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Reduced exposure to extreme precipitation from
0.5 °C less warming in global land monsoon
regions
Wenxia Zhang 1,2, Tianjun Zhou 1,2, Liwei Zou 1, Lixia Zhang1,3 & Xiaolong Chen 1

The Paris Agreement set a goal to keep global warming well below 2 °C and pursue efforts to

limit it to 1.5 °C. Understanding how 0.5 °C less warming reduces impacts and risks is key for

climate policies. Here, we show that both areal and population exposures to dangerous

extreme precipitation events (e.g., once in 10- and 20-year events) would increase con-

sistently with warming in the populous global land monsoon regions based on Coupled Model

Intercomparison Project Phase 5 multimodel projections. The 0.5 °C less warming would

reduce areal and population exposures to once-in-20-year extreme precipitation events by

25% (18–41%) and 36% (22–46%), respectively. The avoided impacts are more remarkable

for more intense extremes. Among the monsoon subregions, South Africa is the most

impacted, followed by South Asia and East Asia. Our results improve the understanding of

future vulnerability to, and risk of, climate extremes, which is paramount for mitigation and

adaptation activities for the global monsoon region where nearly two-thirds of the world’s

population lives.
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F
aced with the threat of ongoing climate change, the 2015
Paris Agreement proposed an ambition to “hold[ing] the
increase in the global average temperature to well below 2 °C

above preindustrial levels and pursue[ing] efforts to limit the
temperature increase to 1.5 °C, recognizing that this would sig-
nificantly reduce the risks and impacts of climate change”1. Sig-
nificant effort has since been devoted to understanding the
different climatic impacts of the two warming levels, including
changes in temperature and precipitation extremes on both global
and regional scales2–7.

Precipitation-related extremes are among the most impact-
relevant consequences of a warmer climate, particularly in the
global monsoon regions (regions surrounded by magenta lines in
Fig. 1; see Methods). The global monsoon is characterized by
pronounced annual variation in precipitation and low-level
winds, which are originally driven by insolation8–10. Sufficient
monsoon rainfall and, hence the rich freshwater resources sustain
approximately 62% of the world’s population (Fig. 1a). Never-
theless, the global land monsoon (GM) region has been over-
whelmed by extreme precipitation. The annual maximum
accumulated 5-day precipitation (RX5day), a frequently used
index of extreme precipitation in flood risk assessments11, over
the monsoon regions is far greater than that over the rest of the
land. Climatologically, the RX5day reaches as high as 117 mm
averaged over the GM region, as compared to 53 mm for the rest

of the global land, estimated using the gauge-based gridded daily
precipitation from the Global Precipitation Climatology Centre12

(Fig. 1b). Such types of excessive extreme precipitation can cause
severe floods and even landslides and debris flows in mountai-
nous areas in the GM domain. Extreme precipitation in the
monsoon regions is projected to further intensify with warm-
ing13,14. Assessments of the changing associated risks, especially
the impacts that could be avoided by limiting warming to 1.5 °C
compared to 2 °C, are critical for mitigation and adaptation
planning.

In this study, we investigate the future changes in extreme
precipitation in the GM region based on RX5day, by employing
multimodel projections from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) (Supplementary Table 1;
see Methods; ref. 15). Climate change risks are typically deter-
mined by the hazards, vulnerability and exposure of human
society and natural ecosystems16,17. Vulnerability is a function of
exposure, sensitivity, and adaptive capacity16–18. Here, we
quantify the changes in exposure to extreme precipitation at
different warming levels, focusing on the different impacts at the
1.5 and 2 °C warmer worlds in particular. We show that both the
area and population exposed to dangerous precipitation extremes
would increase consistently with warming. Realizing the 1.5 °C
low warming target would robustly reduce the areal and popu-
lation exposures to dangerous extremes for the populous GM
region, compared to a warming of 2 °C. The avoided impacts are
more remarkable for more intense extremes. Such information is
fundamental for understanding future vulnerability and for
developing mitigation and adaptation strategies.

Results
Response of extreme precipitation to warming. Over the GM
region, the long-term change in RX5day is dominated by global
warming and features spatially consistent increases, as shown by
the leading mode of the Empirical Orthogonal Function derived
from historical simulations and projections under the Repre-
sentative Concentration Pathway (RCP) 8.5 between 1860 and
2100 from the CMIP5 multimodels (Supplementary Fig. 1). Up to
approximately 40% of the total variance is explained by the global
warming mode for the individual models.

