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ABSTRACT In the present study, we provide the results of a detailed genomic analysis

and the growth characteristics of a colistin-resistant KPC-3-producing Klebsiella pneu-

moniae sequence type 512 (ST512) isolate (the colR-KPC3-KP isolate) with a mutated

pmrB and isogenic isolates of colR-KPC3-KP with mcr-1.2 isolated from an immunocom-

promised patient. From 2014 to 2017, four colR-KPC3-KP isolates were detected in rectal

swab samples collected from a pediatric hematology patient at the Azienda

Ospedaliero-Universitaria Pisana in Pisa, Italy. Whole-genome sequencing was performed

by MiSeq sequencing (Illumina). Growth experiments were performed using different

concentrations of colistin. The growth lag phases both of an isolate harboring a deletion

in pmrB and of clonal variants with mcr-1.2 were assessed by the use of real-time light-

scattering measurements. In the first isolate (isolate 1000-pmrBΔ, recovered in Septem-

ber 2014), a 17-nucleotide deletion in pmrB was detected. In subsequent isolates, the

mcr-1.2 gene associated with the plasmid pIncX4-AOUP was found, while pmrB was in-

tact. Additionally, plasmid pIncQ-AOUP, harboring aminoglycoside resistance genes, was

detected. The growth curves of the first three isolates were identical without colistin ex-

posure; however, at higher concentrations of colistin, the growth curves of the isolate

with a deletion in pmrB showed longer lag phases. We observed the replacement of

mutated colR-KPC3-KP pmrB by isogenic isolates with multiple resistance plasmids, in-

cluding mcr-1.2-carrying pIncX4, probably due to coselection under gentamicin treat-

ment in a patient with prolonged colR-KPC3-KP carriage. The carriage of these isolates

persisted in follow-up cultures. Coselection and the advantages in growth characteristics

suggest that the plasmid-mediated resistance conferred by mcr has fewer fitness costs in

colR-KPC3-KP than mutations in chromosomal pmrB, contributing to the success of this

highly resistant hospital-adapted epidemiological lineage.

IMPORTANCE Our study shows a successful prolonged human colonization by a

colistin-resistant Klebsiella pneumoniae isolate harboring mcr-1.2. An intense antibiotic

therapy contributed to the maintenance of this microorganism through the acquisition

of new resistance genes. The isolates carrying mcr-1.2 showed fewer fitness costs than

isogenic isolates with a pmrB mutation in the chromosome. Coselection and reduced fit-

ness costs may explain the replacement of isolates with the pmrB mutation by other iso-

lates and the ability of the microorganism to persist despite antibiotic treatment.

KEYWORDS colistin, fitness cost, mcr-1.2, molecular epidemiology

Colistin is a last-resort therapeutic option effective in the treatment of bacterial

infections caused by multidrug-resistant (MDR) Gram-negative bacteria, particularly

carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomo-
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nas aeruginosa strains. These nosocomial pathogens, the commonest pathogens

found in bacteremia and ventilator-associated pneumonia in critically ill patients,

are evolving toward pan-resistance. The mortality rate, particularly among those with

carbapenemase-producing K. pneumoniae (CP-KP) infections, may reach up to 75% and

is attributed both to the virulence of the pathogen and to the lack of an effective

antimicrobial therapy (1). Together with fosfomycin, tigecycline, and some recently

introduced beta-lactam–beta-lactamase inhibitor combinations, e.g., ceftazidime-

avibactam (2), colistin is considered one of the few available treatments against

infections caused by MDR Gram-negative bacteria.

In the last few years, colistin resistance has emerged worldwide among patients

previously treated with colistin. In addition, colistin resistance has also been described

in humans without colistin therapy and in the absence of clonal transmission (3).

Furthermore, not only does the clonal transmission of resistant strains with chromo-

somal mutations play an important role in the spread of colistin resistance among

CP-KP bacteria, but also the horizontal dissemination of plasmids carrying insertion

sequences associated with colistin resistance contributes to high resistance rates (4).

