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Abstract

Transmitter precoding for multiple-input multiple-output orthogonal frequency
division multiplexing (MIMO-OFDM) is an effective way of leveraging the diversity
gains afforded by a multiple transmit-multiple receive antenna system in a frequency
selective environment. In the limited feedback scenario, optimal precoder represen-
tation for narrowband MIMO systems using moderately sized codebooks designed on
the Grassmann manifold has been shown to perform remarkably well. In MIMO-
OFDM systems precoder matrices have to be designed for all subcarriers and the
amount of feedback can get prohibitively large. This is especially true for next gen-
eration wireless local area networks and wireless metropolitan area networks which
have a large number of subcarriers. In this paper, we present techniques to reduce
this feedback requirement and the performance of these algorithms is numerically
shown to provide improvement over existing schemes.
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1 Introduction

In order to meet the ever increasing demand for higher data rates and better system perfor-

mance, the coupling of orthogonal frequency division multiplexing (OFDM) and multiple-

input multiple-output (MIMO) systems is seen as a promising solution for next generation

wireless networks. OFDM is a spectrally efficient modulation scheme that transforms a

frequency selective channel into a set of parallel frequency-flat channels and therefore per-

mits simple equalization schemes if the channel length is smaller than the length of the

cyclic prefix. Space-time signaling with multiple antennas per transceiver has been shown

to result in a significant diversity and/or capacity improvement especially when there is

channel knowledge at the transmitter [1].

One effective way of leveraging the gains available from transmitter channel knowledge

is to use linear precoding in which the signal is transmitted on the dominant modes of the

channel matrix. This is done by multiplying the signal to be transmitted by a precoder

matrix that is a function of the channel matrix. In time division duplexing (TDD) systems,

channel state information (CSI) may be faithfully estimated at the transmitter using chan-

nel reciprocity. Frequency division duplexing (FDD) systems lack channel reciprocity. This

problem, however, can be overcome by conveying the forward-link CSI from the receiver

to the transmitter over a limited rate feedback channel. In this case the precoding matri-

ces can be designed at the receiver and conveyed back to the transmitter using precoder

codebooks that are known to both the transmitter and the receiver.

Precoder design for narrowband, space-time signaling and its representation with as

small a codebook as possible is a well studied problem [2]–[4]. By relating precoder code-

book design to the famous Grassmann subspace packing problem [5], the best codebooks
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were determined for narrowband systems under different performance criteria. With these

codebooks, a low rate feedback channel can provide near optimal performance. MIMO-

OFDM systems, however, require precoder knowledge for all subcarriers. This can generate

a prohibitively large amount of feedback if not properly designed.

In this paper, we address the problem of how to best represent the set of precoder

matrices for all of the subcarriers in a MIMO-OFDM system with as few bits of feedback

as possible. We present two different algorithms and compare their performance with those

existing in the literature [6]–[8]. In the first algorithm, by representing the precoder matrices

as points in the Grassmann manifold, we reformulate the problem as that of finding a curve

in this manifold, which when appropriately sampled gives the precoding matrices for all

the subcarriers. Our solution to this curve representation problem is to find the optimal

precoding matrices with respect to the precoder criterion being used for pilots interspersed

in a MIMO-OFDM symbol and connect them via geodesics. A geodesic is the shortest line

connecting two points in a manifold. Uniformly sampling the geodesic gives the precoder

matrices for the other subcarriers. One can think of the geodesic sampling approach as

a linear interpolation between two points on the Grassmann manifold. This method can

be applied to beamforming, precoded spatial multiplexing, and precoded space-time block

coding systems.

Previous work in interpolation of precoders for MIMO-OFDM includes [6]–[8] and [9].

In [6]–[8] precoders for the non-pilot subcarriers are determined at the transmitter using a

modified spherical interpolation of the pilot precoders. This interpolation requires either

extra phase [6], [8] or unitary subspace rotation matrix [7] information to be fedback in

addition to that of the pilot precoders. In [9], precoders for the non-pilot subcarriers are
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found by solving a weighted least squares problem on the Grassmann manifold.

The second algorithm we propose is an alternative way to implement current clustering

based solutions where precoders for pilots are reused at the transmitter for neighboring

subcarriers in order to simplify implementation complexity. If the receiver has channel

knowledge available for all the subcarriers, instead of sending back the precoders for the

pilots, a better approach is to determine the mean of all the precoders in a cluster and feed

the index of the precoder nearest to the mean back to the transmitter. Since the precoder

matrices are points in the Grassmann manifold, the standard method of finding the mean

matrix in a vector space by averaging does not apply. Instead, by using the property that

the mean matrix minimizes the sum of the squares of distances from the sample matrices

one can obtain a mean precoder matrix which is in the Grassmann manifold. This is also

called the Karcher mean and is typically computed via iterative optimization algorithms.

