.

For phenotype analysis, the tubers were cut, exposed to air
and discoloration development was registered at times 0, 24, and
48 h after cutting (Figure 4). After 24 h of air exposure, the
typical brown discoloration related to oxidation was visible in
lines Desiree RC and M08003, but not in the rest of the analyzed
lines (Figure 4). The same pattern, but with stronger differences
between lines was observed after 48 h of air exposure. Lines
Desiree RC and M08003 developed the brown discoloration in a
shorter time and over a larger area of the tuber surface
(Figure 4).

FIGURE 2 | Identification of edited lines using High Resolution Fragment Analysis (HRFA) and characterization of mutations by sequencing (A) Electropherograms of

HRFA obtained for wild type Desiree and lines M08001, M08002, and M08003. The orange peaks correspond to the elution points of the size standard and green

peaks correspond to elution of the StPPO2 gene fragments. The elution of the wild type fragment is set to 0 and the number of bases inserted (+) or deleted (−) in

each fragment is indicated above the respective peak (B) Sequencing of a partial fragment of the StPPO2 alleles in selected lines. Target sites for the sgRNAs are

marked in green letters. Deleted nucleotides are indicated as hyphens and inserted bases are marked in red letters. The frequencies obtained during Sanger analysis

are indicated, as the number of clones carrying each allelic variant related to the total number of sequenced clones.
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The enzymatic browning was measured for each line and
related to that of the control Desiree RC (Figure 5A). The
relative enzymatic browning was significantly lower in all the
edited lines in comparison to the control line (Table 2), with the
exception of line M08003. The relative enzymatic browning in
lines M08001 and M08002 ranged between 0.26 and 0.27,
demonstrating a reduction of around 73% related to the
control line (Figure 5A). Lines M07056, M08008 and M08027,
displayed a middle reduction of 68, 67, and 66%, respectively,
compared to the control (Figure 5A).

The PPO activity was measured for each line and made
relative to the control Desiree RC (Figure 5B). Relative PPO
activity was significantly lower in lines M08001 and M08002 in
comparison to the control line Desiree RC (Table 2) with
reductions of 64 and 69%, respectively (Figure 5B). Even
though not significantly statistical differences, a middle
reduction of 39, 28, and 41% in relative PPO activity was

observed for lines M07056, M08008, and M08027, respectively,
when compared to the control (Figure 5B).

In order to determine whether the relative enzymatic
browning was correlated to the relative PPO activity in our
study, the Spearman correlation coefficient (r) was determined
between the two variables. As expected, a significantly positive
correlation was found (r = 0.63, p < 0.005).

DISCUSSION

Enzymatic browning caused by the activity of PPOs leads to
alterations in color and organoleptic properties of fresh and
processed fruits and vegetables, which is perceived as a serious
quality deficiency for industry and consumers (Yoruk and
Marshall, 2003). In our study, the CRISPR/Cas9 system was
applied in potato to induce mutations in the StPPO2 gene,
responsible for most of the PPO activity and enzyme content
in tubers (Chi et al., 2014). We hypothesized that the specific
editing of this target gene would result in a lower PPO activity
in the tuber and the consequent reduction of the
enzymatic browning.

TABLE 1 | Edited lines per experiment detected by HRFA.