The most common molecular mechanism of colistin resistance is the modification of

the lipopolysaccharide (LPS), which is a mechanism analogous to that observed in

bacteria with intrinsic resistance to polymyxins (5). Most often, resistance mechanisms

are chromosomally encoded, affecting genes involved in the modification of the LPS,

e.g., the pmrHFIJKLM operon and the pmrE gene, the two-component systems PmrA/

PmrB and PhoP/PhoQ, the crrAB operon, and the mgrB gene. The plasmid-associated

colistin resistance gene mcr-1 was first described in 2016 (6). Since its discovery, several

variants of mcr-1 have been described (7). The spread of plasmids harboring resistance

genes into human-adapted pathogens through horizontal gene transfer generally

represents a major public health risk. In addition, the detection of plasmids with mcr-1

in successful nosocomial lineages is a cause of great concern, since this imposes a risk

of patient-to-patient transmission, resulting in hospital outbreaks. For CP-KP bacteria,

the early detection of carriage enables health care facilities to contain the spread

through patient isolation and the implementation of measures of infection control (8).

The colonization of patients with CP-KP bacteria may persist for months to years after

detection of the first positive culture (9). To the best of our knowledge, there are no

data regarding the duration of carriage of pathogens harboring mcr in humans.

The acquisition of resistance generally goes together with fitness costs, and this is

also the case if the resistance is acquired by horizontal gene transfer. Resistance

mediated by plasmids may carry a fitness cost reduced from that of resistance mediated

by chromosomal mutations, since the costs can be reduced by compensatory muta-

tions either in the plasmid or in the chromosomal DNA (10). In addition, plasmids may

carry multiple resistance genes, which allows for the coselection of successful lineages

of plasmids carrying genes for resistance to multiple antibiotics under the stress of

treatment with various antibiotics. The analysis of fitness costs is often assessed by in

vitro experiments using laboratory strains. Analysis of the fitness of isogenic isolates

from the same patient that differ only by their resistance mechanisms is of importance

to verify the robustness of study results with laboratory strains (11).

In the present study, we provide the results of a detailed genomic analysis of a

colistin-resistant KPC-3-producing Klebsiella pneumoniae isolate (the colR-KPC3-KP iso-

late) with a mutated pmrB gene isolated from an immunocompromised pediatric

patient. In the follow-up period of 3 years, isogenic isolates harboring different plas-

mids carrying various resistance genes, including mcr-1.2, as well as strAB, conferring

colistin and aminoglycoside resistance, respectively, were detected. The duration of

carriage, plasmid diversification, changes to the resistome, and growth characteristics

of the colR-KPC3-KP isogenic isolates were assessed.

Case description. The patient was a child with acute lymphoblastic leukemia first

admitted to hospital in August 2014. In September 2014, a rectal swab specimen was

positive for colR-KPC3-KP (isolate 1000-pmrBΔ), and the patient underwent an oral
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gentamicin regimen (120 mg per day) for gut decontamination, combined with oral

trimethoprim-sulfamethoxazole (800/160 mg twice daily 2 times per week) and flucona-

zole (100 mg per day) therapy. The patient was discharged after 10 days with scheduled

clinical and hematological control visits. In October 2014, rectal swab specimens were

still positive for colR-KPC3-KP. In November 2014, the patient was hospitalized for

neutropenic fever caused by colR-KPC3-KP (isolate 1041-mcr) and treated with oral

gentamicin (120 mg per day), trimethoprim-sulfamethoxazole (2 times per week), and

nystatin (oral suspension 3 times per day). In December 2014, rectal swab specimens

were still positive for colR-KPC3-KP (isolate 1074-mcr/pIncX3Δ). In January 2015, the

patient continued the same antibiotic regimen described above until the end of

February 2015. Then, the oral gentamicin regimen was administered for treating further

CP-KP colonization. The child was never treated with colistin in 2014. In September

2015 (when isolate 1140-mcr was recovered), the patient was hospitalized for 10 days

for neutropenic fever caused by colR-KPC3-KP and was treated with gentamicin intra-

venously (160 mg per day), meropenem intravenously (1,000 mg 3 times per day),

colistin intravenously (3,000,000 U for the first day and then 1,700,000 U 2 times per

day), nystatin (oral suspension 3 times per day), and fluconazole (oral, 100 mg per day).