However, since the codebook sizes for the precoders are finite, we show that a simple search

suffices to find the precoder nearest to the mean. Finally, a small modification to the cost

function for finding the mean results in the definition of the generalized median which can

also be computed via a brute force search. Both the Karcher mean and the generalized

median show significant performance improvements over current clustering methods.

We also show how the Karcher mean and the generalized median approach can be used

for antenna subset selection in MIMO-OFDM. In single-carrier MIMO systems, antenna

subset selection corresponds to using M out of Mtx transmit antennas for improving the

capacity/diversity performance [10]–[15]. In this case, the transmitter only needs M radio

frequency (RF) chains with M switches at the front-end to choose from the Mtx antennas.

Typically in MIMO-OFDM, if antenna subset selection has to be separately done for all
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subcarriers, we need to implement all Mtx RF chains. Alternatively, if only one subset

of antennas is used for the whole MIMO-OFDM symbol then we get the same RF chain

savings as in the single carrier case. Naturally, this will result in a diversity loss as compared

to the case where optimal antenna selection is done for all subcarriers. We show that if the

antenna subset selection on a per MIMO-OFDM symbol basis is done by using the Karcher

mean/generalized median approach we are still able to get a significant performance gain

with only M RF chains necessary at the transmitter as compared to the case where there

are no extra antennas.

The rest of the paper is organized as follows. In Section II, we give a general overview

of precoding for MIMO-OFDM and the current techniques used for reducing the feedback

requirement. We explain some of the properties of geodesics and show how they are con-

structed in Section III. The proposed algorithms are then developed in Section IV and V

followed by a complexity analysis in Section VI. Numerical results are presented in Section

VII, and we conclude in Section VIII.

2 MIMO-OFDM Precoding

Consider an N subcarrier MIMO-OFDM system with Mtx transmit and Mrx receive an-

tennas which uses limited feedback precoding as in Fig. 1. We assume that the channel

between each transmit and receive antenna pair has a multipath structure with L taps.

The impulse response for this frequency selective channel can therefore be written as

G(k) =
L−1∑

l=0

G(l)δ(k − l) (1)

where δ(·) is the Kronecker delta function and G(l) ∈ CMrx×Mtx for all l.

If the cyclic prefix is designed to be of at least length L − 1 then the MIMO channel
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Figure 1: MIMO-OFDM system model with limited feedback precoding for all subcarriers.
The tilde on the noise denotes that it is in the time domain.

seen by the data in the nth subcarrier (where n = 0, 1, . . . , N − 1) is given by

H(n) =
1√
N

L−1∑

l=0

G(l)exp

(
−j

2πnl

N

)
(2)

where j =
√−1. The received signal on the nth subcarrier can then be written as

Y(n) = H(n)X(n) + V(n) (3)

where V(n) is an Mrx × T matrix with CN (0, 1) entries, X(n) is an Mtx × T transmitted

matrix with tr
(
E[X(n)HX(n)]

)
= Tρ where ρ denotes the signal to noise ratio (SNR), and

T is the number of channel uses involved in transmitting one space-time signal. In spatial

multiplexing and beamforming the channel is used once (T = 1) to transmit a space-time

signal [16], [17], while for orthogonal space-time block coding the channel has to be used

multiple times (T > 1) [18], [19].

In linear precoding, the transmitted matrix X(n) can be written as

X(n) = F(n)S(n) (4)
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where S(n) is an M × T space-time signal (with 1 ≤ M ≤ Mtx) and the precoding matrix

F(n) is Mtx×M (with 1 ≤ M ≤ Mtx) and designed as a function of the channel H(n). To

constrain the peak transmitted power, we will assume that F(n) ∈ U(Mtx,M) where

U(Mtx,M) = {F ∈ CMtx×M | FHF = I}

with I denoting the identity matrix. This kind of linear precoding has been used for beam-

forming [2]–[4], precoded orthogonal space-time block codes [15], [20], and precoded spatial

multiplexing [21], [22]. The precoder F(n) is designed to optimize some criteria exam-

ples of which are i) maximizing the minimum singular value of H(n)F(n), ii) maximizing

the capacity of the effective channel H(n)F(n), or iii) maximizing the Frobenius norm of

H(n)F(n).

As an example, consider case iii) for beamforming with maximum ratio transmis-

sion/maximum ratio combining (MRT/MRC). Then the post-processed received signal on

every subcarrier can be written as

Z(n) = FH(n)HH(n){H(n)F(n)S(n) + V(n)}. (5)

The beamforming vector F(n) is an Mtx × 1 unit norm vector while S(n) is a 1 × 1 com-

plex data symbol chosen from a constellation set. In order to minimize the average error

probability the signal to noise ratio (SNR)

γ(n) =
ρ | FH(n)HH(n)H(n)F(n) |2

‖FH(n)HH(n)‖2
2

(6)

in every subcarrier should be maximized. The beamforming vector F(n) is chosen to

maximize the two norm of H(n)F(n) [3]. Equivalently, F(n) is the unit-norm right singular

vector corresponding to the largest singular value of the channel matrix H(n).
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All of the above precoding optimization criteria are invariant to right multiplication

of F(n) by an M × M unitary matrix U ∈ U(M,M). Thus, the optimization criteria

depends only on the column space of F(n). The set of all M -dimensional subspaces spanned

by matrices in U(Mtx,M) is the complex Grassmann manifold, denoted as G(Mtx,M).

