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Reduced Feedback and Random Beamforming for
OFDM MIMO Broadcast Channels

Maralle J. Fakhereddin, Masoud Sharif, and Babak Hassibi

Abstract—It has been shown that random beamforming us-
ing partial channel state information (CSI) achieves the same
throughput scaling as obtained from dirty paper coding for a
broadcast (downlink) channel with 𝑀 transmit antennas and 𝐾
users where 𝐾 is large [1]. In this paper, we apply this scheme to
wideband MIMO broadcast channels. By using OFDM, an 𝐿-tap
wideband channel can be decomposed to 𝑁 parallel narrowband
channels (subcarriers), where 𝑁 > 𝐿. Neighboring subcarriers
are highly correlated. Therefore, we consider neighboring sub-
carriers as a cluster and find the closed form solution for the
joint characteristic function of SINR values at two subcarriers
in a cluster. We show numerically how the knowledge of the
quality of the center subcarrier sheds light about the quality
of other subcarriers in the same cluster, and address the issue
of cluster size. In addition, through complex and asymptotic
analysis, we show that for cluster size of order 𝑁

𝐿
√

log𝐾
(for

large 𝐾), users need only feedback the best SINR at the center
subcarrier of each cluster in order for the transmitter to perform
opportunistic beamforming and maintain the same throughput
scaling as when full CSI is available. Using simulation results, we
verify our analytical result and show that even fewer feedback
can be tolerated, and larger clusters ( 𝑁

2𝐿
) can be implemented

for a small throughput hit.

Index Terms—Channel state information, OFDM, broadcast
channel, random beamforming, multi-user diversity, wireless
communications.

I. INTRODUCTION

THERE has been growing interest in the study of the ca-
pacity region of Gaussian multiple-input multiple-output

(MIMO) broadcast channels [2], [3], [4] . Recently, it has been
shown that dirty paper coding (DPC) achieves the capacity
region of the Gaussian MIMO broadcast channel [5]. This
scheme assumes perfect channel state information (CSI) at the
transmitter, and achieves throughput that scales linearly with
the number of transmit antennas [6]. However, full channel
knowledge is not always attainable or practical, especially if
the channel is varying rapidly or in systems with many users.
As a result, there has been increased interest in studying the
effect of reduced CSI on multi-user diversity and sum rate
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capacity, for example [1], [7], [8], [9], [10], [11], [12] among
others. It was suggested in [1] that, using 𝑀 random beams
and partial feedback, opportunistic beamforming is performed
at the transmitter. Each user (receiver) calculates and feeds
back its best signal-to-noise-plus-interference ratio (SINR)
and the beam index at which this maximum occurs. The
transmitter then chooses the user with the highest SINR for
each beam and transmits its information. This scheme requires
less feedback and is computationally feasible, still it achieves
the linear scaling in throughput that is achieved with DPC.
This has been shown for narrowband broadcast channels with
a fixed number of transmit antennas and large number of users.

We investigate the generalization of this scheme to wide-
band broadcast channels (with independent and identically
distributed (i.i.d.) channel taps). Wideband channels are de-
sireable due to the increased need to drive bit rates higher.
Using orthogonal frequency division multiplexing (OFDM),
an 𝐿-tap wideband channel can be decomposed to 𝑁 parallel
subcarriers, where𝑁 > 𝐿. As a result, neighboring subcarriers
are highly correlated, and therefore have similar channel qual-
ity (with high probability). Recently, it has been suggested in
[7] that neighboring subcarriers are grouped in a cluster. Then
each user need only feedback the signal-to-noise ratio (SNR)
values and indices of its strongest clusters. Based on this
reduced feedback, the transmitter sends one beam to the user
with the highest SNR per cluster. Using simulation results, [7]
shows that this scheme can be implemented without signifi-
cantly sacrificing performance. It has also been suggested in
[10] that one bit feedback can be used at each subcarrier in
order to perform opportunistic subcarrier allocation. In [12],
dynamic allocation alogorithms were investigated for multiple
antenna wideband systems to show that multi-user diversity
can still be achieved even under a hard fairness constraint.

In this paper, we closely investigate the correlation between
neighboring subcarriers in order to minimize the amount of
CSI needed at the transmitter. We first find the closed form
solution for the joint characteristic function of SINR values
at two subcarriers in a cluster. Through numerical results,
we address the issue of how many neighboring subcarriers
should be grouped together in a cluster so that we need
only feedback one value that is useful to the transmitter for
throughput maximization. In fact, we suggest that each user
need only feedback its best SINR value at the center subcarrier
of each cluster as long as the edge subcarrier is within
some distance (that we find numerically) from the center
of the cluster. The transmitter then performs opportunistic
beamforming (by constructing 𝑀 random beams rather than
a single beam). Next, we look into the effect of this partial
feedback on the throughput. More specifically, we want to
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know if we are able to maintain the same throughput scaling as
when full CSI is available. Through complex and asymptotic
analysis, we prove that for a wideband broadcast channel
with 𝑀 transmit antennas, 𝐾 single-antenna users (where 𝐾
is large) and cluster size of order 𝑁

𝐿
√
log𝐾

, we achieve the
same throughput scaling as when full CSI is available at the
transmitter, however with less complexity and feedback.

Monte Carlo simulations verify our analytical results and
show that larger cluster size ( 𝑁2𝐿 ) can also be implemented
for a small throughput hit. We also investigate variations to
our scheme that require even fewer feedback and can achieve
high throughput results. First, we introduce a threshold that
each user should compare the SINR value they intend to feed
back, and only send those that are larger than or equal to
this threshold. This thresholding idea was first suggested by
[9], [13]. Another variation requires users to only send 1 bit
(’1’) for each SINR value that is higher than or equal to the
set threshold. This idea was investigated by [10], [11] for
single-antenna OFDM systems. We also compare our proposed
scheme to a scheme that performs linear interpolation based
on feeding back two SINR values around the center. Linear
interpolation has been investigated for channel estimation in
OFDM systems [14], [15].

The remainder of this paper is as follows. Section 2 de-
scribes the channel model including feedback and scheduling
schemes. Section 3 states the problem. Our analysis begins in
section 4 where we find the closed form solution for the joint
characteristic function of neighboring subcarriers, and present
our numerical results. Section 5 includes the throughput scal-
ing and Monte Carlo simulation results. Section 6 concludes
the paper. Details of complex and asymptotic analysis used in
the throughput result are listed in the appendices.