Cultures of rectal swab specimens were negative for colR-KPC3-KP beginning in Octo-

ber 2015. Overall, the patient was colonized with colR-KPC3-KP for 372 days and was

treated with oral gentamicin for 382 days. In 2016, rectal swab specimens collected

monthly were negative for colR-KPC3-KP; the last negative rectal swab specimen was

collected in March 2017.

RESULTS

Characteristics of isolates. An overview of the characteristics of the four isolates is

presented in Table 1. In the first isolate (isolate 1000-pmrBΔ), a 17-nucleotide deletion

in pmrB from nucleotide positions 386 to 402 was detected and associated with colistin

resistance. In isolates 1041-mcr, 1074-mcr/pIncX3Δ, and 1140-mcr from subsequent

cultures, this mutation was not present. In these isolates, mcr1.2 associated with the

pIncX4-AOUP plasmid (�30 kbp) was detected (Fig. 1A). No mutations in the mgrB,

phoP, phoQ, and pmrA genes with the predicted impact on biological functions were

found in any isolate. All isolates carried the carbapenemase gene blaKPC-3, localized on

the pKpQIL-AOUP plasmid (�113 kbp) in a Tn4401a transposon (Fig. 1B). In addition,

the bla genes encoding OXA-9 and SHV-11 were detected. A number of aminoglycoside

resistance genes were found in all the isolates, namely, aac(6=)-Ib, aadA2, and aph(3=)-I.

Also, the gene aac(6=)Ib-cr, responsible for low-level resistance both to fluoroquinolo-

TABLE 1 Characteristics of colR-KPC3-KP isolates and genes associated with antimicrobial resistancea

Isolate

Isolation date

(day/mo/yr) Day

MLST

ST

Gene(s) associated with antimicrobial resistance

Plasmid typeColistin Aminoglycoside Beta-lactam Fluoroquinolone

Trimethoprim-

sulfamethoxazole

1000-pmrBΔ 25/09/2014 1 512 pmrB

Δ386–402

aph(3’)-Ia, aadA2,

aac(6’)-Ib, aac(6’)Ib-cr

blaKPC-3,

blaOXA-9,

blaSHV-11

oqxA, oqxB,

aac(6’)Ib-cr

sul1, dfrA12 pKpQIL, pIncX3

1041-mcr 03/11/2014 40 512 mcr1.2 aph(3’)-Ia, aadA2,

aac(6’)-Ib: aac(6’)Ib-cr,

aac(3)-Iid, aadA5,

strA, strB

blaKPC-3,

blaOXA-9,

blaSHV-11

oqxA, oqxB,

aac(6’)Ib-cr

sul1, sul2,

dfrA12

pKpQIL, pIncX4,

pIncQ, pIncX3

1074-mcr/

pIncX3Δ

01/12/2014 67 512 mcr1.2 aph(3’)-Ia, aadA2,

aac(6’)-Ib, aac(6’)Ib-cr,

aac(3)-Iid, aadA5,

strA, strB

blaKPC-3,

blaOXA-9,

blaSHV-11

oqxA, oqxB,

aac(6’)Ib-cr

sul1, sul2,

dfrA12

pKpQIL, pIncX4,

pIncQ

1140-mcr 25/09/2015 365 512 mcr1.2 aph(3’)-Ia, aadA2,

aac(6’)-Ib: aac(6’)Ib-cr,

aac(3)-Iid, aadA5,

strA, strB

blaKPC-3,

blaOXA-9,

blaSHV-11

oqxA, oqxB,

aac(6’)Ib-cr

sul1, sul2,

dfrA12

pKpQIL pIncX4,

pIncQ

1303-colS 37 blaSHV-11
aAll isolates were recovered from rectal swab samples.
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nes and to aminoglycosides, was detected. In isolates 1041-mcr, 1074-mcr/pIncX3Δ, and