Since the Grassmann manifold is a quotient space1, a point2 F ∈ G(Mtx,M) represents an

equivalence class of Mtx×M orthogonal matrices. Two matrices are equivalent if and only

if their columns span the same M -dimensional subspace i.e., the equivalence class of F is

defined as [F] = {FU : U ∈ U(M, M)} [24]. The precoders are therefore points on the

Grassmann manifold.

In limited feedback design, the precoder F(n) is further restricted to lie in a codebook

F = {F1,F2, . . . ,F2B} where B is a positive integer and the codebook is known to both

transmitter and receiver. Based on channel knowledge and precoding criteria, the receiver

sends back B bits representing the codebook index of the precoder for each subcarrier.

The design of approximately optimal codebooks for different space-time coding systems

was analyzed in [3], [4], [20], [22], [25] and was shown to relate to the famous Grassmannian

subspace packing problem. In MIMO-OFDM systems the linear precoding matrix F(n)

must be designed as a function of H(n) for every subcarrier; therefore, the number of

feedback bits N · B can become prohibitively large. Since neighboring subcarrier channel

matrices are highly correlated, one may design algorithms which use knowledge of only a

small set of F(n)′s to infer the others. The two main design methodologies are interpolation

based schemes and cluster based approaches.

1The quotient space of a topological space Y is the set of equivalence classes relative to some given
equivalence relation on a given topological space X [23].

2We interchangably use F to refer to the matrix F and the subspace defined by F. We also use | · | to
interchangeably refer to both the cardinality and absolute value.
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A conventional interpolation scheme involves a system where K pilots with known data

are transmitted in an N -subcarrier MIMO-OFDM symbol. The pilots are uniformly spaced

in a comb-type arrangement. The received space-time signal on the pilot subcarriers can

be written as

Y(kN/K) = H(kN/K)X(kN/K) + V(kN/K) (7)

for k = 0, . . . , K − 1 where N/K is an integer. The matrices {X(kN/K)} comprise a

training sequence that is known to both the transmitter and the receiver allowing the

receiver to determine an estimate of H(kN/K) for 0 ≤ k ≤ K − 1. The receiver then

uses the estimated channel to design precoders for each pilot and sends that information

to the transmitter where interpolation is done to determine the precoders for the other

subcarriers. To determine the minimum number of pilots required note that if Ntrain

MIMO-OFDM symbols are used for channel estimation i.e., training is done over multiple

symbols, then the minimum number of of pilot tones for minimizing the mean square error

of the least squares channel estimate must satisfy the inequality K ·Ntrain ≥ L ·Mtx [26].

In [6]–[8] the conventional linear interpolator is modified for interpolating between pilot

precoders in the MRT/MRC and spatial multiplexing MIMO-OFDM systems. An addi-

tional optimization parameter Q is introduced and the interpolator takes the form

Z(kN/K + m) = (1− αm)F(kN/K) + αmQF((k + 1)N/K) (8)

followed by the orthonormalization

F̂(kN/K + m;Q) = Z(kN/K + m){Z(kN/K + m)HZ(kN/K + m)}−1/2. (9)

where 1 ≤ m ≤ N/K − 1, αm = mK/N is the weighting coefficient and F(N) = F(0). Q

is an M ×M unitary rotation matrix in the spatial multiplexing case and reduces to the
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complex scalar parameter ejθ in the beamforming scenario. Every pair of pilot precoders

with which interpolation is done will have an optimizing Q value which must also be

fedback. In the beamforming case, it is chosen from a codebook Q based on maximizing

the effective channel gain for the subcarrier furthest away from the pilots

Q = argmax
Q∈Q

∥∥∥H(N/K(k + 1/2))F̂(N/K(k + 1/2))
∥∥∥

2

2
. (10)

Similarly, for the spatial multiplexing scenario, a minimizing the mean square error criteria

[7] or maximizing the minimum singular value of the effective channel for the subcarrier

furthest away from the pilots may be used to determine Q. The above interpolator performs

interpolation first on Euclidean space and then projects the solution back to the Grassmann

manifold. A different way would be to directly construct the interpolator on the Grassmann

manifold.

An alternative to interpolation is to reuse the pilot precoders for neighboring subcarriers.

