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Abstract: The development of novel regenerative technologies based on the implementation of natu-
ral extracellular matrix (ECM), or individual components of ECM combined with multifunctional
nanomaterials such as graphene oxide and reduced graphene oxide, has demonstrated remarkable
results in wound healing and tissue engineering. However, the synthesis of these nanocomposites in-
volves great challenges related to maintaining the biocompatibility with a simultaneous improvement
in their functionalities. Based on that, in this research we developed novel nanoengineered ECM-
scaffolds formed by mixing small intestinal submucosa (SIS) with graphene oxide (GO)/reduced
graphene oxide (rGO) to improve electrical conductivity while maintaining remarkable biocompatibil-
ity. For this, decellularized SIS was combined with GO to form the scaffold precursor for subsequent
lyophilization, chemically crosslinking and in situ reduction. The obtained GO and rGO were charac-
terized via Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric
analysis (TGA), X-ray diffraction (XRD), electrical conductivity testing and atomic force microscopy
(AFM). The results confirm the suitable synthesis of GO, the effective reduction to rGO and the signifi-
cant increase in the electrical conductivity (more than four orders of magnitude higher than bare GO).
In addition, the graphene oxide/reduced graphene oxide-SIS scaffolds were characterized via Raman
spectroscopy, FTIR, TGA, SEM, porosity assay (higher than 97.5% in all cases) and protein secondary
structural analysis. Moreover, the biocompatibility of scaffolds was studied by standardized assays
of hemolysis activity (less than 0.5%), platelet activation and deposition, and cell viability in Vero,
HaCat and HFF-1 cells (higher than 90% for all evaluated cell lines on the different scaffolds). The
obtained results confirm the remarkable biocompatibility, as supported by high hemocompatibility,
low cytotoxicity and no negative impact on platelet activation and deposition. Finally, structural
characteristics such as pore size and interconnectivity as well as superior cell attachment abilities
also corroborated the potential of the developed nanoengineered ECM-scaffolds as a multifunctional
nanoplatform for application in regenerative medicine and tissue engineering.

Keywords: extracellular matrix; graphene oxide; reduced graphene oxide; electrostimulation therapy;
wound healing; conductive scaffolds; tissue engineering; regenerative medicine

1. Introduction

The electrophysiological characteristics of cells is widely used to modify cellular activ-
ity [1,2]. The great knowledge around the influence of electrical fields in cellular behavior
has allowed for the development of a great variety of therapies based on the application of
external currents to stimulate cells, thereby generating different types of responses. For
example, several studies have reported that cell growth, cell migration, wound healing,
tissue regeneration, cell differentiation and membrane permeabilization were affected by
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the presence of exogenous electrical fields or the application of electrical stimulation that
simulate physiological currents [1–3]. Due to the relation between the application of electri-
cal fields and wound healing and tissue regeneration, an increasing number of studies have
shown the development of innovative technologies based on combining both traditional
acellular naturally derived and biosynthetic polymeric scaffolds with electrostimulation
therapy [2,4,5]. This has attracted significant interest in the application of these combined
technologies on the treatment of chronic wounds.

Chronic wounds are a specific type of wound that fail to progress through the normal
reparative healing process and instead remain unhealed for more than 12 weeks [6]. These
wounds are generally comorbidities of some increasingly prevalent pathologies such as
diabetes mellitus, venous deficiencies, arterial perfusion, unrelieved pressure and obesity [7,8].
Currently, chronic wounds are a strongly relevant health problem with an increasing
incidence that negatively impact the quality life of millions of people worldwide [7]. In
the USA alone, this pathology represents an annual burden to the healthcare system of
about USD 30 billion, which is mainly due to long periods of health care management and
continuous application of palliative traditional therapies that are insufficient for solving
the problem [7,8]. As a result, it is crucial to develop alternative therapies that go beyond
palliative care and provide a long-lasting solution.

The emerging scaffolds/electrostimulation technologies are shown as very promising
alternatives for the treatment of this kind of pathology [9]. This is because these technolo-
gies combine two different therapies that separately have shown important improvements
in the treatment of difficult-to-manage wounds [3,4,6,10]. The first component of the ther-
apy relies on scaffolds based on natural and biosynthetic extracellular matrices (ECMs) or
individual components of ECMs, which have demonstrated significant improvement in
tissue regeneration and healing of chronic wounds [10–12]. These special types of scaffolds
are widely used due to their capability to generate a natural base for the cell migration,
growth and proliferation [1,10]. The second component is electrostimulation, which re-
quires the use of different biocompatible materials capable of conducting electrical currents.
Some of the materials that fulfill these requisites include carbon-based materials [9], met-
als and metal oxide nanoparticles [2], and conductive polymers [13]. Electrostimulation
has shown a powerful influence in the healing process by controlling the innate cellular
electrophysiological characteristics [1,3,14].