Line Transfection Allelic Variants

Desiree RC – 0

M07006 25% PEG −4/0

M07009 25% PEG −4/−1/0

M07014 25% PEG −4/0

M07020 25% PEG −102/−4/−1/0

M07028 25% PEG 0/+46

M07029 25% PEG −6/0

M07030 25% PEG −5/0

M07031 25% PEG −111/0/+1

M07032 25% PEG −4/0

M07036 25% PEG −5/0

M07046 25% PEG −1/0

M07051 25% PEG 0/+1

M07053 25% PEG −6/−4/0/+1

M07056 25% PEG −7/−4

M07057 25% PEG −1/0

M07062 25% PEG −1/0/+1

M07063 25% PEG −3/0/+1

M07066 25% PEG 0/+1

M08001 40% PEG −111/−5

M08002 40% PEG −111/−9/+22

M08003 40% PEG −4/0

M08007 40% PEG −9/−5/−3/0

M08008 40% PEG −111/−15/+121/+302

M08009 40% PEG −112/−5/+44

M08012 40% PEG 0/+1

M08013 40% PEG −115/−8/−5/+55

M08014 40% PEG −5/−4/0

M08015 40% PEG −111/0/+98

M08016 40% PEG −4/0/+45

M08017 40% PEG −14/−8/0

M08018 40% PEG −114/−11/−5/0

M08020 40% PEG −1/0/+48

M08024 40% PEG −116/−111/−55/+58

M08025 40% PEG −18/−1/0

M08026 40% PEG −4/−2/0

M08027 40% PEG −118/−111

M08028 40% PEG −113/−5/+1

The transfection conditions and the allelic variants found in the analysis of all four alleles of

StPPO2 are indicated per line. The number 0 indicates the presence of the wild type allele.

Alleles with insertions or deletions are indicated as the number of base pairs with a minus

(−) or a plus (+) sign, respectively.

FIGURE 3 | Screening for off target mutations on StPPO1 and StPPO4

genes by HRFA. Electropherograms of wild type Desiree and line M08001 are

shown. The orange peaks correspond to the elution points of the size

standard and the elution of the respective wild type fragment is set to 0 (A)

Blue peaks correspond to elution of the StPPO1 gene fragments (B) Green

peaks correspond to elution of the StPPO4 gene fragments.
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For the CRISPR/Cas9 system delivery, we utilized
Ribonucleoprotein complexes (RNPs) to transfect potato
protoplasts and further whole plant regeneration (Nicolia et al.,
2015). The genome editing efficiency of 27 and 68%obtained in this
studywashigher thanpreviously reported usingRNPs inpotato (9–
25%, Andersson et al., 2018). The efficiency in genome editing is
largely affected by the target gene as well as the sgRNAs sequence
used todirect theCas9nuclease (Kumlehn et al., 2018).Ontheother
hand, the activity of CRISPR/Cas9 would be influenced by the
transfection efficiency of the reagents into the protoplasts, which
could vary betweenpotato varieties. In addition, the combinationof
two sgRNAs on one target gene used in our study, could explain the

increase in the efficiency obtained. Such strategy not only increased
thepossibilitiesof inducingmutations in the target gene, but also led
to the elimination of larger, specific fragments from the coding
sequence as was previously reported in tomato (Brooks et al., 2014),
rice (Zhou et al., 2014), barley (Kapusi et al., 2017) and potato
(Tuncel et al., 2019; Veillet et al., 2019).

The HRFA performed in our study has shown lines with
multiple alleles of StPPO2 carrying the same type of mutation.
Although a less frequent pathway than NHEJ, the DSB repair via
homologous recombination (HR) is amechanismobserved inplant
somatic cells (Puchta, 2005; Shi et al., 2017; Yu et al., 2017). The
availability of a mutated homologue allele as a donor template

FIGURE 4 | Discoloration development of selected edited lines at times 0, 24, and 48 h after cutting. Two tubers were randomly selected for each edited line and

the control, cut and exposed to the air for 48 h at room temperature (24°C). Photos were taken immediately after cutting (0hs), 24 and 48 h later. T1 and T2 indicate

Tuber 1 and Tuber 2 of each line, respectively.
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during DSB repair could result in a bias towards homozygous
mutations, as observed in the mentioned lines. Nevertheless, our
results are not sufficient to confirm such mechanism and further
experiments would be necessary to confirm this hypothesis.

Foreign DNA integration into the plant genome is a major
concern in genome editing techniques, and is preferably avoided
when applied for commercial breeding purposes (Eckerstorfer
et al., 2019). This is of special importance in a tetraploid and
highly heterozygous crop like potato, since backcrossing
techniques to eliminate inserted foreign DNA would lead to
the loss of allelic combination in an elite variety (Nadakuduti
et al., 2018). In some of the mutated lines identified in our study,
insertions were observed in the target region, which
corresponded to fragments of the DNA template used in the in
vitro transcription of the sgRNAs, or potato genomic fragments.
Although, the latter cannot be consider as a foreign DNA
integration, the first type of insertions could be avoided by
using synthetic sgRNA instead, as previously reported by
Andersson et al. (2018). Nevertheless, the percentage of
insertions detected was very low (9 out of 37 lines) and, in
addition, we obtained a majority of multi-allelic edited lines with
no evident DNA insertions into the target sites. The

confirmation of the absence of foreign DNA in such lines
could result in plants considered not different from
conventionally bred varieties, taking into account the actual
criteria for determining the regulatory status of genome edited
products in Argentina and other countries (Whelan and Lema,
2015; Eckerstorfer et al., 2019; Lema, 2019).