An N subcarrier MIMO-OFDM symbol can be divided into K groups or clusters with each

cluster having N/K subcarriers. The precoder matrix for the center subcarrier in each

cluster is reused for the remaining subcarriers in that cluster. This is simpler to implement

at the transmitter than interpolation but suffers from a performance loss. In both cases a

total of K ·B bits of feedback are sent back for all the K precoders. If N À K, this results

in a huge saving in the number of feedback bits.

To develop our interpolation and clustering algorithms which make use of the geo-

metrical properties of the Grassmann manifold, we need to discuss the representation of

geodesics.
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3 Geodesics on the Grassmann Manifold

Given two points on a manifold, a geodesic is the curve lying on the manifold of shortest

length connecting them. In Euclidean space this corresponds to a straight line; on a sphere

it corresponds to a great circle. A geodesic starting from a point F(t0) in G(Mtx,M) is

given by the parametric equation [27]

F(t) = Q(t0) exp((t− t0)B)

(
I

M×M

0
(Mtx−M)×M

)
. (11)

The matrix Q(t0) = [F(t0) F⊥(t0)] is formed by some orthonormal completion of F(t0), i.e.,

the column space spanned by F⊥(t0) where F⊥(t0) ∈ U(Mtx,Mtx −M) spans the column

null space of FT (t0). The skew symmetric matrix B has the form

B =

(
0 AH

−A 0

)
, A ∈ C(Mtx−M)×M (12)

where the sub-matrix A specifies the direction and movement of the geodesic curve with

parameter t. The vector of principal subspace angles φ = [φ1, . . . , φM ] ∈ [0, π/2]M be-

tween two points F(t0) and F(t1) ∈ G(Mtx, M) can be computed via the singular value

decomposition (SVD) [28]

FH(t0)F(t1) = U1 cos(Φ)VH
1 . (13)

In (13), U1 and V1 ∈ U(M, M) and φ are the diagonal elements of Φ ∈ RM×M . The cos(·)

matrix above corresponds to taking the cosine of only the diagonal entries of Φ.

The direction matrix A relates how the principal subspace angles between F(t) and
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F(t0) change with t. Let the compact SVD3 of A be given by

A = U2Σ̂UH
1 (14)

where U2 ∈ U(Mtx −M, M), U1 ∈ U(M,M) and Σ̂ ∈ RM×M is a real diagonal matrix. If

φi (i = 1, . . . , M) are the principal angles between F(t) and F(t0), then it can be shown

that for t close to t0, φi = (t− t0)σi where σi are the diagonal elements of Σ̂ [24].

All distance metrics between subspaces in G(Mtx, M) are functions of the principal

subspace angles. Some examples are [24], [29]:

Geodesic distance

dg(F(t1),F(t0)) =
∥∥φ

∥∥
2
;

Chordal distance

dc(F(t1),F(t0)) =
1√
2

∥∥FH(t1)F(t1)− FH(t0)F(t0)
∥∥

F
=

∥∥sin(φ)
∥∥

2
;

Fubini-Study distance

dFS(F(1),F(t0)) = arccos
∣∣detF(t1)F

H(t0)
∣∣ = arccos

(
M∏
i=1

cos(φi)

)
;

Projection 2-norm

dF2(F(t1),F(t0)) =
∥∥FH(t1)F(t1)− FH(t0)F(t0)

∥∥
2

=
∥∥sin(φ)

∥∥
∞ .

Note that as we move along a geodesic curve given by (11) both the geodesic distance

and principal angles between the initial and final subspaces increase linearly with t.

3The compact singular value decomposition (SVD) of a matrix A ∈ C(n−k)×k with n − k ≥ k is
A = UΣV where U ∈ U(n − k, k),V ∈ U(k, k) and Σ ∈ Rk×k. This representation is useful when only
the first k left singular vectors are required. Note that in a regular SVD U ∈ U(n− k, n− k).
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4 Reduced Feedback Algorithms

We now develop the different approaches of interpolation and cluster based precoding.

For the geodesic interpolator, precoder knowledge for only the pilots is necessary. For

the clustering scheme, we will assume the receiver knows the optimal precoders for all

subcarriers. We will not focus on channel estimation techniques which can be found in

[26],[30]–[35] and the references therein. Rather, we are interested in answering the question

of given a fixed feedback rate, what is the best (in terms of error rate performance) we

can do for beamforming, precoded spatial multiplexing systems, and precoded space-time

coding.

4.1 Geodesic Interpolation

If the optimizing precoders for two consecutive pilot subcarriers are calculated, uniformly

sampling the connecting geodesic gives the precoder matrices for the data subcarriers. The

subspace angles between consecutive precoders then differ by a constant. Since precoders

are designed with respect to the frequency domain subcarrier channel matrices, to avoid

any ambiguity we will use the variable f instead of t for parameterizing geodesics. In this

case with the two pilot precoders corresponding to points F(f0) and F(f1) in G(Mtx,M),

determining the direction matrix A such that (11) is satisfied for f = f0 and f1, gives

us the desired geodesic equation. Without loss of generality we may assume f0 = 0 and

f1 = N/K since pilots are spaced N/K subcarriers apart. In [27], three key observations

are made to determine the connecting geodesic without explicitly computing A.