Among the different materials used to develop ECM natural scaffolds, the porcine
small intestinal submucosa (SIS) and porcine urinary bladder matrix have shown promising
results, specifically in the treatment of venous ulcers and diabetic foot ulcers that are
some of the most common wounds of difficult management [10]. In addition, one of
the most relevant materials used to equip ECM scaffolds with the capacity to conduct
electrical currents is the two-dimensional carbon nanomaterial graphene. Graphene is a
two-dimensional monolayer of sp2 hybrid-bonded carbon atoms perfectly organized in
a honeycomb structure [9]. This material demonstrates excellent electrical and thermal
conductivities, high mechanical strength and remarkable optical properties [15,16].

This work is therefore dedicated to the development and characterization of innovative
porcine small intestinal submucosa (SIS) and reduced graphene (rGO)/graphene oxide (GO)
scaffolds as potential nanoplatforms for chronic wound healing and tissue engineering.

2. Materials and Methods
2.1. Materials

Sodium hypochlorite (10%), hydrogen peroxide (30%), sulfuric acid (50%), phos-
phoric acid (25%), hydrochloric acid (25%), ultra-pure ethanol (96%) and glacial acetic
acid (99.5%) were purchased from PanReac AppliChem (Barcelona, Spain). Graphite
flakes (99%), pepsin, N-[3-(dimethylamino)-propyl]-N’-ethylcarbodiimide hydrochloride
(EDC) (98%), N-hydroxysuccinimide (NHS) (98%), ascorbic acid (99%), sodium chloride
(99%), triton X-100, potassium permanganate (99%) and formaldehyde (36%) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified eagle’s medium
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(DMEM) and fetal bovine serum (FBS) were obtained from Biowest (Nuaillé, France). Peni-
cillin/streptomycin (P/S) was purchased from Lonza (Basel, Switzerland). Hoechst 33342,
Alexa Fluor 594 Phalloidin, LDH and alamar blue assay kits were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). Vero (ATCC® CCL-81), HaCat (ATCC® CCL-2404)
and HFF-1 (ATCC® SCRC-1041) cells were obtained from ATCC (St. Cloud, MN, USA).

2.2. SIS Obtention and Decellularization

SIS was obtained by mechanical removal of the tunica serosa, muscularis externa
and tunica mucosa layers from a porcine small intestine and subsequently decellularized
following the protocol reported by Sánchez-Palencia et al. [17]. Briefly, a decellularization
solution consisting of sodium hypochlorite and hydrogen peroxide was used followed by
PBS 1X and autoclaved type II water washes under constant stirring. The decellularized SIS
was dried at room temperature in a laminar flow hood; next, the dry SIS was pulverized
with a freeze-miller (6875 Freezer/Mill®, SPEX SamplePrep, Metuchen, NJ, USA) to obtain
the SIS scaffold precursor powder.

2.3. Graphene Oxide Synthesis

Graphene oxide was synthetized following the protocol previously described by
Marcano et al. [18]. Briefly, an acid solution consisting of sulfuric acid (90 mL) and phos-
phoric acid (10 mL) (9:1 ratio) was slowly added to 0.75 g of graphite flakes and 4.5 g of
potassium permanganate. Subsequently, the resulting solution was heated at 50 ◦C under
constant stirring for 12 h. Next, 150 mL of type I water ice cubes and 3 mL of hydrogen
peroxide (30%) were added to the solution. Then, the solution was sonicated for 5 min
(frequency 40 kHz, amplitude 38%), filtered by using a polyester fiber and centrifuged at
4000 rpm for 4 h. The supernatant was discarded, and the precipitated solid was resus-
pended in a wash solution made of 50 mL of type I water, 50 mL of extra pure ethanol
and 50 mL of hydrochloric acid (30%). The resulting solution was sonicated, filtered and
centrifuged using the conditions described above. This step was carried out three times.
After this, GO was resuspended in a second wash solution made of 75 mL of type I water
and 75 mL of extra pure ethanol, sonicated, filtered and centrifuged. Finally, GO was
washed 2 times with type I water, sonicated, filtered and centrifuged. GO was finally
lyophilized and stored at 4 ◦C.