The RX5day averaged over the GM region responds approxi-
mately linearly to the global temperature increase at a rate of
5.17% K−1, with a 25th–75th percentile range of 4.14–5.75% K−1

(Fig. 2a and Supplementary Fig. 2; see Methods). Such a response
is generally consistent with (although slightly lower than) that
expected from the Clausius–Clapeyron equation. The thermo-
dynamic arguments suggest an increase in heavy rainfall intensity
at a rate similar to the moisture increase of 7% K−1, as heavy
precipitation is largely driven by moisture convergence19. The
slightly weaker response of the RX5day in simulations compared
to the thermodynamic arguments implies a potential offset from
the dynamic changes overall. Changes in dynamic circulation can
substantially affect extreme precipitation14,20–22. Underlying
mechanisms include the weakening of the large-scale monsoon
circulation13,23–26, which results from the stabilization of the
tropical atmosphere associated with global warming27,28, the
modulation of regional monsoon circulation by land–sea thermal
contrast changes29,30, the gradient of sea surface temperature
warming patterns31, and changes in synoptic scale circulations,
such as monsoon depressions22,30,32 and tropical cyclones33.

The spatial pattern of extreme precipitation response is not
homogeneous mainly due to the dynamic contribution22.
Specifically, extreme precipitation in the South and East Asian
monsoon regions is the most sensitive to warming, with a
response rate of 9.67% K−1 (7.00–10.41% K−1) and 6.40% K−1
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(5.46–7.53% K−1), respectively (Fig. 2a). These responses are
robust against model spread, as shown by their high signal-to-
noise ratios (SNRs; Fig. 2b; see Methods). In contrast, the North
American and Australian monsoon regions exhibit moderate
responses with low SNRs, which are partly related to their
relatively smaller areal coverage and competing roles of
thermodynamics and dynamics22.

In the 1.5 and 2 °C warmer worlds, consistent increases in
RX5day are projected throughout the GM region, except over the
North American monsoon region (Fig. 3). Robust increases in
RX5day are projected to mostly affect the Asian and African
monsoon regions with the half a degree additional warming due
to the large sensitivity of extreme precipitation to global warming
in these regions (Fig. 3c). Note these regions have dense
populations (Fig. 1a).

Exposure to dangerous extreme precipitation events. In terms
of social impacts, extreme events that deviate substantially from
their climatologies can result in the greatest losses (for a certain
region, regardless of the changes in societal factors such as vul-
nerability), because they are beyond the tolerable ranges of eco-
logical and human systems and infrastructures. The response of
extreme precipitation to global warming is twofold: mean state
and variability. CMIP5 models show increases in both the mean
state and the variability of extreme precipitation with warming
(Supplementary Fig. 3), consistent with previous studies34.
Increases in both the mean state and variability would increase
the frequency of intense extreme events that could be dangerous
in terms of social impacts. Here, we define dangerous extreme
events as those exceeding the 10- and 20-year return values from
the 1950–2005 baseline, which lie in the upper tail of the extreme
value distributions (Supplementary Fig. 4; see Methods). The two
thresholds represent different levels of dangerous. We then esti-
mate the areal and population exposures to these dangerous

extremes for different warming levels for the integrated GM
region and regional monsoon domains, respectively (see Meth-
ods). The population exposure is estimated based on the popu-
lation distribution fixed at the year 2000 (Gridded Population of
the World, GPW2000; ref. 35) and that projected under different
socioeconomic development scenarios of Shared Socioeconomic
Pathways36 (SSPs).

The evolution of exposure with warming levels indicates the
speed at which the human system will be hit by these dangerous
extremes. The land area exposed to these events increases
consistently with warming (Fig. 4a). For the GM region as a
whole, for RX5day events that exceed the baseline 10-year return
values, the area of exposure increases from the present-day
(1986–2005) level of 9.47% (9.13–9.89%) to 12.42%
(10.46–13.53%) and 14.01% (12.55–15.98%) for the 1.5 and 2 °
C warming levels, respectively. Similarly, the area exposed to
RX5day events that exceed the baseline 20-year return values
increases from 4.34% (4.23–4.58%) for the present day to 6.25%
(5.28–7.21%) and 7.45% (6.76–8.57%) for warming of 1.5 and 2 °
C, respectively. Correspondingly, the population exposure also
increases with continuous warming under the fixed population
case (GPW2000) and all projected population scenarios from the
SSPs (Fig. 4a). The increases in fractional population exposure are
comparable to those in the land fraction.