II. CHANNEL MODEL

We consider an 𝐿-tap wideband broadcast channel with
𝑀 -antenna transmitter and 𝐾 single-antenna receivers. The
number of channel taps 𝐿 is dictated by the delay spread.
In practice, wideband channels can be represented by 4
or 5 channel taps [16]. We assume the channel taps are
independent, complex Gaussian random variables. We form
an 𝐿 × 𝑀 channel matrix 𝐻 which consists of zero-mean
unit variance circularly symmetric complex Gaussian random
variables. We denote the 𝑚𝑡ℎ column vector of 𝐻 by 𝐻𝑚

𝑙

where 𝐻𝑚
𝑙 = [ℎ𝑚0 ℎ𝑚1 ... ℎ𝑚𝐿−1]

𝑇 .
We start with a discrete-time baseband channel model. At

time 𝑡 and sampling at multiples of 1
𝑊 , the input-output

relationship between any of the transmit antennas and any
user is

𝑦𝑚[𝑡] =

𝐿−1∑
𝑙=0

ℎ𝑙,𝑚 𝑥[𝑡− 𝑙] + 𝑤[𝑡], (1)

where 𝑦𝑚 is the sampled output at time 𝑡 from the 𝑚th

transmit antenna, 𝑥 is the sampled input transmitted at time
𝑡− 𝑙 and 𝑤 is additive white Gaussian noise.

Using OFDM, data symbols modulate 𝑁 subcarriers sepa-
rated by 𝑊

𝑁 . The discrete Fourier transform of the 𝐿-tap chan-

nel gives the frequency response at subcarrier 𝑞 as follows,

𝐻𝑚(𝑞) =
𝐿−1∑
𝑙=0

ℎ𝑙,𝑚 𝑒−𝑗2𝜋𝑞
𝑙𝑊
𝑁 , 𝑞 = 1, ..., 𝑁. (2)

In matrix form, (2) can be written as 𝐻𝑚(𝑞) = 𝑉𝑞 𝐻𝑚 where
𝑉𝑞 = [1 𝑒−𝑗2𝜋𝑞

𝑊
𝑁 ... 𝑒−𝑗2𝜋𝑞

𝑊 (𝐿−1)
𝑁 ] and 𝐻𝑚 represents

the channel at the 𝑚th beam as explained in the next section.
As a result of decomposing the 𝐿-tap channel into 𝑁 parallel
subcarriers where 𝑁 > 𝐿, neighboring subcarriers are highly
correlated. The autocorrelation function depends solely on
the frequency separation between subcarriers. Since the width
of each subcarrier is 𝑊

𝑁 , it is straightforward to show that
there are roughly 𝑁

2𝐿 neighboring subcarriers that are highly
correlated [16]. We further quantify this correlation by finding
the joint characterization function of neighboring subcarriers
in section 4. Correlated subcarriers are grouped in a cluster
[7], and we investigate the cluster size and a good channel
quality indicator for the whole cluster. Using this partial
feedback, we adopt a transmission scheme on each subcarrier
that maximizes the throughput [1] as explained below.

A. Signaling Scheme

We construct 𝑀 random orthonormal beams 𝜙𝑚(𝑀 × 1)
for 𝑚 = 1, ...,𝑀 . At time 𝑡, the 𝑚th vector is multiplied
by the transmit symbol 𝑠𝑞𝑚. Note that we use the same
beams for the entire cluster, not each subcarrier. The base-
band envelope of the transmitted signal on subcarrier 𝑞 is
𝑆𝑞(𝑡) =

∑𝑀
𝑚=1 𝑠

𝑞
𝑚(𝑡)𝜙𝑚(𝑡) 1. The channel gains at the 𝑚th

beam are represented by 𝐿×1 vector 𝐻𝑚 where 𝐻𝑚 = 𝐻𝜙𝑚.
Note that 𝐻𝑚 maintains the same distribution as 𝐻 with
variance 𝑀𝐼𝐿.

We assume that the 𝑘th receiver has full knowledge of 𝐻𝑘
𝑚

for 𝑚 = 1, . . . ,𝑀 which can be readily available through
training. We consider a homogeneous network which means
that all users have the same received SNR. Therefore, the 𝑘th

receiver is able to compute the following 𝑀 SINR𝑘
𝑞,𝑚 values

by assuming that the signal 𝑠𝑚 is its desired signal and the
other 𝑠𝑖 signals are interference as follows,

SINR𝑘
𝑞,𝑚 =

𝐻𝑘∗
𝑚 𝑉 ∗

𝑞 𝑉𝑞 𝐻
𝑘
𝑚

1
𝜌 +

∑𝑀
𝑖=1,𝑖∕=𝑚 𝐻𝑘∗

𝑖 𝑉 ∗
𝑞 𝑉𝑞 𝐻𝑘

𝑖

, 𝑚 = 1, . . . ,𝑀

(3)
where 𝜌 is the SNR for all users and 𝑞 is the index of the
subcarrier. We will refer to the subcarrier at the center by the
index 𝑞 from this point on.

B. Feedback Scheme

We propose that each user feeds back the best SINR
value at the center subcarrier of each cluster (in addition to
corresponding beam index). This feedback can be expressed
as max

1≤𝑚≤𝑀
SINR𝑘

𝑞,𝑚. The transmitter then assigns the 𝑚𝑡ℎ

beam to the user with the highest SINR; max
1≤𝑘≤𝐾

SINR𝑘
𝑞,𝑚.

The throughput of each subcarrier is estimated by 𝑅𝑞 =

1It is worth mentioning that the IFFT is applied after the beams are
constructed. In other words, the beamforming is applied in the frequency
domain. This enables transmitting to multiple receivers at the same time.
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𝐸
{∑𝑀

𝑚=1 log(1 + max1≤𝑘≤𝐾 SINR𝑘
𝑞,𝑚)

}
, and the through-

put of the system is 𝑅 =
∑𝑁

𝑞=1𝑅𝑞 , where 𝑁 is dictated by
the transmission bandwidth. Note that for 𝐾 → ∞, this is a
tight estimate [1].2

Our proposed scheme requires each user to feed back one
value per cluster. In order to further reduce the amount of
feedback, we assume that SINR𝑘

𝑞,𝑚 ≥ 𝛾 where 𝛾 is a specified
threshold of order log𝐾3. We are able to set this threshold
since we know that max

1≤𝑘≤𝐾
SINR𝑘

𝑞,𝑚 behaves like (log𝐾) with

high probability [1]. The amount of feedback from each user
then reduces to the number of clusters × Pr(SINR𝑞 ≥ 𝛾).
We observe that there is a tradeoff between the amount of
feedback sent (or equivalently the size/number of clusters) and
the throughput. In the following section, we further discuss
this tradeoff and state our problem.

III. PROBLEM STATEMENT

In this paper, we tackle two main questions. The first ques-
tion addresses how big clusters should be (and subsequently
how much feedback should we have) so that the condition
of the center subcarrier is indeed a valid representative of
the condition of (most of) the subcarriers in the cluster.
The second question concerns the throughput scaling of the
wideband MIMO broadcast channel when only partial CSI is
available at the transmitter.