2.4. SIS-rGO Scaffolds Fabrication

SIS powder was dissolved at 0.8% (w/v) in glacial acetic acid (0.5 M), pepsin
(0.1% w/v) and GO (0.5 mg/mL) type I water solution. The resulting solution was left
at room temperature and under constant agitation (500 rpm) for 48 h. SIS-GO scaffold
precursor was lyophilized at −45 ◦C and 0.140 mbar for 36 h to obtain completely dried
scaffolds. Next, the scaffolds were crosslinked by immersion in a 25 mM EDC and 25 mM
NHS ultra-pure ethanol solution for 24 h. The crosslinked scaffolds were washed 5 times
with type I water and, finally, lyophilized under the same conditions. To reduce the GO,
SIS-GO crosslinked scaffolds were immersed in 2% (w/v) ascorbic acid type I water so-
lution and left at 50 ◦C under constant agitation for 12 h [19]. Finally, SIS-rGO scaffolds
were washed 10 times with type I water and then they were lyophilized under the same
conditions. Scaffolds were sterilized via ethylene oxide and stored at 4 ◦C until further use.

2.5. GO, rGO and Scaffolds Characterization

GO and rGO were characterized by Raman spectroscopy using a XPlora Raman Horiba
confocal (Horiba Scientific, Kyoto, Japan). Fourier transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to determine
the correct synthesis, oxidation level, and the effectiveness of the reduction process. AFM
microscopic analysis was performed to analyze the GO structure using an MFP-3D-BIO
AFM (Asylum Research, Santa Barbara, CA, USA). Moreover, conductivity of GO and
rGO was determined by the four-point probe method using a S-302-4 Four Point Resis-
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tivity Probing Equipment (Signatone, Gilroy, CA, USA). SIS, crosslinked SIS, SIS-GO and
SIS-rGO scaffolds were characterized via Fourier transform infrared spectroscopy (FTIR)
and thermogravimetric analysis (TGA) (TA Instruments, New Castle, DE, USA). Infrared
spectra were recorded using an A250 FT-IR (Bruker, Germany) (4000–400 cm−1 range and
2 cm−1 spectral resolution). TGA analysis was performed by using a temperature ramp of
10 ◦C/min from 25 to 400 ◦C in a nitrogen atmosphere (gas flow: 100 mL/min). XRD analy-
sis was performed using a Malvern-Panalytical-Empyrean model (45 kV, 40 mA) (Malvern
Panalytical, Malvern, UK) at a range of 5–80◦. Scaffolds morphologies were analyzed by
microscopy image analysis of scanning electron microscope (SEM) micrographs Tescan
Lyra3 (TESCAN, Brno, Czech Republic).

2.6. Scaffolds Porosity

Porosity (π) was estimated by the liquid displacement method [20]. Briefly, each
scaffold was submerged in 3 mL (V1) of type I water and left for 5 min to allow water
absorption. Then, the new volume (V2) (V1+ volume of scaffold) was recorded. Finally,
liquid-impregnant scaffold was removed, and the remaining volume is V3. Porosity is
calculated according to π = (V1 − V3)/(V2 − V3).

2.7. Cell Viability in Vero, HaCat and HFF-1 Cells

Cell viability was evaluated via Alamar blue assay in Vero (ATCC® CCL-81, kidney
cells from African green monkey-Cercopithecus aethiops) HaCat (ATCC® CCL-2404, hu-
man skin keratinocytes-Homo sapiens) and HFF-1 cells (ATCC® SCRC-1041, human skin
fibroblast-Homo sapiens). For this, completely dry-sterile scaffolds (SIS, SIS-GO and SIS-rGO)
were put in a 24-well microplate and 200,000 cells suspended in 100 µL of supplemented
DMEM media were seeded on the top of each scaffold. Cell-Scaffolds were incubated at
37 ◦C, 5% CO2, for 3 h to allow cell adhesion and then 300 µL of supplemented DMEM
media was added to each well. Scaffolds were then incubated at 37 ◦C, 5% CO2 for 48 h.
After the incubation time, scaffolds were removed out of the culture microplate. Next,
scaffolds were transferred a 24 microplate with 270 µL of supplemented DMEM media
and 30 µL of the Alamar Blue dye and allowed to incubate for 3 h. The resulting 300 µL
solution was removed from each sample and then, the fluorescence was measured at room
temperature in a Horiba spectrofluorometer FuoroMax 4 (Horiba Scientific, Japan) using an
excitation and emission wavelength of 560 and 590 nm, respectively. A calibration curve
was performed to determine cell number by correlating a known cell number with the
fluorescent intensity of the solution.