We further compare the simulated increasing exposure with
warming levels to that linearly extrapolated from the preindustrial
(0 °C) and 1.5 °C warming levels (dashed gray lines in Fig. 4a).
Whereas the increase in exposure is quasilinear below the 2 °C
warming level, nonlinear increases emerge at higher warming
levels (higher than 2 °C), implying that excessively amplified
impacts from dangerous extremes could be induced.

Avoided impacts by the half a degree less warming. What are
the avoided impacts of the 1.5°C warming compared to the 2 °C
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warming? We quantify this as the difference in impacts (i.e.,
exposure) between the two warming levels, expressed in percen-
tages with respect to that in the present day (see Methods). If
warming is limited to the 1.5°C level instead of 2 °C, the GM
region is projected to benefit from a robustly reduced exposure to
dangerous extremes with high model agreement in terms of both
area and population (Fig. 4b). Over the integrated GM region, for
RX5day events that exceed the baseline 10-year return value, the
areal and population (GPW2000) exposures will increase to 120%
(112–143%) and 124% (108–136%) over the present-day level for
the 1.5 °C warming, respectively, as compared to 146% (130-
164%) and 149% (138-167%) for the 2 °C warming, respectively.
Thus, the avoided impacts are estimated to be 19% (13–31%) and
27% (13–36%), respectively, for areal and population exposures to
the baseline 10-year return value exceedances due to the half a
degree less warming. It is worth noting that the avoided impacts
are more remarkable for more intense extremes. Thus, for the
baseline 20-year return value exceedances, the areal and popu-
lation exposures that could be reduced by the half a degree less
warming amount to 25% (18–41%) and 36% (22–46%),
respectively.

Nearly all regional monsoon domains would see such robustly
avoided impacts, although the magnitudes would differ (Fig. 5).
Hotspots where the avoided impacts are the most prominent are
seen in the South African (with multimodel median estimates for
avoided areal and population exposures to extremes that exceed
the baseline 20-year return values of 44% and 53%, respectively,
over the present-day level), South Asian (40 and 40%), and East
Asian (35 and 29%) monsoon regions. Here, we only show the
population exposure estimated from the fixed population at year
2000 (i.e., the GPW2000 case), while the population exposures
based on projections from SSPs are qualitatively similar
(Supplementary Fig. 5). Additionally, we note that we only
consider the fractional population exposure here. If the absolute
population growth is considered, the avoided impacts will be
larger.

Discussion
In summary, we show evidence that limiting global warming to
1.5 instead of 2 °C would robustly reduce areal and population
exposures to dangerous extreme precipitation events, i.e., those
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exceeding the 10- and 20-year return values for the baseline. The
avoided impacts are more remarkable for more intense extremes.
Over the GM region, an estimated 25% (18–41%) and 36%
(22–46%) of area and population, respectively, could be relieved
from the baseline once-in-20-year events over the present-day
level, if global warming were limited to 1.5 instead of 2 °C.
Among the regional monsoon domains, the primary hotspots of
the South African and South Asian monsoon regions, which are
already among the most vulnerable regions around the world to
adverse impacts of climate change37, would benefit most from the
half a degree less warming with high model consistency, in terms
of lower exposure to dangerous precipitation extremes. Such
climate change inequity between greenhouse gas emitters and
those burden the negative impacts of climate change (including
the African countries) has received growing attention38,39.

Above conclusions do not rely on the definition of dangerous
events. Alternatively, if dangerous extreme events are defined as
those exceeding 1–2σ (interannual standard deviation in the
baseline) from the baseline climatology, the exposure and avoided
impacts are quantitatively comparable with those based on return
values (Supplementary Figs. 6 and 7; see Methods). In addition,
analysis of the future emission scenario of the RCP4.5 yields
similar results as the RCP8.5 (Supplementary Figs. 8 and 9). The
independence of metrics, future emission scenarios, and popu-
lation scenarios confirms the robustness of the results, thus
adding fidelity to the conclusion that humanity would benefit

from the half a degree lower warming target in the densely
populated GM region.