1140-mcr, other genes implicated in aminoglycoside resistance were found, in partic-

ular, the aminoglycoside acetyltransferase genes aac(3)-IId and aadA5 and the amino-

glycoside phosphotransferase genes strA and strB. The aminoglycoside resistance genes

strAB and the gene sul2, involved in trimethoprim-sulfamethoxazole resistance, were

localized on the newly acquired pIncQ-AOUP plasmid (�9 kbp) (Fig. 1C). Both pIncQ-

AOUP and pIncX4-AOUP were newly acquired in isolates 1041-mcr, 1074-mcr/pIncX3Δ,

and 1140-mcr. Plasmid pIncX3-AOUP was found in isolates 1000-pmrBΔ and 1041-mcr

and was subsequently lost. The patterns of susceptibility to antibiotics are presented in

Table 2. All four isolates had MICs for colistin of �8 mg/liter and were resistant to

meropenem (MIC � 32 mg/liter) and ertapenem (MIC � 1 mg/liter). The susceptibility

to imipenem was intermediate (MIC � 8 mg/liter) for isolate 1000-pmrBΔ and resistant

(MIC � 16 mg/liter) for the other three isolates. Isolate 1000-pmrBΔ was susceptible to

fosfomycin, gentamicin, and tigecycline. Isolates 1041-mcr, 1074-mcr/pIncX3Δ, and

1140-mcr were also susceptible to fosfomycin and tigecycline but resistant to genta-

micin, with MIC values being above 4 mg/liter.

wgMLST analysis. Assemblies of the reads of isolates 1000-pmrBΔ, 1041-mcr, and

1074-mcr/pIncX3Δ resulted in draft genomes of 110 contigs and 5,701,465 bp, 89

contigs and 5,605,594 bp, and 95 contigs and 5,565,702 bp, respectively. The colR-

KPC3-KP strains analyzed in the present study belonged to sequence type 512 (ST512).

FIG 1 Comparison of the genomes of the pIncX4-AOUP plasmids (A), pKpQIL-AOUP plasmids (B), and pIncQ-AOUP plasmids (C) in colR-KPC3-KP isolates. Isolate

1000-pmrBΔ was collected in September 2014, isolate 1041-mcr was collected in November 2014, isolate 1074-mcr/pIncX3Δ was collected in December 2014,

and isolate 1140-mcr was collected in September 2015. The black outer ring represents the reference plasmid.
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These isolates, together with 30 Klebsiella pneumoniae isolates from patients from a

previous study (4), were selected for comparison by whole-genome multilocus se-

quence typing (wgMLST). The characteristics of the above-mentioned isolates are

summarized in Table S1 in the supplemental material. There were no allelic mismatches

between isolate 1000-pmrBΔ and isolate 1041-mcr, while there were two allelic mis-

matches between isolates 1041-mcr and 1074-mcr/pIncX3Δ, as shown in Fig. S1.

Overall, the four isolates were isogenic, with at most 4 out of 4,884 alleles being

different.

Growth curve analysis. The isolates 1000-pmrBΔ, 1041-mcr, 1074-mcr/pIncX3Δ, and

1303-colS were selected for growth experiments. Isolates 1000-pmrBΔ and 1041-mcr

showed no allelic mismatches by wgMLST; isolate 1041-mcr carried plasmid pIncX4-

AOUP harboring the mcr1.2 gene. The plasmid pIncX3-AOUP was not found in isolate

1074-mcr/pIncX3Δ. The growth curves of isolates 1000-pmrBΔ, 1041-mcr, and 1303-colS

were similar in the absence of colistin; isolate 1074-mcr/pIncX3Δ showed reduced

growth without colistin exposure. Colistin exposure altered the growth curves. As

shown in Fig. 2, exposure of isolate 1000-pmrBΔ at a colistin concentration of 0.125 mg/

liter increased the lag-phase time from 3 to 6 h. Isolates 1041-mcr and 1074-mcr/

pIncX3Δ showed a reduced fitness cost according to their lag-phase times compared to

the lag-phase time of isolate 1000-pmrBΔ at the same colistin concentration. Overall, at