Off target activity, i.e. introduction of unintended mutations,
have been reported using the CRISPR/Cas9 system in plants
(Zhang et al., 2018a). Assaying all possible off target mutations
induced by the selected sgRNAs would only be possible
throughout whole genome sequencing of the edited lines (Li
et al., 2019), a goal that is beyond the objectives of our study.
Nevertheless, we aimed to confirm that our selected edited lines
displayed mutations only in the StPPO2 gene, with no alteration
in the coding sequences of other members of the StPPO gene
family, as paralogs may share a considerably degree of sequence
similarity (Chi et al., 2014). Only two possible off target sites were
found on other StPPO genes for sgRNA564, considering up to
four mismatches. The HRFA of the selected lines indicated no
insertions or deletions in StPPO1 and StPPO4 genes. The
presence of multiple mismatches into the seed region (defined
as the 8–12 nt proximal to the PAM) between the selected
sgRNAs and the rest of StPPO genes could explain their
specificity for StPPO2 (Hahn and Nekrasov, 2019). On the
other hand, the use of RNPs as delivery method for the
CRISPR/Cas9 system has been proposed to reduce the
incidence of off targets effects, due to the rapid degradation of
the Cas9 nuclease and the sgRNAs in the cell (Nadakuduti et al.,
2018; Zhang et al., 2018a; Hahn and Nekrasov, 2019).

Earlier studies have reported the use of different RNA
silencing technologies to down-regulate the expression of
StPPO genes in potato tubers (Bachem et al., 1994; Rommens
et al., 2006; Llorente et al., 2011). The approach taken in those
reports was to reduce the expression of several members of the
StPPO gene family, which led to a reduction in the enzyme
content and enzymatic browning reactions. The contribution of
the different members of StPPO genes to the total PPO activity

FIGURE 5 | Analysis of Relative Enzymatic Browning (A) and Relative PPO

Activity (B) in tubers of selected edited lines. Each box represents data of

three biological replicates of the edited lines and the control Desiree RC, the

line across the box represents the median. The box represents the 25th and

the 75th percentiles and whiskers represent the maximum and minimum

value. Data are relative to the control line Desiree RC. Statistical differences

with the control line Desiree RC are denoted *(p < 0.05).

TABLE 2 | Effect of each line on Relative Enzymatic Browning and Relative PPO

Activity variables.

Response variable Fixed effect Estimate ± SE p

Relative Enzymatic Browning Intercept 1.00 ± 0.15 <0.001

M07056 −0.60 ± 0.22 0.01

M08001 −0.73 ± 0.15 <0.001

M08002 −0.73 ± 0.15 <0.001

M08003 0.19 ± 0.22 0.40

M08008 −0.68 ± 0.14 <0.001

M08027 −0.67 ± 0.15 <0.001

Relative PPO Activity Intercept 0.48 ± 0.08 <0.001

M07056 −0.13 ± 0.10 0.2295

M08001 −0.31 ± 0.09 0.0047

M08002 −0.25 ± 0.11 0.0355

M08003 0.13 ± 0.19 0.5137

M08008 −0.16 ± 0.12 0.2057

M08027 −0.19 ± 0.09 0.0615

Parameters estimates and p values were taken from Linear Mixed Models with the Line as

a fixed effect and the biological replicate as a random effect. p < 0.05 indicates significant

differences with the Desiree RC control line.
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was latter established in potato tubers using amiRNA technology
(Chi et al., 2014). Despite amiRNAs proved to be efficient in
regulating the expression of StPPO genes individually or in
combination, several off targets effects were observed with lines
displaying a moderate to high reduction of non-targeted StPPO