In addition to the impact-relevant extremes, changes in the
water cycle, particularly the availability of water, which is the life
blood of people, in the 1.5 and 2 °C warming futures deserve
further investigation40.

Methods
Models. Historical simulations and projections under the RCP8.5 and RCP4.5
from 21 models in the CMIP5 archive15 (Supplementary Table 1) are analyzed. The
models are selected based on (1) daily precipitation data availability, (2) a 2 °C
warming occurs before the year 2100 under both the RCP4.5 and RCP8.5, and (3)
the difference in the timing of the 1.5 and 2 °C warming is no less than 9 years to
avoid overlap when 9-year time windows are used to represent respective condi-
tions. Excluding models that produce this transition relatively quickly (i.e.,
FGOALS-s2 and CSIRO-Mk3-6-0, in which the difference of timing of the 1.5 and
2 °C warming is less than 9 years) does not affect the conclusion. All calculations
are conducted on native grids in the models, except when spatial patterns are
shown.

Definition of the global monsoon region. The global monsoon region is defined
as the area where the local “summer minus winter” precipitation rate exceeds 2.0
mm/day and the local summer precipitation exceeds 55% of the annual total9.
Here, local summer refers to May through September for the northern hemisphere
and November through March for the southern hemisphere. In this study, we
define the global monsoon region based on the 1979–2010 climatological pre-
cipitation from the Global Precipitation Climatology Project41, and we only con-
sider land monsoon regions.
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Fig. 4 Areal and population exposures to dangerous RX5day events over the GM region. a Fraction of land area and population experiencing RX5day events

that exceed baseline 10- and 20-year return values (RVs) at the preindustrial (pI, 1861–1890, 0 °C), present-day (pd, 1986–2005), 1.5, and 2–4 °C warming

levels, over the GM region. Population in 2000 (GPW2000) and under SSPs 1–5 in 2100 are used to estimate population exposure. The multimodel

medians (solid lines) and interquartile ranges (shadings) are shown. The abscissa in (a) is proportional to the warming magnitudes, where a warming of

0.61 °C is set for 1986–2005 (ref. 45). The dashed gray lines denote the linear extrapolation from the preindustrial (0 °C) and 1.5 °C warming levels.

b Areal and population exposures reduced by the 1.5 warming compared to 2 °C warming for RX5day events that exceed the baseline 10- and 20-year

return values (see Methods). Circles and bars denote multimodel medians and interquartile ranges, respectively. Where more (less) than 2/3 of the

models indicate reduced exposure by the 0.5 °C less warming are indicated by solid (open) circles
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Definitions of the present day, 1.5 and 2 °C warmer worlds. The changes and
impacts of the warming scenarios are compared to the present-day conditions,
which are defined from 1986 to 2005. The timings of the 1.5 and 2 °C warming
scenarios above the preindustrial levels (1861–1890) are determined using the 9-
year running average global mean surface air temperature separately for each
model. The 1.5 and 2 °C warming periods are then aggregated from the 9-year
windows that are centered on the years when respective warming levels are
exceeded. Climate changes in the 1.5 or 2 °C warming scenarios are first calculated
for each model separately to derive multimodel ensembles. We test whether the
multimodel ensemble medians of the 9-year segments are affected by the remaining
decadal oscillations. This test is done by comparing the changes in extremes
between different warming levels, which are calculated from the original time series
and a filtered time series by removing the 10–70-year low-frequency oscillations.
The results show that the difference in the multimodel ensemble medians (i.e.,
signals) is small (Supplementary Fig. 10).

Response of extreme precipitation to global warming. To derive the response of
extreme precipitation to global warming, projections of extremes and global mean
near-surface air temperature are averaged over decadal periods starting in 2006 and
overlapped by 5 years (i.e., 2006–2015, 2011–2020, up to 2091–2100). A linear
regression between them is referred to as the response rate for each model,
separately.

Signal-to-noise ratio. The ratio of the multimodel median responses in extreme
precipitation to intermodel standard deviations is used as a measure of the SNR42.
SNRs > 1.0 indicate robust changes compared to the model uncertainty.

Variability of extreme precipitation. To calculate the time-dependent inter-
annual standard deviation, a local detrending with an 11-year running mean is first
applied (i.e., removing the 11-year running mean from the original time series) to
derive anomalies for each grid box43. Then, the standard deviation is calculated

over running 20-year segments. The standard deviation over the GM region is then
derived with area weighting.