2.8. Hemolysis Assay

Blood sample was obtained from a healthy human donator. Erythrocytes were col-
lected by centrifugation at 1800 rpm for 5 min, plasma was discarded and then erythrocytes
were washed 5 times with NaCl solution (0.9% (w/v)) and 1 time with PBS (1X). A total
of 1 mL of washed erythrocytes was suspended in 9 mL of PBS (1X) to prepare the stock
dispersion (cellular density of 700,000 erythrocytes/µL). Hemolysis induced by crosslinked
SIS scaffolds, SIS-GO and SIS-rGO scaffolds (5 mm diameter × 2 mm thickness) was by
direct contact and by contact with extracts of the materials. PBS (1X) was used as neg-
ative control and triton X-100 (10% (v/v)) as positive control. Briefly, to evaluate direct
contact hemolytic effect, scaffolds were suspended in 100 µL of PBS (1X) and then 100 µL
of erythrocytes solution was added and incubated at 37 ◦C, 5% CO2, for 1 h. Samples were
centrifuged at 1800 rpm for 5 min. 100 µL of each supernatant was placed in a 96-well
microplate and read at 450 nm in a microplate reader. On the other hand, extract hemolytic
effect was tested by suspending the scaffolds in 200 µL of PBS (1X) for 21 days and then
100 µL of the supernatants was placed in a 96-well microplate with 100 µL of erythrocytes
solution and incubated at 37 ◦C, 5% CO2, for 1 h. Finally, samples were centrifuged and
100 µL of each supernatant was read following the conditions described previously.
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2.9. Platelet Activation and Adhesion Assay

Platelets were obtained by centrifuging fresh human blood at 1000 rpm for 15 min
(blood sample was collected in sodium citrate vacutainer tubes to avoid aggregation).
Crosslinked SIS scaffolds, SIS-GO scaffolds and SIS-rGO scaffolds were tested. Scaffolds
(5 mm diameter × 2 mm thickness) were placed in a 96-well plate and then 100 µL of
platelet-rich plasma was added to each well. Samples were incubated at 37 ◦C, 5% CO2, for
30 min; then, scaffolds were washed 3 times with PBS 1X. Next, platelets were fixed with
4% (v/v) formaldehyde in PBS at 20 ◦C for 15 min. Samples were washed 3 more times with
PBS (1X) and then dehydrated in graded ethanol solutions (from 35% to 100%). Finally, the
samples were dried at room temperature and sputter-coated with gold. Platelet adhesion
was observed using an SEM Tescan Lyra3 (TESCAN, Brno, Czech Republic). Furthermore,
LDH assay was carried out to quantify the platelet activation. Briefly, scaffolds were seeded
with platelet-rich plasma as described previously; after 30 min of incubation, 10 µL of triton
X-100 (1% (v/v)) were added. Samples were centrifuged at 1800 rpm for 5 min and then
50 µL of the supernatant was extracted and placed in a 96-well plate with 50 µL of LDH
reagent. Platelet-rich plasma with triton X-100 (1% (v/v)) and platelet-rich plasma with
PBS (1X) were used as positive control and negative control, respectively. Finally, samples
were read in a microplate reader at 595 nm.