The size of the cluster influences how correlated the subcar-
riers are. Small cluster sizes guarantee that the subcarriers are
highly correlated and that their channel quality is almost the
same, therefore resulting in higher throughput (at the expense
of more feedback). Whereas wider cluster sizes reduces the
amount of feedback but will include less correlated subcarriers
in the cluster (especially toward the edges of the cluster),
which will subsequently decrease the throughput. We show
that channel quality at the center subcarrier is a valid rep-
resentative (and therefore sufficient feedback) for the quality
of the channels at (most of) subcarriers in a cluster when the
cluster size is within a specific value that we find numerically.

In fact, since we know that the best SINR over all users
behaves like 𝜌 log𝐾 , we are able to identify that we are
interested in SINR values of order log𝐾 . As the cluster size
increases, the likelihood of the edge subcarrier (the farthest
from the center) being of this order decreases. We show
through complex and asymptotic analysis that if the size of the
cluster is of order 𝑁

𝐿
√
log𝐾

, and if the center subcarrier of this
cluster has SINR of order log𝐾 , then with high probability
the SINR at the edge subcarrier is also of order log𝐾 . In
other words, we show that the following probability,

Pr
{

SINR𝑘
𝑝,𝑚 ≥ 𝛾𝑝 ∣ SINR𝑘

𝑞,𝑚 ≥ 𝛾𝑞

}
(4)

is close to one when 𝑝−𝑞 = 𝑁
𝐿
√
log𝐾

4, 𝑀 fixed,𝐾 increasing,

2Note that the transmitter should transmit to the neighboring subcarriers of
that cluster after backing off some specified value in order to avoid outage.
However we do not consider this backoff in this paper.

3Having identically and independently distributed users implies that all
SINR’s have the same distribution and are independent across users. This
allows us to set the aforementioned threshold for all users as shown in Section
3.

4In our analysis, we equivalently assume that the correlation coefficient of
𝑝 and 𝑞 is 1− 𝑜( 1

log𝐾
).

𝛾𝑞 = 𝛼𝑞 log𝐾 , 𝛾𝑝 = 𝛼𝑝 log𝐾 where 𝛼𝑞 and 𝛼𝑝 are constants
and 𝛼𝑞 > 𝛼𝑝. In eq. (4), the user index 𝑘 corresponds to
the user with the highest center SINR for the studied cluster
among all 𝐾 users. This “best” user can be different for
different clusters. The details of analysis are provided in the
following two sections and appendices.

IV. EVALUATING CONDITIONAL PROBABILITY

We substitute eq. (3) into eq. (4), and denote 𝒫 =
𝐻𝑘∗
𝑚 𝑉 ∗

𝑝 𝑉𝑝𝐻
𝑘
𝑚 − 𝛾𝑝

∑𝑀
𝑖=1,𝑖∕=𝑚𝐻𝑘∗

𝑖 𝑉 ∗
𝑝 𝑉𝑝𝐻

𝑘
𝑖 − 𝛾𝑝

𝜌 and 𝒬 =

𝐻𝑘∗
𝑚 𝑉 ∗

𝑞 𝑉𝑞𝐻
𝑘
𝑚 − 𝛾𝑞

∑𝑀
𝑖=1,𝑖∕=𝑚𝐻𝑘∗

𝑖 𝑉 ∗
𝑞 𝑉𝑞𝐻

𝑘
𝑖 − 𝛾𝑞

𝜌 .
Eq. (4) can be rewritten as

Pr
{

SINR𝑘
𝑝,𝑚 ≥ 𝛾𝑝 ∣ SINR𝑘

𝑞,𝑚 ≥ 𝛾𝑞

}
= Pr{𝒫 ≥ 0 ∣ 𝒬 ≥ 0} =

Pr{𝒫 ≥ 0,𝒬 ≥ 0}
Pr{𝒬 ≥ 0} . (5)

To calculate (5), we need to find the joint probability of 𝒫 and
𝒬. Since 𝒫 and 𝒬 are correlated, this joint probability should
be evaluated. Using the Fourier Transform representation of
the unit function, 𝑈(𝑥) = 1

2𝜋

∫∞
−∞ 𝑒𝑗𝑤𝑥 ( 1

𝑗𝑤 + 𝜋𝛿(𝑤)) 𝑑𝑤,
this joint probability can be written as,

Pr{𝒬 ≥ 0,𝒫 ≥ 0} =
1

4
+

1

4𝜋

∫
Φ(𝒫)

𝑗𝑤𝑝
𝑑𝑤𝑝

+
1

4𝜋

∫
Φ(𝒬)

𝑗𝑤𝑞
𝑑𝑤𝑞

+
1

4𝜋2

∫ ∫
Φ(𝒫 ,𝒬)

𝑗𝑤𝑝 𝑗𝑤𝑞
𝑑𝑤𝑝𝑑𝑤𝑞 (6)

where Φ stands for the characteristic function and the integra-
tion limits are from −∞ to ∞.

Note that the marginal terms (second and third terms in
eq. (6)) can be easily evaluated from the marginal distri-
bution of SINR [1]. We can show that 1

4𝜋

∫ Φ(𝒬)
𝑗𝑤𝑞

𝑑𝑤𝑞 =

− 1
4 − 1

2
𝑒
− 𝛾𝑞

𝜌𝐿𝑀

(1+𝛾𝑞)𝑀−1 and 1
4𝜋

∫ Φ(𝒫)
𝑗𝑤𝑝

𝑑𝑤𝑝 = − 1
4 − 1

2
𝑒
− 𝛾𝑝

𝜌𝐿𝑀

(1+𝛾𝑝)𝑀−1 .
However, these terms cancel out with terms that appear during
the evaluation of the double integral in the fourth term of eq.
(6). Therefore, the main analysis of the joint probability lies
in evaluating the joint characteristic funtion and the double
integral in eq. (6). Next, we find the closed form for the joint
characteristic function Φ(𝒫 ,𝒬).

A. Joint Characteristic Function of Neighboring subcarriers

The joint characteristic function of 𝒫 and 𝒬, Φ(𝒫 ,𝒬) =
𝐸
(
𝑒𝑗𝑤𝑝𝒫+𝑗𝑤𝑞𝒬). We assume that the transmit antennas are

far enough to assume independent channels.
Therefore we can write (7) (on the next page). Using

properties of joint pdf of Gaussian random variables [17],
the closed form solution for the joint characteristic function
can be found as shown in (8) (on the next page), where

𝑓 =
sin2(𝜋(𝑝−𝑞) 𝐿

𝑁 )

sin2(𝜋(𝑝−𝑞) 1
𝑁 )

. Note that when 𝑝− 𝑞 = 𝑁
𝐿 , 𝑓 = 0 which

results in 𝒫 and 𝒬 being independent. Also if we assume
that the cluster size is 1 subcarrier, and therefore 𝑝 = 𝑞, then
(𝐿2 − 𝑓) = 0, and the joint characteristic function reduces to
a marginal function.
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Φ(𝒫 ,𝒬) = 𝑒
−1
𝜌 (𝑗𝑤𝑝𝛾𝑝+𝑗𝑤𝑞𝛾𝑞)

∫ ∞

−∞
...