colistin concentrations of 0.125 mg/liter, 0.25 mg/liter, 0.5 mg/liter, 1 mg/liter, 2 mg/

liter, 4 mg/liter, and 8 mg/liter, the lag phase of isolate 1000-pmrBΔ increased expo-

nentially (R2 � 0.9205), going from 3 to 21 h, and was significantly longer than that of

isolates 1041-mcr and 1074-mcr/pIncX3Δ (P � 0.05) (Fig. 3). No lag-phase differences

were found between isolates 1041-mcr and 1074-mcr/pIncX3Δ at colistin concentra-

tions of 0.125 mg/liter, 0.25 mg/liter, 0.5 mg/liter, 1 mg/liter, 2 mg/liter, 4 mg/liter, and

8 mg/liter. However, at a colistin concentration of 16 mg/liter, isolate 1041-mcr did not

grow.

We also performed the growth curves without cation adjustment (Fig. S2), and we

noticed reduced lag-phase times for all isolates at medium to high levels of colistin

exposure compared to those seen on the corresponding growth curves in experiments

performed using cation-adjusted Mueller-Hinton broth, most likely because colistin

loses its activity without cation adjustment.

We sequenced isolates 1041-mcr and 1074-mcr/pIncX3Δ after growth with colistin at

concentrations of 4 mg/liter and 8 mg/liter. For these isolates, no spontaneous nucle-

otide mutations in the genes mgrB, prmA, prmB, phoP, and phoQ compared to the

sequences before exposure were detected by whole-genome sequences analysis.

DISCUSSION

We describe the persistent carriage of the mcr-1.2 gene in the successful CP-KP

lineage MLST ST512, isolated from a patient in Italy. The acquisition of the plasmid

carrying mcr-1.2 occurred under gentamicin treatment and was probably triggered by

coselection of an associated plasmid carrying aminoglycoside resistance genes. This

case provided the opportunity to study the genuine evolution of resistance and

TABLE 2 Patterns of susceptibility to the antibiotics tested

Isolate

MIC (mg/liter)a

AMIKA AMC CFPM CTX CAZ COL ERTA FOS GN IMI MERO TZP TIG STX

1000-pmrBΔ �16 (R) �8 (R) �32 (R) �4 (R) �128 (R) �8 (R) �1 (R) �16 (S) �1 (S) 8 (I) 32 (R) �128 (R) 0.5 (S) �4 (R)

1041-mcr 16 (I) �8 (R) �32 (R) �4 (R) 64 (R) �8 (R) �1 (R) �16 (S) �4 (R) 16 (R) 32 (R) �128 (R) 0.5 (S) �4 (R)

1074-mcr/

pIncX3Δ

�16 (R) �8 (R) �32 (R) �4 (R) �128 (R) �8 (R) �1 (R) �16 (S) �4 (R) 16 (R) 32 (R) �128 (R) 0.5 (S) �4 (R)

1303-colS �4 (S) 8 (S) 2 (S) 0.12 (S) 0.25 (S) 0.12 (S) �1 (R) NT NT 2 (S) 2 (S) 4 (S) 0.5 (S) 2 (S)

1140-mcr �16 (R) �8 (R) �32 (R) �4 (R) �128 (R) �8 (R) �1 (R) �16 (S) �4 (R) 16 (R) 32 (R) �128 (R) 0.25 (S) �4 (R)

aAMIKA, amikacin; AMC, amoxicillin-clavulanic acid; CFPM, cefepime; CTX, cefotaxime; CAZ, ceftazidime; COL, colistin; ERTA, ertapenem; FOS, fosfomycin; GN,

gentamicin; IMI, imipenem; MERO, meropenem; TZP, piperacillin-tazobactam; TIG, tigecycline; STX, trimethoprim-sulfamethoxazole; NT, not tested. The designations in

parentheses indicate that the isolate was intermediate (I), resistant (R), or susceptible (S).
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FIG 2 Growth curve experiments with isolates 1000-pmrBΔ, 1041-mcr, and 1074-mcr/pIncX3Δ. The mean and bandwidth of the growth of the

three replicates measured every 30 min are presented. Without colistin exposure, isolate 1000-pmrBΔ, collected in September 2014, and isolate

(Continued on next page)
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compare the fitness costs of different resistance mechanisms under colistin exposure in

isogenic isolates.