genes expression (Chi et al., 2014). The reduction in PPO activity
was 15–95%, while the reduction in enzymatic browning was 10–
65%, depending on the combination of StPPO genes down
regulated. The greatest reduction, however, occurred when
StPPO1 to 4 were all suppressed. For unknown reasons, the
authors could not obtain lines expressing the amiRNA directed
to StPPO2 gene alone. Nevertheless, correlations studies
indicated that the expression of StPPO2 gene was strongly
correlated with the levels of PPO activity and enzyme content
in tuber. In the present study, we have demonstrated that lines
carrying mutations in all the four alleles of StPPO2 gene
displayed a reduction up to 69% and 73% in the PPO activity
and enzymatic browning, respectively. Our result not only
corroborate the previous report pointing out StPPO2 as the
major contributor to PPO activity in tubers, but also
demonstrate that non-browning potatoes can be obtained by
the sole induction of mutations in that gene, without affecting
other members of the gene family. Our approach could be
advantageous in order to avoid the downside effects of
reducing the expression of other members of the StPPO gene
family, affecting their potential involvement in important cell
functions (Yoruk and Marshall, 2003; Jukanti, 2017).
Furthermore, we have demonstrated that the CRISPR/Cas9
system is a highly efficient tool for inducing mutations in a
specific member of a gene family that shares a high identity of
nucleotide sequence (Thygesen et al., 1995; Chi et al., 2014).

The phenotypes observed in the selected lines, were correlated
with the mutations found in the StPPO2 gene. Thus, the frame
shift mutations (deletions of 4 or 7 bp) in all alleles of the StPPO2
gene, is the most likely cause for the reduced PPO activity and
concurrent reduced enzymatic browning in line M07056. Similar
phenotypic effects were observed in lines M08001, M08002,
M08008, and M08027. In addition to alleles carrying mutations
that produced frame shifts in the coding sequence, alleles with
deletions of 111 bp were introduced in StPPO2 of those lines.
Even though this mutation is not expected to produce a frame
shift, a large deletion introduced in the coding sequence near the
first copper-binding domain, might affect the functionality of the
enzyme, if translated. PPOs from a large number of plant species
share a conserved structure in the N-terminal domain, which is
critical for the function of the enzyme (García-Borrón and
Solano, 2002; Marusek et al., 2006; Tran et al., 2012). Similarly,
line M08002 presented one allele carrying a deletion of 9 bp,
because of a deletion of 4 bp in the target site of sgRNA564 and a
deletion of 5 bp in the target site of sgRNA157. Although no
frame shifts were detected for the rest of the coding sequence, the
frame shift in the region spanning between both target sites may
be related to reduction in the enzyme activity, similar to the effect
produced by the elimination of such fragment.

It is not established if all the alleles of the StPPO2 gene
contribute equally to the protein activity in the tuber. Based on

our sequencing results, line M08003 contained at least one
mutated allele of StPPO2 most likely in combination with
multiple copies of wild type allele. This line displayed a PPO
activity and enzymatic browning levels almost identical to the
control Desiree RC, which indicates that the remaining wild type
alleles were sufficient for a normal enzyme function. Previous
studies in other plant species have shown allelic variations in
PPO genes to be associated with differences in the levels of PPO
activity (Taketa et al., 2010; Beecher et al., 2012). A more detailed
analysis is needed in the case of potato PPO genes.

For phenotypic characterization, we performed two analyses
on selected edited lines, i.e. Relative Enzymatic Browning and
Relative PPO Activity. The two methods produced similar
results, with the selected edited lines displaying a reduction in
both parameters. In addition, both variables presented a
significantly positive correlation between them. Even though a
clear reduction in relative PPO activity for lines M07056,
M08008, and M08027, no statistical differences were observed
relative to the control. This may be due to a higher variance of
the values for these lines. Despite the small disparity in the
statistical analysis between the variables for the mentioned lines,
our results were consistent with all lines displaying a reduced
enzyme activity, which turned to a reduced enzymatic browning
in the tuber. Lines M08001 and M08002 values were statistically
significant with both determinations.