∫ ∞

−∞
𝑒−

∑𝑀
𝑖=1,𝑖∕=𝑚 𝐻𝑘∗

𝑖 (𝑗𝑤𝑝𝛾𝑝𝑉
∗
𝑝 𝑉𝑝+𝑗𝑤𝑞𝛾𝑞𝑉

∗
𝑞 𝑉𝑞)𝐻

𝑘
𝑖 𝑝(𝐻𝑘

1 )...𝑝(𝐻𝑘
𝑀 )︸ ︷︷ ︸

𝑀−1 terms

𝑑𝐻𝑘
1 ...𝑑𝐻

𝑘
𝑀

×
∫ ∞

−∞
𝑒𝐻

𝑘∗
𝑚 (𝑗𝑤𝑝𝑉

∗
𝑝 𝑉𝑝+𝑗𝑤𝑞𝑉

∗
𝑞 𝑉𝑞)𝐻

𝑘
𝑚𝑝(𝐻𝑘

𝑚)𝑑𝐻𝑘
𝑚. (7)

Φ(𝒫 ,𝒬) =
𝑒

−1
𝜌 (𝑗𝑤𝑝𝛾𝑝+𝑗𝑤𝑞𝛾𝑞)

𝑀𝐿𝑀 det
[
𝐼𝐿
𝑀 − (𝑗𝑤𝑝𝑉 ∗

𝑝 𝑉𝑝 + 𝑗𝑤𝑞𝑉 ∗
𝑞 𝑉𝑞)

]
det

[
𝐼𝐿
𝑀 + (𝑗𝑤𝑝𝛾𝑝𝑉 ∗

𝑝 𝑉𝑝 + 𝑗𝑤𝑞𝛾𝑞𝑉 ∗
𝑞 𝑉𝑞)

]𝑀−1

=
𝑒

−1
𝜌 (𝑗𝑤𝑝𝛾𝑝+𝑗𝑤𝑞𝛾𝑞)

[1 − (𝑗𝑤𝑝 + 𝑗𝑤𝑞)𝐿𝑀 − 𝑤𝑝𝑤𝑞(𝐿2 − 𝑓)𝑀2][1 + (𝑗𝑤𝑝𝛾𝑝 + 𝑗𝑤𝑞𝛾𝑞)𝐿𝑀 − 𝑤𝑝𝑤𝑞𝛾𝑝𝛾𝑞(𝐿2 − 𝑓)𝑀2]𝑀−1
(8)
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Fig. 1. Numerical Result for the conditional probability of the edge SINR
≥ 𝛾𝑝 if center SINR ≥ 𝛾𝑞 for various 𝑝 − 𝑞 distances.

B. Numerical Analysis - Cluster Size

From the closed form of the joint characteristic function in
eq. (8) along with the knowledge of the marginal distribution
of the SINR [1], we can find the conditional probability in
eq. (4) numerically. Fig. 1 plots the value of the probability
that the edge SINRp ≥ 𝛾p conditional on the fact that the
center SINRq ≥ 𝛾q for various 𝑝−𝑞 distances for a wideband
broadcast channel with a 3-antenna transmitter, single-antenna
users, and 256 subcarriers. We observe that when we set 𝛾𝑞 =
10 and when 𝑝 − 𝑞 = 0 (which means that there is only one
subcarrier in the cluster), we know with probability = 1 that 𝛾𝑝
is as high as 𝛾𝑞 . This probability becomes 0.7 when 𝑝−𝑞 = 5,
and decreases to 0.5 as the distance increases to 10. Finally
at 𝑝− 𝑞 = 32, the conditional probability becomes very close
to the marginal probability indicating that 𝑝 and 𝑞 are so far
that they become uncorrelated. In this case, the knowledge of
the channel quality at the center does not shed light about
the quality at the edge of the cluster. This numerical result is
very helpful in deciding what the cluster size should be for any
value of the conditional probability. For example, if one knows
that the center SINR behaves within some threshold and aims

to have the edge SINR also within the same threshold with
probability 0.75, then the cluster size should be kept to 7 or
8 subcarriers.

V. THROUGHPUT SCALING ANALYSIS

In this section, we answer the second question which
addresses the throughput scaling of the wideband MIMO
broadcast channel when only partial feedback is available
at the transmitter. Through complex and asymptotic analysis
(detailed in appendices A and B), the joint characteristic
function (8) enables us to find the joint probability distribution
as,

Pr{𝒫 ≥ 0,𝒬 ≥ 0} =
𝑒−

𝛾𝑞
𝜌𝑀𝐿

(1 + 𝛾𝑞)𝑀−1
[1 − 𝑜(1)]𝑀−1 . (9)

Since we know the marginal distribution of SINR, the denom-

inator in (5) results in 𝑒
− 𝛾𝑞

𝜌𝑀𝐿

(1+𝛾𝑞)𝑀−1 [1]. Our final result for the
conditional probability becomes,

Pr
{

SINR𝑘
𝑝,𝑚 ≥ 𝛾𝑝 ∣ SINR𝑘

𝑞,𝑚 ≥ 𝛾𝑞

}
= 1 − 𝑜(1) (10)

when 𝑝 − 𝑞 = 𝑁
𝐿
√
log𝐾

, 𝑀 is fixed and 𝐾 increasing,
𝛾𝑞 = 𝛼𝑞 log𝐾 , 𝛾𝑝 = 𝛼𝑝 log𝐾 and 𝛼𝑞 > 𝛼𝑝. For the user
with the highest center SINR, this proves that when SINR at
the center subcarrier is of order log𝐾 , and if we keep our
cluster size small enough so that 𝑝 − 𝑞 = 𝑁

𝐿
√
log𝐾

5, then
we can say with high probability that neighboring subcarriers
are highly correlated. For this reason, SINR at the edge
subcarrier is also of order log𝐾 , where 𝐾 is large. As a result,
we can say that all subcarriers chosen for transmission have
SINRs of order log𝐾 , and consequently throughput scaling
is 𝑀𝑁 log log𝐾 where 𝑁 is the number of subcarriers and
dictated by the transmission bandwidth. This is the same
throughput scaling as when the transmitter has full information
about the channel at each subcarrier, yet with much fewer
feedback and less computation complexity. In fact, feedback
can be further reduced to 𝐿

√
log𝐾 ×Pr(SINRq,m ≥ 𝛾) per

user as previously explained in section II.B. Next, we verify
our analytical results using Monte Carlo simulations.