In Europe, the mcr-1 gene has been identified mainly in animal samples but rarely

in human samples. Previous studies described the prevalence of mcr-1 in animals,

ranging from 0.5% to 13.5% (12). The oldest isolate reported dates back to 2005 and

was an Escherichia coli strain from a calf in France (13). Human isolates have sporadically

been reported from the Netherlands (14), Spain (15), England (16), Switzerland (17), and

Italy (18). The majority of the infections are caused by E. coli and are related to the

gastrointestinal tract. In addition, wound and bloodstream infections have also been

reported (19).

Recent reports show the presence of mcr genes in carbapenemase-producing

Enterobacteriaceae. The combination of blaKPC and mcr-1 has been described in an

isolate from a German patient: a KPC-2-producing E. coli ST362 isolate causing a foot

wound infection (19). Moreover, the interpatient spread of an E. coli isolate with the

combination of the carbapenemase ndm-5 and mcr-1 has been described in patients

from China (20). These reports underline the importance of surveillance for mcr-1 in

health care settings.

The genomic analysis presented in this study revealed that the first CP-KP isolate

had a mutated pmrB and that the subsequent isogenic isolates harboredmcr-1.2 but an

intact pmrB. The isolate harboring the mcr-1.2 gene showed reduced fitness costs

compared to those for the isolate carrying the mutated pmrB gene in the presence of

colistin concentrations that are reached in vivo (median concentration, 3.7 mg/liter; 5th

and 95th percentiles, 0.7 and 12.5 mg/liter, respectively) (21). Recently, Tietgen and

colleagues (22) showed that the expression ofmcr-1 is able to cause a fitness cost when

carried by expression vectors. We showed that in the absence of colistin, isolates

1000-pmrBΔ and 1041-mcr and the colistin-susceptible CP-KP isolate had similar growth

characteristics. The reduced growth costs of isolates 1041-mcr and 1074-mcr/pIncX3Δ

could be explained according to the Harrison and Brockhurst plasmid paradox (23):

even though plasmids represent a burden upon arrival in a new host, they also produce

FIG 2 Legend (Continued)

1041-mcr, collected in November 2014, had identical growth characteristics (P � 0.05). Isolate 1074-mcr/pIncX3Δ, collected in December 2014,

seemed to grow slower in the negative control, but following colistin exposure, both isolate 1041-mcr and isolate 1074-mcr/pIncX3Δ showed

a growth advantage compared to isolate 1000-pmrB�.

FIG 3 Analysis of the lag phase of isolates 1000-pmrBΔ, 1041-mcr, and 1074-mcr/pIncX3Δ. In the negative control, the leg phases of

the isolates were identical (P � 0.05), but the lag phase of isolate 1000-pmrBΔ increased exponentially following colistin exposure

(R2 � 0.92), going from 3 to 22 h in the presence of colistin concentrations ranging from 0 to 16 mg/liter.
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some benefits, improving the cost over time through compensatory mutations in the

plasmid and the host chromosome. Interestingly, we detected a mutated pmrB gene in

the first isolate, but the wild-type pmrB gene was found in subsequent isogenic isolates.

Attempts were made to look for possible pmrB recombination sites in the genomes

both on the chromosome and on mobile genetic elements. The region adjacent to the

17-nucleotide deletion in pmrB was investigated. The deleted region and several

nucleotides surrounding the deletion were found in the chromosome on two different

contigs; the first part was in the ppiB gene, coding for a cysteine tRNA ligase, and the

second part was in an untranslated region. Furthermore, the deleted region was found

on the pIncX3-AOUP plasmid; the first part was found in the parB gene, and the second

part was found in a transposase. Therefore, we cannot rule out with certainty the

possibility of the repair of pmrB by recombination events, but it seems unlikely.