1. The principle subspace angles can be calculated using knowledge of only F(N/K)
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and F(0) by noting that

FH(0)F(N/K) = U1 cos

(
N

K
Σ

)
VH

1 (15)

where U1 and V1 ∈ U(M, M) and Σ = K
N
Σ̂ where Σ̂ is defined in (14) . In the cos(·)

matrix above the non-diagonal entries are zero.

2. The matrix exponential exp(fB) can be written as

exp(fB) =

(
U1 0

0 Û2

) 


cos(Σf) sin(Σf) 0
− sin(Σf) cos(Σf) 0

0 0 IMtx−2M




(
U1 0

0 Û2

)H

(16)

where Û2 ∈ U(Mtx −M, Mtx −M) and U1 is defined in the previous equation.

3. Finally, we can force (15) to be a diagonal matrix by defining the canonical bases

as F(0) = F(0)U1 and F(N/K) = F(N/K)V1. The geodesic connecting these two

subspaces is found by right multiplication of (11) by U1 and is given by

F(f) = Q(0)exp(fB)

(
I

M×M

0
(Mtx−M)×M

)
U1

= Q(0)

(
U1 cos(Σf)
−U2 sin(Σf)

)

= F(0)U1 cos(Σf)− F⊥(0)U2 sin(Σf), 0 ≤ f ≤ N/K

(17)

where U2 corresponds to the first M columns of Û2. Evaluating (17) at f = N/K

allows us to solve for the unknown F⊥(0)U2

F(N/K) = F(0)U1 cos

(
N

K
Σ

)
− F⊥(0)U2 sin

(
N

K
Σ

)

⇒ F⊥(0)U2 =

[
F(0) cos

(
N

K
Σ

)
− F(N/K)

]
sin−1

(
N

K
Σ

)
.

(18)

Assuming there are N/K − 1 data subcarriers between two pilots, their precoder

matrices can then be determined from

F (m) =
[
F(0) cos (mΣ)− F⊥(0)U2 sin (mΣ)

]
, 1 ≤ m ≤ N/K − 1. (19)

and setting F(m) = F(m).
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The geodesic approach will work well if the subspace angular variation of the optimal

data subcarrier precoders with respect to the optimal pilot precoder varies approximately

linearly with increasing subcarrier spacing. For the channel model given by (1) and (2),

where each of the entries in G(l) are i.i.d. zero mean unit variance complex Gaussian

random variables and reasonably spaced pilot precoders, numerical simulations show this

to be true. For this channel model, we plot in Fig. 2 a single realization of the subspace

angular variation for the right singular vector corresponding to the dominant singular value

in a 4× 4, 128 subcarrier MIMO-OFDM system for pilot spacing of 8 and 16 subcarriers.
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Figure 2: Subspace angular variation of the optimal data precoder matrices from the pilot
precoder matrices.

The right and left singular vectors corresponding to the dominant singular value of

the subcarrier channel matrix are the optimal beamforming and combining vectors in an

MRT/MRC system. The discrete-time matrix channel impulse response has eight taps

between each transmit and receive antenna pair with a uniform profile and i.i.d. complex

Gaussian distribution as in (1). Notice that as the pilot spacing increases, the straight line
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approximation of connecting the end points results in a less faithful representation of the

actual subspace variation. Finally, we note that to determine the precoders for subcarriers

(K − 1)N/K + 1 to N − 1, we sample the geodesic connecting F((K − 1)N/K) and F(0).

4.2 Karcher Mean and Generalized Median Clustering

In current clustering based approaches [6], [36], the precoder matrices for the center sub-

carriers in each cluster are reused for the other subcarriers in that cluster. In Fig. 2,

the subspace angular variation of the optimal data subcarrier precoders with respect to

the optimal pilot precoder (which is for the first subcarrier in a cluster) is shown. Recall

from the previous section that distance is directly related to the principle angles between

subspaces. Fig. 2 implies that if the spacing between two subcarriers increases so does the

subspace distance between their respective optimal precoders. It has been shown in [20]

that precoder performance is directly related to the distance between the optimal precoder

and the assumed precoder. This increasing distance between the optimal precoder and

assumed precoder as we move away from the center subcarrier explains the performance

degradation exhibited in current clustering schemes.