Argentina isoneofa fewcountries todevelop legislation toassess
regulatory matters regarding genome edited organisms (Whelan
and Lema, 2015; Eckerstorfer et al., 2019; Lema, 2019). In this
report, we have studied the application of the CRISPR/Cas9 system
to produce edited potato plants with a reduced PPO activity and
enzymatic browning in tubers. Our system proved to be specific for
the target gene, without affecting the coding sequence of other
StPPO family members and, consequently, their roles in other cell
functions. Considering the current criteria for the determination of
the regulatory status of genome edited crops inArgentina andother
countries, application of this technology could result in plants that
do not fall under strict GMOs regulation, which might represent a
major advantage in comparison with previous strategies taken for
the improvement of the same trait in potato. We consider that our
study represents an important step towards the development of
potato varieties that maintain the organoleptic, antioxidant and
nutritional properties during harvest and post-harvest procedures,
without the utilization of potentially harmful browning controlling
agents. This advantage results in benefits for the farmer, the potato
processing industry, and finally the consumer.

MATERIALS AND METHODS

SgRNA Design on StPPO2 Gene of
S. tuberosum cv. Desiree
The available sequences of PGSC0003DMG400018916 (Potato
Genome Sequencing Consortium, 2011) and POT32 (GenBank:
U22921.1, Thygesen et al., 1995) were aligned and used for primer
design, in order to amplify the StPPO2 gene in S. tubersoum cv
Desiree (Chi et al., 2014). Primers F_StPPO2 and R_StPPO2
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(Supplementary Table S1) were used to amplify a fragment from
the 5′ end of the target gene, using 10 ng of genomic DNA as a
template ina reactionwithPhusionHigh-FidelityDNAPolymerase
(Thermo Fisher Scientific, Waltham, MA, USA). Reaction
conditions were 98°C for 1 min, 30 cycles of 98°C 30 s, 60°C 20 s,
72°C 30 s and a final extension of 72°C for 7 min.

PCR products were cloned into the pJET1.2 vector using the
CloneJET PCR Cloning Kit (Thermo Fisher Scientific) and
transformed to One Shot TOP10 Chemically Competent E. coli
(Thermo Fisher Scientific), according to manufacturer
instructions. Twelve randomly picked colonies were selected
for plasmid purification and Sanger sequencing using the
primers provided by the CloneJET PCR Cloning Kit. The
resulting sequences were aligned to avoid allelic variation
during sgRNA design and further High Resolution Fragment
Analysis (HRFA) primer design (Supplementary Figure S1).

TheCas-DesignerTool
1

wasused for sgRNAdesign,usingoneof
the sequences obtained for StPPO2 as a query and S. tuberosum
(PGSC v4.03) as a target genome (Park et al., 2015). sgRNA157 and
sgRNA564 (Figure1A)were selected according to theOut ofFrame
Score (Bae et al., 2014) and the strict absence of allelic variation
along the target sequence (Supplementary Figure S1).

Off Target Sites Prediction on
StPPO Genes
Cas-OFFinder Tool

2

was used for possible off targets site
identification on other members of the StPPO gene family within
the genome database of S. tuberosum (PGSC v4.03). Searching for
sequences with up to 4 mismatches (Hahn and Nekrasov, 2019)
with the selected sgRNAs and a 5′-NRG-3′(R = A or G) as PAM
sequence, putative off targets were found in the genome at positions
45631511 and 45870133 of the chromosome 8 of potato for
sgRNA564. Using the genome browser available on Sol Genomics
Network

3

genes PGSC0003DMG400029575 (StPPO1) and
PGSC0003DMG400018917 (StPPO4) were identified as the only
twoputativeoff targets onStPPO geneswithexpressiondata (Potato
Genome Sequencing Consortium, 2011; Chi et al., 2014).

The available sequences of both genes were used for primer
design (Supplementary Table S1) in order to sequence the
putative off targets sites in S. tuberosum cv Desiree and
confirm the in silico analysis. Amplification, cloning and
sequencing was performed as previously explained for the
target gene. The result ing sequences were al igned
(Supplementary Figures S2 and S3) and used for HRFA
primer design (Supplementary Table S1) for off target
analysis. The amplified region for HRFA on each gene
included both, the predicted off target sites for sgRNA564
(Figure 1B) and the region that aligns with sgRNA157
(Figure 1C).