2.10. Cell Distribution and Morphology Analysis

Cell distribution and morphology into the scaffolds were analyzed by following the
protocol reported by Girão et al. [9]. Briefly, scaffolds with cylindrical dimensions 10 mm
(diameter) × 2 mm (thickness) were tested. First, the different samples were washed with
sterile culture media (DMEM) supplemented with 10% (v/v) of fetal bovine serum (FBS)
and 1% (v/v) of penicillin streptomycin for 15 min. The scaffolds were placed in a 24-well
plate (one scaffold in one well) and seeded with 100.000 Vero cells suspended in 100 µL
culture media. For this, cells were added to the top of the scaffolds and next, incubated
for 3 h at 37 ◦C and 5% CO2 to allow cell adhesion. After this, 100 µL of supplemented
culture media were added and, finally, incubated for 24 h under the same conditions. Cell
distribution and morphology were studied by fluorescence analysis. Briefly, cells were
fixed with formaldehyde 4% (v/v) for 10 min. Then, cell membranes were permeabilized
using triton X-100 (1% (v/v)) for 5 min. Scaffolds were washed with PBS (1X) to remove the
excess of Triton X-100 and formaldehyde. Cell nuclei were stained with Hoechst 33342 and
actin filaments with Phalloidin Alexa Fluor 594, incubated for 60 min at 4 ◦C, and finally
washed with PBS (1X). Finally, the scaffolds were immediately observed in an Olympus
FV1000 confocal microscope (Olympus, Tokyo, Japan), with 20× (0.75 NA, UPlanSApo)
and 60× (1.42 NA, oil PlanApo N). Images were taken with 350 nm and 540 nm excitation
wavelength and 470 nm and 565 nm emission wavelength. Image analysis was performed
in Fiji.

2.11. Statistical Analysis

All the obtained results are presented as mean ± standard deviation. Statistical
analysis was performing by using the software Graph Pad Prism V 6.01 software (Graph-
Pad Software, San Diego, CA, USA). Statistical comparisons were carried out employing
ANOVA followed by the Tukey’s Multiple Comparison test. Results with a p-value ≤ 0.05
(*) were considered statistically different. Symbol * corresponds to statistically significant
difference with a p-value in the range of 0.01 ≤ p-value ≤ 0.05, ** to statistically significant
difference with a p-value in the range of 0.001 ≤ p-value < 0.01, *** to p-value in the range
of 0.0001 ≤ p-value ≤ 0.001 and **** to p-value < 0.0001.

3. Results and Discussion
3.1. GO and rGO Characterization

The chemical structures of GO and rGO are shown in Figure 1A, where it is possible
to observe the predominant carboxyl, epoxy and hydroxyl functional of the as-synthesized
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GO. After reduction, a decrease in such groups is expected for rGO. Figure 1B shows the
resulting suspensions of GO and rGO in ethanol. GO suspension is dark brown to light
yellow depending on the concentration. After reduction, the color of the suspension turns
black (rGO suspension). These results agree well with the reported optical properties of
GO and rGO [21–23]. This optical change allows a qualitative verification of a structural
shift due to the reduction of the GO.
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Figure 1. Characterization of GO and rGO. (A) Schematic representation of the chemical structure
of GO and rGO. (B) GO/ultra−pure ethanol solution (1) and rGO/ultra−pure ethanol solution (2).
(C) Raman spectra (514 nm) of graphite, GO and rGO. (D) FTIR spectra of graphite, GO and rGO.
(E) TGA thermograms for graphite, GO and rGO. (F) XRD pattern of GO. (G) Electrical conductivity
of GO and rGO films. (H) GO and rGO films (deposited on glass slides).

Correct synthesis, high oxidation level and reduction of GO were confirmed by Raman,
FTIR, TGA and XRD analysis as shown in Figure 1C–F, respectively. Raman analysis was
performed to contrast the structure of GO after and before the reduction. Furthermore, the
Raman spectrum of graphite was also measured in order to determine structural changes
after the oxidation process (correct synthesis of GO). Figure 1C shows the Raman spectra of
graphite, GO and rGO. The spectrum of graphite shows a strong G band at 1570.8 cm−1 due
to the first-order scattering of E2g mode [21–23]. Graphite spectrum also presents a small D
band at 1341.7 cm−1 that is related to the presence of defects in the material and a 2D band
at 2705.1 cm−1 that is widely used to evaluate the c-axis orientation and the stacking order
of the graphite along the same axis [21]. GO spectrum shows two strong signals, G and D
bands, at 1588.9 and 1345.8 cm−1, which can be assigned to the sp2 and sp3 hybridizations
of carbon, respectively [24]. The G peak shifted to 1588.9 cm−1, most likely due to the
oxygenation of graphite [22], and a more intense D band appeared in response to the
reduction in size of in-plane sp2 domains (graphite). This can be attributed to the presence
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of defects and distortions of the sp2 domains generated by the complete oxidation of the
material [21,22]. The intensity of the 2D band decreases as the oxidation level increases,
which provides further evidence for the notion that the intensity shift in the 2D band of
GO compared to graphite is due to the presence of GO with a high oxidation level [21].
After the reduction of GO, the G band is shifted to a lower wave number (1580.6 cm−1),
which agrees well with previous research studies [24,25]. This change was attributed to
the recovery of the hexagonal network of carbon atoms with defects [22,26]. Structural
changes after reduction and oxidation were also studied by looking at the D/G intensity
ratio. The I(D)/I(G) ratio for GO corresponds to 1.04, which is most likely due to a high
oxidation level [21]. After reduction, the I(D)/I(G) ratio for rGO approached a value of 1.2.
This greater ratio generally indicates an increase in the number of small sp2 domains [27]
and can be a consequence of the increase in the D band intensity, which, in turn, can be
attributed to the large number of defects that are commonly present on the rGO surface [25].
In addition, the increase in the I(D)/I(G) ratio after reduction can be also due to an increase
in the degree of disorder in carbon-based materials, which is typically observed in the
reduction process [25]. Our findings agree well with previous reports on the synthesis
of GO with a high oxidation level. Moreover, the significant changes in the GO structure
confirmed that the reduction of GO to obtain rGO proceeded correctly.