5It is not easy to perform the analysis for any cluster size since 𝐿2 − 𝑓
becomes a constant and it is then difficult to obtain the roots of the polynomial
which is raised to power (𝑀 − 1) in Eq. (A.2)
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Fig. 2. Throughput vs. Number of users for different cluster sizes. In this
scheme, each user feeds back its best center SINR per cluster (along with the
corresponding beam index).
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Fig. 3. Throughput vs. Number of channel taps for different cluster sizes
(N=256, M=3, SNR=10, K=1000).

A. Simulation Results

To verify our results, we conduct Monte Carlo simulations
for a wideband broadcast channel with a 3-antenna transmitter,
single-antenna users, and 256 subcarriers. Fig. 2 displays the
throughput as a function of number of users for various cluster
sizes, and shows that cluster size 𝑁

2𝐿 = 32 results in a very
small throughput loss when compared with the throughput that
results from cluster size of 1 subcarrier (where the transmitter
has full information at each subcarrier). However, as suggested
by our analysis, Fig. 2 also indicates that smaller cluster
sizes (7, 10 and even 16) result in throughput scaling as
with full CSI. This demonstrates that when we stay in the
region of the highest SINR values (those that behave like
log𝐾) and with 𝐿2 − 𝑓 → 0, we preserve the throughput
scaling as with full CSI. Note that larger cluster sizes (i.e.
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Fig. 4. Throughput vs. Number of users for different feedback schemes and
cluster sizes. Solid lines for feeding back the best center SINR per cluster.
Dashed lines for feeding back the best center SINR per cluster provided that it
is ≥ threshold (3 log𝐾). Dotted lines for feeding back 1 bit for each cluster
where the best center SINR is ≥ threshold (3 log𝐾)

64 and 128) result in significantly lower throughput. In Fig.
3, we plot the throughput versus the number of channel taps
𝐿 for cluster sizes 5 and 7. This figure indicates how much
variation (spread) the channel is able to withstand (for a certain
cluster size) without too much throughput reduction. Another
interesting observation from Fig. 3 is that we can treat a small
number of subcarriers as a single subcarrier, and still maintain
flat channel response.

To further reduce feedback (especially when the cluster size
is small), we further assume that SINR𝑘

𝑞,𝑚 ≥ 𝛾 where 𝛾 is
a specified threshold of order log𝐾 as previously discussed
in section 2.2. We can set this threshold since we know that
max

1≤𝑘≤𝐾
SINR𝑘

𝑞,𝑚 behaves like 𝜌 log𝐾 with high probability.

We set 𝜌 = 10 and 𝛾 = 3 log𝐾 in Fig. 4, and observe only
a small throughput hit (about 300 bits/sec for cluster sizes
16 and 32 and large number of users). The optimal threshold
value is an interesting problem which we do not investigate in
this paper, but has been discussed in [11]. To reduce feedback
even more, we follow a similar scheme as that suggested in
[10], and request that users with SINR ≥ 𝛾 send only 1 bit
’1’ indicating that their channel is good. However, in this case
the transmitter cannot identify which user has the best SINR
over each beam, and will therefore randomly choose any of
the users who fed back ’1’ for that beam. In Fig. 4, the effect
of this scheme is observed by another hit in throughput (about
500 bits/sec for cluster sizes 1 and 16, and about 400 bits/sec
reduction for cluster size 32 at large number of users). This is
due to the transmitter not optimizing over the best SINR. Also
note that the gap between cluster sizes 1,16 and 32 decreases.

For large clusters, the center SINR is not a good indicator
for the edge SINR. However, the center is still a good
representative of its neighboring channels. For this reason, we
investigate through simulations the effect of each user feeding
back two SINR values (around the center) per cluster for large
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(16,32,64,128) comparing between linear interpolation (solid lines) and the
proposed scheme of feeding back best center SINR per cluster (dashed lines).
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Fig. 6. Illustration of contours 𝐶𝑠𝑝 and 𝐶𝑠𝑞 .

cluster sizes (𝑁𝐿 and larger). This way, linear interpolation
can be performed at the transmitter to obtain all SINR values
between the two fed back, and the average SINR can be
calculated. This leads to better performance results for larger
clusters. Fig. 5 illustrates that this scheme does as well as
our proposed scheme for small clusters, and therefore there
is no added benefit to the extra feedback. As expected, when
clusters are large, linear interpolation results in slightly better
throughput (about 150 bits/sec for cluster size 128) with the
added price of feeding back two values per cluster rather than
one.

VI. CONCLUSIONS

In this paper we answer two questions. We first find the
closed form solution for the joint characteristic function of
SINR values of two neighboring subcarriers, and find numer-
ically the conditional probability of the edge SINR being as

good as the center SINR. This numerical result tells us how
many subcarriers we can group together in a clusterso that with
some probability (that we specify) the performance at the edge
of the cluster is almost as that of the center. This is important
since then we can reduce the feedback to only one value
per cluster. Next we find the throughput of wideband multi-
antenna broadcast channels when the transmitter only knows
this partial feedback. We prove that for cluster size 𝑁

𝐿
√
log𝐾

,
when each user only feeds back the best SINR value at the
center subcarrier of each cluster, the transmitter can perform
opportunistic beamforming by constructing 𝑀 beams on each
subcarrier and transmit to users with the best SINR values.
This results in throughput scaling as with full CSI. Simulation
results verify our analytical results and further show that larger
cluster size ( 𝑁2𝐿 ) and reduced feedback can be tolerated for a
small throughput hit.

APPENDIX A
JOINT PROBABILITY DISTRIBUTION ANALYSIS

This appendix evaluates the joint probability distribution
(6). We substitute the closed form of the joint characteristic
function (8) in the double integral of (6). We denote 𝑗𝑤𝑝 with
𝑠𝑝, 𝑗𝑤𝑞 with 𝑠𝑞 , and perform contour integration where 𝑠𝑝
and 𝑠𝑞 go from −∞ to ∞ on the complex axis (except for
small region around the origin), then clock-wise towards −∞.
Fig. 6 illustrates the two contours 𝐶𝑠𝑝 and 𝐶𝑠𝑞 . The double
integral is shown in (A.1). We use Cauchy integral formula∫
𝐶

𝑓(𝑧)𝑑𝑧
𝑧−𝑧0 = 2𝜋𝑗𝑓(𝑧0) [18], which states that when a function

𝑓 is analytic on and within a simple contour 𝐶, we evaluate
the integral by computing 𝑓 at points interior to 𝐶, in this case
𝑧0. We start by evaluating the integral w.r.t. 𝑠𝑝. In 𝐶𝑠𝑝 , we find
two points 𝑠𝑝 = 0 and 𝑠𝑝 =

𝐿𝑀 𝑠𝑞−1
𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀

6. The integral

at 𝑠𝑝 = 0 results in a term 1
4 + 1

2
𝑒

−𝛾𝑞
𝜌𝐿𝑀

[1+𝛾𝑞 ]𝑀−1 which cancels
out with the third term in (6). Therefore the only point we
consider is 𝑠𝑝 =

𝐿𝑀 𝑠𝑞−1
𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀 , and we compute its residue

according to the residue theorem [18]. If we have a simple pole
𝑧0, then Res(𝑧0) = lim𝑧 → 𝑧0(𝑧−𝑧0) f (z ). When pole 𝑧0 is of

order 𝑚, then Res(𝑧0) = 1
(𝑚−1)!