An alternative approach would be for the receiver to find the mean of all the precoders

in a cluster, determine the codebook entry closest to it, and send that information to the

transmitter instead. However, the conventional method of finding the mean of matrices

{F(1), . . . ,F(n)} ∈ G(Mtx,M) by averaging (i.e., 1
n

∑n
i=1 F(i)) does not work as the result-

ing solution is not a point on the Grassmann manifold. For points {y1, . . . , yn} in Euclidean

space, an alternative way of viewing the mean is that it is the point which minimizes the
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function

1

2

n∑
i=1

‖y − yi‖2
2 . (20)

Note that in the above, we are looking for the point y that minimizes the sum of the squares

of distances from y to the sample points {y1, . . . , yn}. In this case the distances are lengths

of straight lines, which are the geodesics of Euclidean spaces. Extending this reasoning to

manifolds, for precoders in the kth cluster the Karcher mean Fk [37]–[40], can be defined

as the point F which locally minimizes the objective function

N/K−1∑
m=0

d2(F,F(kN/K + m)) (21)

where d(·, ·) is a subspace distance. As a variety of distance metrics have been defined on the

Grassmann manifold, different gradient based iterative optimization algorithms have been

proposed in [41], [42], and [38] to numerically solve for the minimization of (21). These

iterative techniques are computationally expensive and require testing for convergence.

Since our goal is to find the codebook entry closest to Fk and given that our codebook size

is finite, we can modify (21) to define our selection criterion as

Fk = argmin
F∈F

N/K−1∑
m=0

d2(F,F(kN/K + m)). (22)

This can be accomplished by a simple brute force search. The distance metric that will be

used in our simulations is the geodesic distance dg(·, ·). In the same manner the generalized

median is defined in [43] as the point F which minimizes the objective function

N/K−1∑
m=0

d(F,F(kN/K + m)). (23)

Again, a brute force search like in (22) can be used to determine the representative precoder

matrix from the codebook. Both these approaches can also be used for antenna subset

selection as will be explained in the next section.
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5 Antenna Subset Selection

Antenna subset selection is the simplest transmitter-precoding scheme for MIMO systems.

It is a special case of limited feedback precoding where the columns of the precoder matrices

are chosen from the columns of an Mtx×Mtx identity matrix. It has been shown to provide

significant diversity and coding gains in space-time coded systems over an unprecoded

system when both exact and statistical channel knowledge are used [10], [12], [14], [15], [44]

and [45]. Consider the case of spatial multiplexing or OSTBC for M antennas with Mtx

available transmit antennas. With antenna subset selection, the transmitter chooses the

best M out of the Mtx possible transmit antennas depending on the precoding criterion.

For single carrier MIMO systems this is easily performed by RF switches at the front-end.

In this case the number of RF chains in a precoded MIMO system is the same as that for

an unprecoded system. The only added hardware complexity at the transmitter is that of

the extra Mtx −M antennas and M RF switches to choose from the Mtx antennas.

In MIMO-OFDM systems, if the precoders are designed separately for all subcarriers,

Mtx RF chains have to be implemented. For low-cost and widespread implementation, it

is desirable to have a precoded MIMO-OFDM system that uses the same number of RF

chains as an unprecoded system. This is possible only if one precoder matrix using an

antenna subset selection codebook is chosen per MIMO-OFDM symbol. The RF switches

which implement the precoder matrix multiplication choose the appropriate antennas as

shown in Fig. 3. The Karcher mean and the generalized median approach present a natural

way to design the precoder matrix.

For antenna subset selection, a natural way to represent the antenna subset is with

a codebook F =
{
E1, . . . ,E(Mtx

M )

}
known at both transmitter and receiver where the
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precoder matrices Ei are composed of M distinct columns from IMtx . A total of
⌈
log2

(
Mtx

M

)⌉

bits of feedback are required per MIMO-OFDM symbol. The precoder selection criterion

at the receiver for either the Karcher mean or the median can be written as

F = argmin
E∈F

N−1∑
m=0

dν(E,F(m)), ν = 1, 2 (24)

where F(m) corresponds to the optimal precoder matrix for subcarrier m and F is the

antenna subset to be used for the MIMO-OFDM symbol.
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Figure 3: MIMO-OFDM system model for antenna selection on a per MIMO-OFDM symbol
basis.

6 Complexity Analysis

In the geodesic approach an O(K · 2B) search of the precoder codebook is required at

the receiver to determine the precoders for the pilots in one MIMO-OFDM symbol. The

transmitter determines the non-pilot precoders from (15), (18) and (19). Here, the compu-

tational cost at the transmitter is primarily governed by the eigen-decomposition in (15)

which has to be done for consecutive pairs of pilot precoders resulting in an O(K · M3)
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complexity. In contrast, the MS interpolator requires an O(K · 2B+B1) search at the re-

ceiver where 2B1 is the size of the codebook for the quantized phase θ or rotation matrix

Q information. Furthermore, the complexity of computation of the non-pilot precoders at

the transmitter is O((N − K) ·M3). To compute the Karcher mean or the median, first

the optimal unquantized precoders for all the subcarriers are determined at the receiver at

a computational cost O(N ·M3
tx). Then the principle subspace angles between the unquan-

tized precoders and all the precoder codebook entries are computed. Using Chan’s SVD

algorithm [28] this has a computational cost of O(N · 2B · (M3 + MtxM
2)). Finally, the

receiver has to do an O(K · 2B) search to determine the representative precoder for each of

the K-clusters per MIMO-OFDM symbol.