Figure 1D shows the FTIR spectra of the GO, rGO and graphite. The GO spectrum
shows multiple peaks associated to oxygen-derived species [25]. This confirms the presence
of different functional groups such as carboxyl, epoxy, hydroxyl, and alkoxy on the surface
of GO. This, compared to the graphite precursor spectrum, confirms the correct oxidation
reaction [24]. The peaks at 1721 and 3400 cm−1 correspond to stretching vibrations of
the C=O and OH groups [24]. The peaks at 1226 and 1050 cm−1 can be assigned to the
stretching vibration of C-OH and the bending vibration of C-O, respectively [24]. The
peak at 1620 cm−1 correspond to C=C aromatic stretching vibration [25]. Due to the
reduction process, the rGO spectrum presents an important decrease in the number of
peaks associated with oxygen-derived species (Figure 1D). However, the presence of C=O
and C-O stretching vibrations in the rGO spectrum confirms the partial reduction of GO.

The thermal stability of GO, rGO and precursor graphite were evaluated by using
thermogravimetric analysis as shown in Figure 1E. The TGA thermogram of graphite
shows a high thermal stability up to 900 ◦C. The GO thermogram shows a first mass loss
(12%) at 100 ◦C, which is most likely due to the presence of bound water. This is followed
by an important weight loss (45.3%) at about 200 ◦C, which might be related to the removal
of oxygen-rich species [22,27,28]. This data provide further evidence of the high level of
oxidation of GO. In contrast, the first mass loss of rGO (100 ◦C) approached 4.6%, which
most likely corresponds to the removal of water. The decrease in weight loss for water
compared with the material prior to reduction is due to the high hydrophobicity of rGO [28].
After chemical reduction with ascorbic acid, the obtained rGO shows a second weight loss
of (21.6%) at 200 ◦C and might be due to the remaining oxygen-rich species. This weight
loss is higher than the previously reported for rGO [28], which can be explained by the
partial reduction of GO. Additionally, XRD pattern of GO present the characteristic peaks at
9.3◦ attributed to the (001) plane, and at 29.1◦ it corresponded to the (002) plane (Figure 1F).

In order to study the electrical conductivity of GO before and after the reduction, the
four-point probe method was used. Figure 1G shows the electrical conductivity (mS/m)
of GO and rGO films (Figure 1H). GO presents a very low electrical conductivity with an
average of 0.4 mS/m; this agrees well with the previously reported values of conductiv-
ity [29]. The low electrical conductivity of GO is due to its high oxidation level. As reported
elsewhere, the presence of multiple oxygen functional groups on the surface leads to an
important decrease in the conductivity [30]. After the reduction, electrical conductivity of
rGO was 3300 mS/m, which is more than 4 orders of magnitude higher than that of GO
(Figure 1G). This confirms that as the oxygen functional groups of GO decreased in content,
the electrical conductivity properties are significantly improved. However, the electrical
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conductivity of the obtained rGO is lower than previously reported values, which can be
attributed to the incomplete reduction process [29,30].

AFM analysis was carried out to characterize the topography of GO sheets deposited
on a SiO2 substrate. Figure 2A shows the AFM image of an aqueous solution of GO (Type I
water, 0.5 mg/mL). The height profile of two different sheets is presented in Figure 2D,E.
The results show the typical sheet-like morphology and it is possible to identify different
levels of stacking. In this regard, Figure 2B shows a low level while Figure 2C shows an
increased level. The average height of the obtained GO sheets corresponds to 1 nm, which
closely agrees with the previously reported thickness of GO sheets [21,27]. The stacking of
GO sheets is the result of aggregation or self-assembly during lyophilization [21].
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3.2. Scaffolds Characterization

To understand the interactions between GO and SIS and to establish the impact of
the in situ GO reduction on the scaffold properties, Raman, TGA and FTIR analysis were
carried out.