𝑑𝑚−1

𝑑𝑧𝑚−1 [(𝑧 − 𝑧0)𝑚 f (z )]

∣∣∣∣
𝑧=𝑧0

.

Computing the residue at 𝑠𝑝 =
𝐿𝑀 𝑠𝑞−1

𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀 , the double
integral (A.1) reduces to a single integral in terms of 𝑠𝑞
as shown in (A.2). To proceed, we find the roots of the
polynomial (raised to 𝑀 − 1) in (A.2) in appendix B.

APPENDIX B
ASYMPTOTIC ANALYSIS

For the rest of the analysis, we assume the number of
users 𝐾 is increasing, 𝑀 fixed, and the cluster size small
enough so the correlation coefficient of 𝑝 and 𝑞 is 1−𝑜( 1

log𝐾 )
7. In particular, the notation 𝑂(⋅) and 𝑜(⋅) are used when
𝐾 tends to infinity. We should remind the reader that the
threshold for SINR at the center subcarrier 𝛾𝑞 behaves like
𝛼𝑞 log𝐾 , while the edge subcarrier’s threshold 𝛾𝑝 behaves
like 𝛼𝑝 log𝐾 , where 𝛼𝑞 and 𝛼𝑝 are constants and 𝛼𝑞 > 𝛼𝑝.

6Since we assume that 𝛾𝑞 > 𝛾𝑝.
7This implies that (𝐿2 − 𝑓) → 0, or equivalently that 𝑝− 𝑞 = 𝑁

𝐿
√

log𝐾
.
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∫
𝐶𝑠𝑞

∫
𝐶𝑠𝑝

−𝑒−1
𝜌 (𝑠𝑝𝛾𝑝+𝑠𝑞𝛾𝑞)

4𝜋2𝑠𝑝𝑠𝑞[1 − (𝑠𝑝 + 𝑠𝑞)𝐿𝑀 + 𝑠𝑝𝑠𝑞(𝐿2 − 𝑓)𝑀2][1 + (𝑠𝑝𝛾𝑝 + 𝑠𝑞𝛾𝑞)𝐿𝑀 + 𝑠𝑝𝑠𝑞𝛾𝑝𝛾𝑞(𝐿2 − 𝑓)𝑀2]𝑀−1
𝑑𝑠𝑝𝑑𝑠𝑞.

(A.1)

∫
𝐶𝑠𝑞

−𝑗
2𝜋

𝑒
−𝛾𝑞𝑠𝑞

𝜌 𝑒
−𝛾𝑝
𝜌

(𝐿𝑀𝑠𝑞−1)

𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀

𝑠𝑞(𝐿𝑀𝑠𝑞 − 1)
[
1 + 𝐿𝑀(𝛾𝑞𝑠𝑞 + 𝛾𝑝(

𝐿𝑀𝑠𝑞−1
𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀 )) + (

𝐿𝑀𝑠𝑞−1
𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀 )𝑠𝑞𝛾𝑝𝛾𝑞𝑀2(𝐿2 − 𝑓)

]𝑀−1
𝑑𝑠𝑞. (A.2)

∫
𝐶𝑠𝑞

−𝑗
2𝜋

𝑒
−𝛾𝑞𝑠𝑞

𝜌 𝑒
−𝛾𝑝
𝜌

(𝐿𝑀𝑠𝑞−1)

𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀

[
1 − 𝑠𝑞

𝑀(𝐿2−𝑓)
𝐿

]𝑀−1

[1 + 𝛾𝑝]𝑀−1 𝑠𝑞

[
𝐿𝑀

(𝛾𝑞−𝛾𝑝)
1+𝛾𝑝

𝑠𝑞 + 1 + 𝑜(1)
]𝑀−1

(𝐿𝑀𝑠𝑞 − 1)
[−𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

𝐿(𝛾𝑞−𝛾𝑝)
𝑠𝑞 + 1 + 𝑜(1)

]𝑀−1
𝑑𝑠𝑞. (B.1)

Solving for the roots of the polynomial in (A.2) results in,
Inside 𝐶𝑠𝑞 lies two points 𝑠𝑞 = 1

𝐿𝑀 which is a simple pole,
and 𝑠𝑞 =

𝐿(𝛾𝑞−𝛾𝑝)
𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

of order 𝑀 − 1. The residue at

𝑠𝑞 = 0 again gives a term 1
2

𝑒
−𝛾𝑝
𝜌𝐿𝑀

[1+𝛾𝑝]𝑀−1 which cancels out with
the second term in (6). In order to use Cauchy integral formula
[18], our function has to be analytic on and within the contour.
Therefore we expand the second exponential in Eq. (B.1)

as 𝑒
−𝛾𝑝
𝜌

(𝐿𝑀𝑠𝑞−1)

𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀 =
∑∞

𝑎=0

(
−𝛾𝑝
𝜌 )𝑎

𝑎!

[
𝐿𝑀𝑠𝑞−1

𝑠𝑞𝑀2(𝐿2−𝑓)−𝐿𝑀
]𝑎

.
This summation results in 3 regions: 𝑎 = 0, 0 < 𝑎 ≤ 𝑀 − 1
and 𝑎 → ∞. We cover each region in the following sections
respectively. The result for the joint probability distribution is
in (9).

A. First Region (𝑎 = 0)
By performing partial fraction expansion on the two poles

inside 𝐶𝑠𝑞 , we obtain the equation at the top of the next page,

where 𝑔 = 1

[𝑠𝑞− 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
]𝑀−1

∣∣∣∣
𝑠𝑞=

1
𝐿𝑀

= 1 + 𝑜(1) and

ℎ𝑖 = 1
𝑖!

𝑑𝑖

𝑑𝑠𝑖𝑞
[ 1
𝑠𝑞− 1

𝐿𝑀

]

∣∣∣∣
𝑠𝑞=

𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

= 𝑜(1). Computing

the residue at each pole, we arrive at the following result for
Eq. (B.1) when 𝑎 = 0,

𝑒−
𝛾𝑞

𝜌𝐿𝑀

(1 + 𝛾𝑞)𝑀−1
(1− 𝑜(1))𝑀−1 + 𝑜

(
𝛾𝑀−1
𝑞 𝑒

−𝛾𝑞
𝜌

(𝛾𝑞−𝛾𝑝)

(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

)
.