7 Numerical Performance Analysis

In this section, we compare the performance of the proposed reduced feedback techniques

with those existing in the literature. Simulations are performed for a MIMO-OFDM sys-

tem using QPSK with 128 subcarriers (N = 128). The channel model (1) is used where

we assume that the entries in G(l) are independent and identically distributed complex

Gaussian random variables with zero mean unit variance and that the channel matrices

G(l) are independent for different delays 0 ≤ l < L. Unless otherwise stated the channel

impulse response is assumed to have eight taps (L = 8) between each pair of transmit and

receive antennas with a uniform profile. We also assume that the feedback channel has no

delay and no transmission errors, and that the receiver has perfect channel knowledge for all

subcarriers H(n), n = 0, . . . , N − 1. The codebooks used for the beamforming and spatial

multiplexing simulations were generated using techniques in [46] and are given in [47].
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Experiment 1: Fig. 4 shows the performance of using different cluster based approaches

for a 4× 4 system with beamforming at the transmitter and maximum ratio combining at

the receiver.
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 Comparison of Clustering Schemes in an MRT/MRC 4x4 MIMO−OFDM system using QPSK

All subcarriers w/512 bits feedback
Karcher mean w/32 bits feedback
Median w/32 bits feedback
Pilot precoder reuse w/32 bits feedback
Karcher mean w/16 bits feedback
Median w/16 bits feedback
Pilot precoder reuse w/16 bits feedback

Figure 4: Probability of symbol error comparison for different clustering schemes in a 4×4
MIMO-OFDM system using QPSK.

A codebook of size |F|=16 is assumed to be known to both transmitter and receiver.

Performance curves with cluster sizes of 16 and 32 subcarriers corresponding to a feedback

of 32 and 16 bits, respectively, per MIMO-OFDM symbol are shown for the Karcher mean

and current pilot precoder reuse clustering methods. The benchmark for comparison is the

ideal beamforming case where the indices from a codebook size |F| = 16 are fed back for

all beamforming vectors. This requires a total of 512 bits of feedback information. As can

be seen, the degradation when increasing the cluster size is more prominent when using the

pilot precoder reuse method. At a symbol error rate (SER) of 10−2, with 32 subcarriers in a

cluster, the Karcher mean approach outperforms the pilot precoder reuse method by more

than 1 dB and is 2 dB away from the case where precoder matrices for all subcarriers are
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fedback. The median approach performs slightly worse than the Karcher mean approach.

Experiment 2: In Fig. 5 we compare the performance of the different reduced feed-

back schemes in a 4× 4 system with beamforming at the transmitter and maximum ratio

combining at the receiver. For this MIMO-OFDM system, we have shown in Fig. 2 that

the subspace angular variation of the ideal data subcarrier precoders with respect to the

ideal pilot subcarrier precoders can be approximated as a straight line if the pilot subcar-

rier spacing was small. This was the justification for proposing a geodesic-sampling type

interpolator. Fig. 5 shows that if the pilots are spaced eight subcarriers apart, the “ideal
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 Comparison of Precoder Interpolating Schemes in an MRT/MRC 4x4 MIMO−OFDM system using QPSK

Ideal precoding all subcarriers
Ideal geodesic
All subcarriers w/512 bits feedback
Geodesic w/64 bits feedback
Karcher mean w/64 bits feedback
Median w/64 bits feedback
Modified spherical w/64 bits feedback

Figure 5: Probability of symbol error comparison for different precoder interpolation
schemes in a 4× 4 MIMO-OFDM system using QPSK.

geodesic” (i.e., the geodesic connecting the unquantized optimal pilot precoders) gives a

performance close to that of ideal precoding where precoder knowledge is available for all

subcarriers. To compare the performance in a limited feedback scenario for the MS inter-

polators, θ is uniformly quantized to 2 bits. A codebook of size |F| = 4 is used for the

beamforming vectors resulting in a total of 2K + 2K (K is the number of pilots) bits of
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feedback information per MIMO-OFDM symbol. The geodesic interpolator uses a code-

book of size |F| = 16 for representing the pilot precoders which also requires 4K bits of

feedback information. For interpolation with 16 pilots, at a symbol error rate (SER) of 10−4

the geodesic interpolator outperforms the MS interpolator by 0.3 dB and exhibits only 0.5

dB degradation from the case where precoder information is sent back for all subcarriers

using a codebook of size |F| = 16. The performance of the Karcher mean approach falls

between that of the geodesic and MS interpolator.