Conceivably, undetected clonal variants with an intact pmrB gene were already present

in the first culture and acquired the mcr-1.2-carrying plasmid later on.

The origin of the colR-KPC3-KP strain harboring mcr-1.2 remains unknown. Genta-

micin therapy might have coselected these multidrug-resistant bacteria, as shown also

by the acquisition of the plasmid pIncQ-AOUP. The plasmid pIncQ-AOUP is a noncon-

jugative broad-host-range plasmid conferring gentamicin resistance. Both pIncQ-AOUP

and pIncX4-AOUP were newly acquired. These are coresident plasmids: pIncX4-AOUP

provides the conjugative system for the mobilization of the pIncQ-AOUP plasmid (24).

The coresidency of these plasmids may explain their selective advantage under gen-

tamicin pressure, even though the patient was not under colistin treatment when

plasmid pIncX4-AOUP was acquired. The source of these plasmids is unknown. Farm

animals may be an important reservoir of the mcr-carrying plasmids, since their

prevalence is common in animals and retail meat but rare in humans (25). The

nosocomial dissemination of mcr-carrying plasmids might also be taken into consider-

ation in our case. However, this seems less likely, since the molecular evaluation of 30

clinical isolates of Klebsiella pneumoniae collected at the hospital during 2015 and 2016

revealed no other strains harboring mcr-1.2, while the most common mutation asso-

ciated with resistance to colistin affected the mgrB gene (4).

In conclusion, our study showed a successful prolonged human colonization by a

colR-KPC3-KP isolate harboring mcr-1.2. The coselection of resistance plasmids under

antibiotic therapy has contributed to the maintenance of this microorganism through

the acquisition of new resistance genes. The isolates 1041-mcr and 1074-mcr/pIncX3Δ

showed reduced fitness costs compared to those of the mutated pmrBΔ isolate. Both

coselection and the reduced fitness costs of the resistance mediated by plasmids may

contribute to the ability of the microorganism to persist despite antibiotic treatment.

Therefore, it is important to prevent the spread of mcr-carrying plasmids and their

coresiding multiresistance plasmids.

MATERIALS AND METHODS

Culture and characterization of isolates. In a previously characterized library of 30 CP-KP isolates,

collected between 2014 and 2015 in the Azienda Ospedaliero-Universitaria Pisana, deposited at the

European Nucleotide Archive (BioProject accession number PRJEB19808), we identified amcr-1.2-positive

strain (isolate 1140-mcr), which was isolated in September 2015 from a pediatric hematology patient who

was frequently hospitalized at the Azienda Ospedaliero-Universitaria Pisana in Pisa, Italy. We set out to

perform a retrospective investigation of the microbiological results for this patient from 2014 to 2017 and

sequenced all colR-KPC3-KP isolates.

Over this period, in routine diagnostics, rectal swab specimens were cultured on Chapman agar,

Sabouraud agar, and MacConkey agar (Thermo Fisher Scientific, Oxoid) supplemented with meropenem

disks (10 �g; Bio-Rad) and incubated at 37°C for 24 h. Colonies suspected to be CP-KPs were identified

using a matrix-assisted laser desorption ionization–time of flight mass spectrometer (MALDI-TOF MS;

Bruker Daltonics, Bremen, Germany). Antimicrobial susceptibility tests were performed using a broth

microdilution assay (SensiTitre; Thermo Fisher Scientific). The MIC results were interpreted using EUCAST

guidelines (v5.0).

Genome assembly and analysis. The colR-KPC3-KP colonies were stored in brain heart infusion

broth (BHIB) and 10% glycerol at �80°C for DNA extraction. Total genomic DNA was extracted using an

UltraClean microbial DNA isolation kit (MoBio Laboratories), according to the manufacturer’s instructions.

The concentration and purity of the extracted DNA were determined by use of a Qubit (v2.0) fluorometer

and a double-stranded DNA BR assay kit (Life Technologies). The DNA library was prepared using a
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Nextera XT library preparation kit (v01; Illumina), according to the manufacturer’s instructions, and then

run on a MiSeq system (Illumina) to generate paired-end 250-bp reads. De novo assembly was performed

by use of the CLC Genomics Workbench (v9.5.2) (Qiagen) after quality trimming (quality score [Qs] � 20).