(B.2)

B. Finite Region (0 < 𝑎 ≤ 𝑀 − 1)

We write the integral of Eq. (B.1) for one of these
𝑀 − 1 terms as shown in (B.3), which simplifies to
(B.4). We calculate the residue at the only pole (of order
𝑀 − 1) 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
as shown in the fourth equation

from the top of the next page. For simplicity, we write
𝑒
−𝛾𝑞
𝜌

𝑠𝑞

[
1−𝑠𝑞 𝑀(𝐿2−𝑓)

𝐿

]𝑀−𝑎−1

[ 1
𝐿𝑀 −𝑠𝑞]𝑎−1

𝑠𝑞
[
𝐿𝑀

(𝛾𝑞−𝛾𝑝)

1+𝛾𝑝
𝑠𝑞+1+𝑜(1)

]𝑀−1 = 𝑓(𝑠𝑞). Eq. (B.4)

becomes (B.5), which goes to zero as (𝐿2 − 𝑓) → 0, and
does not contribute to (9).

C. Infinite Region (𝑎 → ∞)

We write the integral of Eq. (B.1) as shown in (B.6).
Looking at one of these terms and simplifying, we obtain
(B.7). We observe two poles 𝑠𝑞 =

𝐿(𝛾𝑞−𝛾𝑝)
𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

of

order 𝑀 − 1 and 𝑠𝑞 = 𝐿
𝑀(𝐿2−𝑓) of order (𝑎 − 𝑀 + 1).

As we will soon see, the residues of these poles result in
terms that go to 0 as 𝐾 increases and do not contribute
to (9). First, we perform partial fraction expansion, as
shown in (B.8). In the same manner used to find ℎ𝑖 in
appendix B.1, 𝑥𝑖 = (−1)𝑎−𝑀+1(𝑎−𝑀+𝑖)!

𝑖!(𝑎−𝑀)!

(
𝐿2 − 𝑓

)𝑎−𝑀+𝑖+1

and 𝑦𝑖 = (−1)𝑖(𝑀+𝑖−2)!
𝑖!(𝑀−2)!

(
𝐿2 − 𝑓

)𝑀+𝑖−1
. We also simplify

𝑒
−𝛾𝑞
𝜌

𝑠𝑞 [ −1
𝐿𝑀 +𝑠𝑞]

𝑎−1
(−1)𝑎−1

𝑠𝑞
[
𝑠𝑞+

1+𝛾𝑝
𝐿𝑀(𝛾𝑞−𝛾𝑝)

]𝑀−1 = 𝐻(𝑠𝑞) and therefore the

integral in Eq. (B.7) becomes (B.9), where (B.10)
applies. Note that the first summation in Eq. (B.9)
is bounded in 𝑖, and we observe a dominating value
when 𝑖 = 𝑟1 and 𝑟2, 𝑟3 = 0. Therefore, 𝐻(𝑖)(𝑠𝑞) =
(−1)𝑎−1

(𝑀−2)! 𝑒
−𝛾𝑞
𝜌 𝑠𝑞 (𝑎−1)!

(𝑎−𝑖−1)!𝑠
𝑎−(𝑖+𝑀+1)
𝑞 . Summing over 𝑟2 and

𝑟3, we obtain
∑𝑖−𝑟1

𝑟2,𝑟3
𝑖!

(𝑖−𝑟1−𝑟2−𝑟3)!
1
𝑟3!

(𝑠𝑞𝛾𝑞)
−𝑟2−𝑟3 (𝑀 +

𝑟3 − 2)! = 𝑖!
(𝑖−𝑟1)! 𝑖

𝑀−2(1 + 𝑜(1)), then over 𝑟1

gives O
[∑𝑖

𝑟1=0
𝑖! 𝑖𝑀−2

𝑟1!(𝑎−𝑟1−1)!(𝑖−𝑟1)!
(
𝑠𝑞
𝛾𝑞

)𝑟1
(−1)𝑟1

]
=

O

[(
𝑠𝑞
𝛾𝑞

)𝑖+1
𝑖𝑀

(𝑎−1)!

]
. Therefore, 𝐻(𝑖)(𝑠𝑞) =

(−1)𝑎−𝑖−1𝑒
−𝛾𝑞
𝜌 𝑠𝑞 (𝑎−1)!

(𝑎−𝑖−1)!

(
𝑠𝑞
𝛾𝑞

)𝑖
. We can now write the

finite summation in 𝑖 as shown in the equation following
(B.10) on the next page, which simplifies to

O

[
𝑒

−𝛾𝑞

𝜌(𝐿2−𝑓)

∞∑
𝑎=𝑀

𝑀𝑎𝑀 (𝐿2 − 𝑓)𝑎

]
−→

(𝐿2−𝑓)=𝑜( 1
𝛾𝑞

)
0. (B.11)

The second summation in Eq. (B.9) can be written as shown
in the last equation on the next page (for 𝑎 = 𝑀 − 1), which
results in

O

[
𝑒

−𝛾𝑞

𝜌(𝐿2−𝑓)

∞∑
𝑎=𝑀

𝑎𝑀

𝑎!

[−(𝐿2 − 𝑓)
]𝑎] −→

(𝐿2−𝑓)=𝑜( 1
𝛾𝑞

)
0 .

(B.12)
Therefore, the value of Eq. (B.9) also goes to 0.
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1

(𝑠𝑞 − 1
𝐿𝑀 )[𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
]𝑀−1

=
𝑔

𝑠𝑞 − 1
𝐿𝑀

+
𝑀−2∑
𝑖=0

ℎ𝑖

[𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)
𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

]𝑀−1−𝑖
,

Ifinite =

𝑒
−𝛾𝑞
𝜌 𝑠𝑞

[
1 − 𝑠𝑞

𝑀(𝐿2−𝑓)
𝐿

]𝑀−1
(−1)𝑎

𝑎! (
𝛾𝑝

𝜌 )𝑎
[

1
𝐿𝑀 −𝑠𝑞

1−𝑠𝑞 𝑀(𝐿2−𝑓)
𝐿

]𝑎
−𝐿𝑀 [1 + 𝛾𝑝]

𝑀−1
𝑠𝑞(

1
𝐿𝑀 − 𝑠𝑞)

[
𝐿𝑀

𝛾𝑞−𝛾𝑝

1+𝛾𝑝
𝑠𝑞 + 1 + 𝑜(1)

]𝑀−1 [−𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
𝐿(𝛾𝑞−𝛾𝑝)

𝑠𝑞 + 1 + 𝑜(1)
]𝑀−1

(B.3)

Ifinite =
𝑒

−𝛾𝑞
𝜌 𝑠𝑞

[
1 − 𝑠𝑞

𝑀(𝐿2−𝑓)
𝐿

]𝑀−𝑎−1
(−1)𝑎

𝑎! (
𝛾𝑝

𝜌 )𝑎
[

1
𝐿𝑀 − 𝑠𝑞

]𝑎−1

−𝐿𝑀𝑠𝑞[1 + 𝛾𝑝]𝑀−1[𝐿𝑀
(𝛾𝑞−𝛾𝑝)
1+𝛾𝑝

𝑠𝑞 + 1 + 𝑜(1)]𝑀−1[
−𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

𝐿(𝛾𝑞−𝛾𝑝)
]𝑀−1[𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
+ 𝑜(1)]𝑀−1

.