Experiment 3: In Fig. 6 we investigate the performance of the different reduced feedback

schemes when imperfect channel knowledge is available at the receiver of the above 4 × 4

beamforming system. The receiver estimates the channel for the nth subcarrier as

Hest(n) = βH(n) +
√

1− β2Herror(n) (25)

where 0 ≤ β ≤ 1 and the entries of Herror(n) are modeled as i.i.d Gaussian random variables

with zero mean unit variance. The beamforming and maximum ratio combining vectors

are designed from the estimated channel Hest(n). The key observation from Fig. 6 is that

for increasing degradation in channel estimates the Karcher mean and generalized median

approach outperform both MS and geodesic interpolators.

Experiment 4: In this experiment, the performance of the interpolators are compared

in a two substream precoded spatial multiplexing 4 × 2 system. The vector symbol error

rate (VSER) is plotted in Fig. 7 to characterize the performance when using zero-forcing

(ZF) receivers.

The precoding matrices are found using the minimum singular value criterion [22]. For

the MS interpolator, as in [7], the unitary derotation matrix Q is chosen from a codebook

size |Q| = 4. With the pilot precoding matrices chosen from a codebook size |F| = 4, the
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Modified Spherical w/64 bits feedback

Figure 6: Probability of symbol error comparison as a function of channel estimation error
for different reduced feedback schemes in a 4 × 4 MIMO-OFDM system using QPSK at
SNR (ρ) = 4 dB.

MS scheme requires 2K + 2K bits of feedback. The corresponding geodesic interpolator

with |F| = 16 also uses 4K bits of feedback. The benchmark for comparison is when the

indices of the optimal precoder matrices for all subcarriers are sent back from a codebook

size of |F| = 16 corresponding to 512 bits of feedback. As can be seen in Fig. 7, when

interpolating with 16 pilots the geodesic sampling approach, the Karcher mean approach

and the median approach perform better than the MS interpolator.

Experiment 5: In this experiment, we show the gains available when using antenna

subset selection, the simplest precoding scheme. Simulations are done for a three substream

precoded spatial multiplexing 6 × 3 system. In this case, the three columns of a precoder

matrix F are chosen from the columns of a 6×6 identity matrix. The discrete-time channel

impulse response between each pair of transmit and receive antennas is assumed to have

four taps with a uniform profile and i.i.d. complex Gaussian distribution as in (1). The
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Figure 7: Probability of vector symbol error comparison for different precoder interpolation
schemes in a two substream 4 × 2 MIMO-OFDM system using QPSK with a zero-forcing
receiver.

VSER is plotted for ZF receivers in Fig. 8.

When antenna subset selection is performed for each subcarrier, 128 · ⌈
log2

(
6
3

)⌉
=

640 bits of feedback are required. Although there is a significant improvement over an

unprecoded 3 × 3 spatial multiplexing system, hardware complexity for implementation

at the transmitter is prohibitively large as the antenna subset selection has to be done

separately for every subcarrier. An alternative is to perform antenna subset selection on a

per MIMO-OFDM symbol basis resulting in only a feedback of
⌈
log2

(
6
3

)⌉
= 5 bits (i.e., only

one precoder is chosen for all the subcarriers). Fig. 8 shows that if the precoder is chosen

via the Karcher mean approach, at a VSER of 10−1 there is a performance improvement

of 3 dB over the unprecoded case and a 5 dB degradation relative to precoding for all

subcarriers. Using the median has a similar performance compared to the Karcher mean.
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Figure 8: Probability of vector symbol error comparison for antenna subset selection in a
three substream 6× 3 MIMO-OFDM system using QPSK with a zero-forcing receiver.

8 Conclusions

In this paper two novel approaches for reducing the feedback requirement in a precoded

MIMO-OFDM system were presented. In the first approach the receiver conveyed only

pilot precoder matrix information to the transmitter. The transmitter then reconstructed

the precoders for the data subcarriers by uniformly sampling the geodesic connecting the

pilot precoder matrices. This approach was shown to work well for channel models where

the subspace angular variation of the optimal precoder matrices for increasing subcarrier

spacing was approximately linear. In the second method, the receiver conveyed to the

transmitter either the Karcher mean or the generalized median of the precoders for a group

of subcarriers. No further computation was necessary at the transmitter. Both methods

were shown to perform better than existing reduced feedback precoding techniques. Fi-

nally, for the antenna subset selection scenario, we showed that the Karcher mean and the
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generalized median approach can provide significant gains over an unprecoded system with

very minimal feedback and minimal transmitter implementation complexity.

One direction for future work is to characterize the performance loss of the above two

schemes as a function of the pilot spacing/cluster size and codebook size. In order to do

this for the Rayleigh channel model given in (1), a thorough probabilistic analysis of how

the subspace angles for the optimal precoders vary with increasing subcarrier spacing needs

to be done.
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