Definition of dangerous extreme events. The dangerous extreme events in this
study refer to those that lie in the upper tail of the extreme value distributions. To
objectively define the threshold of dangerous, we employ the 10- and 20-year
return values from the 1950–2005 base period to represent different levels of
dangerous. This is a period with relatively good global coverage of observations to
constrain the models. To estimate the return values for RX5day, a generalized
extreme value (GEV) distribution is first fitted to the RX5day in 1950–2005 on the
native grids of each model using the method of maximum likelihood44. Based on
ref. 34, the GEV parameter estimates for extreme precipitation are smoothed
spatially, considering the noise in change patterns in extreme precipitation stem
from sampling. This is done by smoothing the estimated GEV parameters at each
grid point by its eight surrounding neighbors. Then, return values are obtained by
inverting the fitted GEV distributions derived from the smoothed parameters. The
10- and 20-year return values from the baseline are derived on the native grid
points for each model. The GEV distribution is fitted using the NCL (NCAR
Command Language) function “extval_mlegev” (http://www.ncl.ucar.edu/
Document/Functions/Built-in/extval_mlegev.shtml).

Areal and population exposures to dangerous extreme events. The area
(population) that experiences RX5day events exceeding the threshold for danger-
ous is aggregated spatially to represent the total area (population) exposed. Frac-
tional exposure is calculated with respect to the total area or population over the
GM region or monsoon subregions. Population exposures are estimated based on
populations from the year 2000 (GPW2000) and under different SSPs to represent
all possible future socioeconomic development scenarios. The population expo-
sures quantified in the text are based on the GPW2000 case, unless otherwise
specified. Generally, fractional population exposure under different SSPs and
periods yields the same qualitative results.
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Avoided Impacts. The impacts in terms of exposure induced by warming are
quantified against the 1986–2005 present-day level:

ImpactsðKÞ ¼
EXPK � EXPpresentday

EXPpresentday
ð1Þ

where EXP stands for the exposure and the subscript K indicates the 1.5 or 2 °C
warming level. Thus, the impacts avoided by the 0.5 °C less warming are derived as
the difference between the impacts at the two levels.

Sensitivity to definitions of dangerous events. To confirm the robustness of the
conclusion, we also employ another alternative metric to determine the threshold
of dangerous, i.e., the σ-exceedance metric based on normalization. Here, σ refers
to the interannual standard deviation in the 1950–2005 baseline. The original time
series is normalized with the base period of 1950–2005 by removing the mean and
then dividing by the standard deviation (σ). RX5day events that exceed 1.00σ,
1.30σ, 1.65σ, and 2.00σ are thus identified as dangerous extremes, which corre-
spond to approximately 6-, 10-, 20-, and 44-year return values, respectively, for a
Gaussian distribution. We note that normalization is generally used for data with
an approximate Gaussian distribution, our use of σ-exceedances for the skewed
extreme value distribution here only serves as a reference threshold to define
intense extremes.

We compare the key results of this study between the two metrics, i.e., the
return value exceedance and σ-exceedance (cf. Figs. 4 and 5 and Supplementary
Figs. 6 and 7). The comparison shows that the areal and population exposures to
dangerous extremes, as well as the impacts avoided by the half a degree less
warming are quantitatively comparable between the two metrics. For example, the
reduced area of exposure to baseline 20-year return value exceedances (estimated
from GEV distributions) is 24.9% (18.0–40.6%), while that to 1.65σ-exceedances
(corresponding to the 20-year return value for a Gaussian distribution) is 22.1%
(13.3–37.9%). The consistency between the two metrics confirms the robustness of
the conclusion.

Code availability. The data in this study were analyzed and the figures were
created with NCAR Command Language (NCL; ref. 46). All relevant codes used in
this work are available, upon request, from the corresponding author T. Z.

Data availability. Population distributions in the year 2000 are from the Gridded
Population of the World, version 3 (GPWv3, ref. 35, http://sedac.ciesin.columbia.
edu/data/set/gpw-v3-population-count). Future population distributions under
different SSPs36 between 2010 and 2100 are from https://www2.cgd.ucar.edu/
sections/tss/iam/spatial-population-scenarios. Daily precipitation data from the
Global Precipitation Climatology Centre12 (GPCC) is from http://gpcc.dwd.de/.
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