Ribonucleoprotein Complexes Assembly
The sgRNAs were in vitro transcribed (Andersson et al., 2018)
using the GeneArt Precision gRNA Synthesis Kit (Thermo Fisher

Scientific), according to the manufacturer instructions, with
minor modifications. The DNA templates for in vitro

transcription of sgRNA157 and sgRNA564, were obtained
using Fw_IVT157/Rv_IVT157 primers and Fw_IVT564/
Rv_IVT564 primers, respectively (Supplementary Table S1).
After assembly, both DNA templates were purified using the
GeneJET PCR Purification Kit (Thermo Fisher Scientific) and
quantified using a Trinean DropSense 16 (Techtum, Nacka,
Sweden). Thirty ng of DNA were used in each case for in vitro

transcription for 3 h. After transcription, sgRNAs were treated
with 1 unit of DNAse I for 15 min following the instructions of
GeneArt Precision gRNA Synthesis Kit, afterwards purified, and
quantified using the Trinean DropSense 16.

Right before transfections into potato protoplasts, 5 µg of
each sgRNA was mixed with 0.03 nmol of GeneArt Platinum
Cas9 Nuclease (Thermo Fisher Scientific) in a final volume of
5 µl and incubated for 15 min at room temperature.

Protoplasts Transfection and
Plant Regeneration
Protoplasts were isolated from 5-week old plantlets according to
Nicolia et al. (2015). For transfections, 100,000 protoplasts were
incubated with RNPs and 25% Polyethylenglycol (PEG) 4000
(Duchefa Biochemie, Haarlem, The Netherlands) for 3 min, or
with RNPs and 40% PEG4000 for 30 min. A regeneration control
was included, which consisted of the same number of protoplasts
incubated with 40% PEG but no RNPs, for 30 min. After
transfections, all protoplasts were embedded in sodium
alginate and cultured for calli regeneration, according to
Nicolia et al. (2015).

Green calli were released from alginate blobs after 21 days of
culture, and subcultured for shoot growth induction. To ensure
the analysis of independent lines, one shoot was picked per callus
and transferred for root development. Samples from leaves of the
full regenerated plantlets were picked for genomic DNA
extraction and further analysis.

Identification of Edited Lines and
Sequencing Analysis
Genomic DNA of regenerated plants was extracted from leaves
in a 96-Deep well plate. The sampled tissue was homogenized
with 500 µl of 100 mM Tris HCl, 50 mM EDTA and 1% SDS, pH
9.0 and 5mm steel beads, using a Retsch Mixer Mill MM400 for
30 s at 30 Hz (Retsch, Haan, Germany). After centrifugation of
the tissue debris, DNA was extracted from 200 µl of the cleared
lysate, in a QIAcube HT extraction robot using a QIAamp 96
DNA QIAcube HT Kit (QIAGEN, Hilden, Germany) according
to the manufacturer instructions.

The presence of mutations in the target gene was determined
by High Resolution Fragment Analysis (HRFA), according to
Andersson et al. (2017). Primers PPO2_2Bf-HEX and PPO2_2Br
(Supplementary Table S1) were designed for amplification of
the region spanning both sgRNAs target sites on the StPPO2

gene, taking into account the absence of allelic variation in
primers annealing sites in the target gene (Supplementary

Figure S1). Primers were used to amplify a fragment of 228 bp

1www.rgenome.net/cas-designer
2www.rgenome.net/cas-offinder
3www.solgenomics.net
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of the target gene, using Phusion High-Fidelity DNA Polymerase
(Thermo Fisher Scientific). Reaction conditions were 98°C for
1 min, 30 cycles of 98°C 30 s, 60°C 20 s, 72°C 15 s, and a final
extension of 72°C for 7 min.

Labelled PCR products were analyzed in an Applied
Biosystems 3500 Genetic Analyzer (Thermo Fisher Scientific),
according to the instructions of manufacturer, using GeneScan
600 LIZ Dye Size Standard (Thermo Fisher Scientific) as internal
lane size standard. Fragments length were determined with
GeneMarker Software (SoftGenetics, State College, PA, USA)
and insertions or deletions were identified comparing each line
electropherogram versus the control.

StPPO2 gene was sequenced by Sanger in selected edited lines
to confirm the HRFA results. Primers PPO2_2Bf and PPO2_2Br
(Supplementary Table S1) were used for PCR amplification of
the fragment with the same conditions mentioned above, and the
products cloned using the CloneJET PCR Cloning Kit (Thermo
Fisher Scientific), as previously. Twelve randomly picked clones
were sequenced per line for mutations characterization.