(B.4)

1

(𝑀 − 2)!

𝑑𝑀−2

𝑑𝑠𝑀−2
𝑞

⎛
⎜⎝𝑒

−𝛾𝑞
𝜌 𝑠𝑞

[
1 − 𝑠𝑞

𝑀(𝐿2−𝑓)
𝐿

]𝑀−𝑎−1 [
1

𝐿𝑀 − 𝑠𝑞
]𝑎−1

𝑠𝑞

[
𝐿𝑀

(𝛾𝑞−𝛾𝑝)
1+𝛾𝑝

𝑠𝑞 + 1 + 𝑜(1)
]𝑀−1

⎞
⎟⎠ ∣∣∣∣

𝑠𝑞=
𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

.

Ifinite =
(−𝛾𝑝)𝑎

𝑎!(𝜌)𝑎
1

(𝑀 − 2)! (−𝐿𝑀)[1 + 𝛾𝑝]𝑀−1
𝑓𝑀−2
𝑠𝑞

∣∣∣∣
𝑠𝑞→∞

= O

[
(−𝛾𝑝)𝑎

[1 + 𝛾𝑝]𝑀−1
𝑒

−𝛾𝑞(𝛾𝑞−𝛾𝑝)

𝜌(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

( −1

(𝐿2 − 𝑓)

)𝑀−2
]

(B.5)

Iinfinite =

𝑒
−𝛾𝑞
𝜌 𝑠𝑞

[
1 − 𝑠𝑞

𝑀(𝐿2−𝑓)
𝐿

]𝑀−1∑∞
𝑎=𝑀

(−1)𝑎

𝑎! (
𝛾𝑝

𝜌 )𝑎
[

1
𝐿𝑀 −𝑠𝑞

1−𝑀(𝐿2−𝑓)
𝐿 𝑠𝑞

]𝑎
−𝐿𝑀 [1 + 𝛾𝑝]𝑀−1 [−𝑀2(𝐿2 − 𝑓)𝛾𝑞]

𝑀−1
𝑠𝑞(

1
𝐿𝑀 − 𝑠𝑞)[𝑠𝑞 +

1+𝛾𝑝

𝐿𝑀(𝛾𝑞−𝛾𝑝)
]𝑀−1[𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)
]𝑀−1

.

(B.6)

Iinfinite =
−(

−𝛾𝑝

𝜌 )𝑎

𝑎!𝐿𝑀 [1 + 𝛾𝑝]𝑀−1𝛾𝑀−1
𝑞 (𝐿2 − 𝑓)𝑎

𝑒
−𝛾𝑞
𝜌 𝑠𝑞

[
1

𝐿𝑀 − 𝑠𝑞
]𝑎−1

𝑠𝑞[𝑠𝑞 +
1+𝛾𝑝

𝐿𝑀(𝛾𝑞−𝛾𝑝)
]𝑀−1

1

[𝑠𝑞 − 𝐿
𝑀(𝐿2−𝑓) ]

𝑎−𝑀+1[𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)
𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

]𝑀−1
.

(B.7)

1[
𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

]𝑀−1 [
𝑠𝑞 − 𝐿

𝑀(𝐿2−𝑓)
]𝑎−𝑀+1

=

𝑀−1∑
𝑖=1

𝑥𝑖[
𝑠𝑞 − 𝐿(𝛾𝑞−𝛾𝑝)

𝑀(𝐿2−𝑓)𝛾𝑞(1+𝛾𝑝)

]𝑖 +

𝑎−𝑀+1∑
𝑖=1

𝑦𝑖[
𝑠𝑞 − 𝐿

𝑀(𝐿2−𝑓)
]𝑖 . (B.8)

Iinfinite =
−(

−𝛾𝑝

𝜌 )𝑎

𝑎!𝐿𝑀 [1 + 𝛾𝑝]𝑀−1𝛾𝑀−1
𝑞 (𝐿2 − 𝑓)𝑎

[
𝑀−1∑
𝑖=1

𝑥𝑖
𝑖!
𝐻(𝑖)

(
𝐿(𝛾𝑞 − 𝛾𝑝)

𝑀(𝐿2 − 𝑓)𝛾𝑞(1 + 𝛾𝑝)

)
+

𝑎−𝑀+1∑
𝑖=1

𝑦𝑖
𝑖!
𝐻(𝑖)

(
𝐿

𝑀(𝐿2 − 𝑓)

)]
(B.9)

𝐻(𝑖)(𝑠𝑞) = (−1)𝑎−𝑖−1 (𝑎− 1)!

(𝑀 − 2)!
𝑒

−𝛾𝑞
𝜌 𝑠𝑞

𝑖∑
𝑟1,𝑟2,𝑟3

(−1)𝑟1 𝑖!

𝑟1!𝑟3!(𝑖− 𝑟1 − 𝑟2 − 𝑟3)!

(𝑀 + 𝑟3 − 2)!

(𝑎− 𝑟1 − 1)!
𝛾𝑖−𝑟1𝑞 (𝑠𝑞𝛾𝑞)

−𝑟2−𝑟3𝑠𝑎−𝑟1−𝑀−1
𝑞 .

(B.10)

O

[ ∞∑
𝑎=𝑀

𝑀−1∑
𝑖=1

(𝑎− 𝑖− 1)!

𝑖!(𝑀 − 𝑖− 1)!(𝑎−𝑀 + 1)!
(𝐿2 − 𝑓)𝑎−𝑀+𝑖(−1)𝑎−𝑀+𝑖(−1)𝑎−1𝑒

−𝛾𝑞

𝜌(𝐿2−𝑓) (𝐿2 − 𝑓)1+𝑀−𝑖
]

O

[
(𝑎− 1)!(−1)𝑎(𝐿2 − 𝑓)𝑎 𝑒

−𝛾𝑞

𝜌(𝐿2−𝑓)

𝑎−𝑀+1∑
𝑖=1

1

𝑖! (𝑎−𝑀 − 𝑖 + 1)!

(
1

(𝐿2 − 𝑓)𝛾𝑞

)𝑖
]
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