Multilocus sequence types were assessed using SeqSphere (v3.4.0) software (Ridom GmbH). An ad hoc

scheme based on the core and acquired genomes was created using SeqSphere software. A minimum-

spanning tree based on allelic mismatch (4,884 columns) was constructed. We preferred this whole-

genome MLST scheme over the core genome MLST to achieve a higher discriminative power in

distinguishing the patient’s isolates from the clonally related isolates of the ongoing outbreak with

KPC-3-producing K. pneumoniae in Italy. The assembled genomes were uploaded to web tools called

ResFinder (v2.1) (26) to identify acquired resistance genes and PlasmidFinder (v1.3) (27) to detect the

replicons of the plasmids. The DNA sequences of mgrB (GenBank accession number KF852760),

phoQ (GenBank accession number CP003200.1; nucleotides c2077641 to 2076175), phoP (GenBank

accession number NC_016845.1; nucleotides c2078312 to 2077641), pmrA (GenBank accession number

HG794234.1; nucleotides 3372 to 4043), and pmrB (HG794234.1; nucleotides 2271 to 3368) were used as

references for detecting gene mutations associated with colistin resistance. Provean online software (28)

was used to predict whether an amino acid substitution had an impact on the biological function of the

proteins. The contigs of the plasmid sequences of interest, detected by PlasmidFinder, were manually

reconstructed and analyzed using the Artemis comparison tool (ACT) (29) and related tools. Plasmids

were mapped against complete reference sequences of pRSF1010_SL1344 (GenBank accession number

HE654726), pKpQIL-10 (GenBank accession number KJ146687), pNDM_MGR194 (GenBank accession

number NC_022740), and pMCR1.2-IT (GenBank accession number KX236309). The BLAST Ring Image

Generator (BRIG) was used to display plasmid sequence comparisons (30).

Growth curve experiments. Overall, 162 growth curves were analyzed, using an HB&L instrument

(Alifax S.r.l.), for isolates 1000-pmrBΔ, 1041-mcr, and 1074-mcr/pIncX3Δ. The colistin-susceptible K.

pneumoniae isolate 1303-colS, from an unrelated patient, was used as a control. The instrument is

certified to assess growth curves based on a light-scattering technique that reliably detects microbial

growth in fluid samples. It calculates real-time growth curves and bacterial counts (in numbers of CFU

per milliliter) following a patented algorithm (31). Growth curves were performed off-label in triplicate

and with different concentrations of colistin sulfate (0.125 mg/liter, 0.25 mg/liter, 0.5 mg/liter, 1 mg/liter,

2 mg/liter, 4 mg/liter, 8 mg/liter, 16 mg/liter; Discovery Fine Chemicals) in cation-adjusted Mueller-Hinton

broth (Merlin). The growth curves were also performed without cation adjustment. For each strain, a 0.5

McFarland suspension was prepared, and then serial dilutions were performed to obtain an initial

inoculum of 5 � 105 CFU/ml. The exact inocula were confirmed by plating the serial dilutions of the

cultures. After reading of a blank to set the analytical value of 0, the scattering units (refracted light) were

measured every 5 min for 24 h at 37°C, detecting only viable, replicating bacteria. Negative-control

curves, performed without colistin sulfate, were performed and used as comparators. Isolates 1041-mcr

and 1074-mcr/pIncX3Δ were assessed for spontaneous mutations in pmrB, mgrB, phoP, phoQ, and prmA

by whole-genome sequencing after growth in cation-adjusted Mueller-Hinton broth including 4 mg/liter

and 8 mg/liter colistin for 24 h.

Data availability. The sequences of the isolates determined in this study are available from the

European Nucleotide Archive under study accession number PRJEB25114.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/

mSphere.00551-19.

FIG S1, JPG file, 0.2 MB.

FIG S2, JPG file, 0.2 MB.

TABLE S1, DOCX file, 0.02 MB.
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