Off Target Analysis
Thepresenceofputative off targetmutations inStPPO1andStPPO4
genes was determined by HRFA as described above. Primers
PPO1_OT564_F-6-FAM and PPO1_OT564_R (Supplementary

Table S1) were used for the analysis of the StPPO1 gene
(Supplementary Figure S2). PPO4_OT564_F-HEX and
PPO4_OT564_R primers (Supplementary Table S1) were used
for the analysis of the StPPO4 gene (Supplementary Figure S3).

Plant Growth Conditions and Tubers
Harvesting
Selected in vitro-regenerated plantlets were transferred to 1 L pots
with substrate and placed in a growth chamber, at a constant
temperature of 24°C in a photoperiod of 16 h (120 µmol m−2 s−1)
light–8 h dark. Three biological replicates were grown for each
edited line and the control line Desiree RC. Tubers were harvested
after 120 days of culture, right before plants senescence.

Enzymatic Browning and PPO Activity
Determinations
Enzymatic Browning and PPO activity were measured according
to Chi et al. (2014), with minor modifications. Tubers were
randomly selected per each edited line and the control Desiree
RC and tr ip le biologica l repl icates were used for
the determinations.

Forenzymatic browningassay, slicesweremanually cut fromthe
center of the tubers and immediately frozen in liquid nitrogen. The
frozen samples were processed with 5 ml of cold PPO extraction
buffer (100 mM sodium phosphate buffer pH 6.0, 2% TX-100, 2%
PVPP) using anUltra-Turrax T-25 (IKA, Königswinter, Germany)
at 11,000 rpm for 30 s. Homogenates were allowed to oxidize for 1 h
at room temperature, and afterwards aliquots were transferred to
1.5 ml centrifuge tubes and centrifuged for 10 min at 11,000 rpm.
The absorbance at 475 nm (A475nm)wasmeasured in 300 µl of the
supernatant in a 96 wells plate, using an Epoch Microplate
Spectrophotometer (Bioteck, Winooski, VT, USA), with three

technical replicates. The total protein concentration of the
homogenates were determined using the Pierce BCA Protein
Assay Ki t (Thermo Fisher Sc ient ific) in the same
spectrophotometer and the Enzymatic Browning calculated as the
A475nm/mg of total protein. Finally, the Relative Enzymatic
Browning was calculated as the value of each line related to the
control Desiree RC.

For PPO activity assay, the frozen samples were processed
with 5 ml of cold PPO extraction buffer as above, and the
homogenates were transferred to 2 ml centrifuge tubes and
centrifuged at 11,000 rpm, 4°C during 30 min. The
supernatants were transferred to new tubes and kept in ice
until PPO activity measurements. PPO activity was measured
adding 100 µl of sample into a quartz cuvette and 900 µl of PPO
assay buffer (50 mM sodium phosphate buffer pH 6.0, 0.1% SDS
and 15 mM 4-Methy lca techol ) . A SmartSpec3000
Spectrophotometer (Bio-Rad, Hercules, CA, USA) was used to
measure the absorbance increase at 400 nm (A400nm) every 5 s
for 1 min at 25°C. Three technical replicates were performed for
the determinations and one unit (1U) of PPO enzymatic activity
was defined as the amount of enzyme necessary to change
A400nm in 0.001/min at 25°C. The total protein concentration
of each sample was determined using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific) as before, and enzymatic
activity was calculated as U/mg of total protein. Finally, Relative
PPO Activity was calculated as the value of each line related to
the control Desiree RC.

Statistical Analysis
Linear Mixed Models were used to test the effect of the different
lines in the Relative PPO Activity and Relative Enzymatic
Browning variables (Linear Mixed-Effects Models: Basic
Concepts and Examples, 2000). We considered each line as a
fixed-effect. In order to take in consideration possible variation in
the individual plants, we considered the identity of each
biological replicate as a random effect. All possible models
were evaluated and we compared competitive ones using
Akaike Information Criterion (AIC). All the analysis were
performed in R

4

using nlme package.
Spearman's correlation analysis was performed in R, using the

measured data of the variables “Relative Enzymatic Browning”
and “Relative PPO Activity.”
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