Figure 3A shows the Raman spectrum of SIS-rGO scaffolds, where two strong bands,
D (1348.6 cm−1) and G (1586.1 cm−1), are clearly visibly. The I(D)/I(G) ratio corresponds to
1.01, which agrees well with reported values for the in situ reduction of GO using ascorbic
acid on collagen scaffolds [19]. This result indicates the successful assembly of GO and the
correct in situ reduction. TGA analysis was used to evaluate the thermal stability of SIS,
crosslinked SIS, SIS-GO and SIS-rGO scaffolds (Figure 3B). Major thermal degradation of
collagen, the main component of SIS, occurs in the range of 300–400 ◦C [31–33]. Because
of this, the effect of crosslinking, GO conjugation and in situ reduction on the thermal
stability of collagen was then evaluated by analyzing TGA thermograms in the same
temperature range. First weight loss of all the samples occurs at 200 ◦C. The mean weight
loss in temperature range of interest, corresponded to 51.1% for SIS, 51.3% for crosslinked
SIS, 51.4% for SIS-GO, and 57.1% for SIS-rGO. Statistical analysis suggests that there is
no significant difference between the obtained results for all the scaffolds. Moreover,
thermograms for all the scaffolds were similar, thereby indicating that crosslinking, GO
conjugation and in situ reduction had no significant impact on the thermal stability of
collagen compared to pristine SIS scaffolds. These results agree well with the results
obtained by Kang et al. [31] and Lee et al. [33].
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Figure 3. Characterization of the scaffolds. (A) Raman spectra of SIS-rGO scaffold. (B) TGA and (C)
FTIR analysis of the developed nanocomposites. (D) Second derivative of the FTIR spectra in range
of the amide I band (1700−1600 cm−1).

Figure 3C,D show the FTIR and the second derivative analysis of SIS, crosslinked SIS,
SIS-GO and SIS-rGO scaffolds, respectively. FTIR spectra for all the scaffolds present a
peak at 3330 cm−1 that is attributed to N=H stretching vibration (Amide A). A peak was
also observed at 1655 cm−1, which is due to the C=O stretching vibration (Amide I), the
one at 1550 cm−1 to C–O and N−H combined bending vibration (Amide II) and that at
1250 cm−1 to C–N stretching vibration. Finally, N−H bending and C–C stretching (Amide
III) vibrations of collagen type I (main component of the scaffolds) were also identified [33].
It is important to note that the peak at 1640 cm−1 is not only related to the amide I band, but
also to the C=C and C=O (carbonyl) stretching vibrations of GO and rGO [9]. In addition,
the peak situated at 1240 cm−1 can be associated with the stretching vibration of the epoxy
group present in both GO and rGO [9]. All the FTIR spectra are very similar due to the
overlapping of the different peaks present on the SIS spectrum (related to collagen type I),
GO and rGO spectra. Second derivative analysis of the amide I band of the FTIR spectra
were conducted to determine possible changes in the secondary structure of collagen type
I protein (Figure 3D) [34]. No significant changes were detected, which indicated that
secondary structural changes in collagen were negligible after crosslinking, GO conjugation
and the final reduction step.

Microscopic features of the developed nanocomposites were studied via SEM.
Figure 4 shows SEM images of the different scaffolds before and after hydration. Pore
size in all the scaffolds is larger in the wet state than in the dried state. However, the
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pore size of crosslinked SIS and SIS-GO scaffolds after the hydration (38 ± 8 µm and
45 ± 11 µm, respectively) almost doubled with respect to the dried state (18 µm ± 5 µm and
19 µm ± 7 µm, respectively). This was not the case for rGO, where pore size after the hydra-
tion remained almost unchanged (dry 18 ± 4 µm, wet 23 ± 7 µm). The different scaffolds
exhibit similar pore sizes in the dry state; however, after hydration differences are quite
significant. This important discrepancy could be due to the different interactions between
the scaffolds and the water. Crosslinked SIS scaffolds have an important increase in pore
size as a result of its high hydrophilicity. This was also the case for the SIS-GO scaffolds,
which are rich in free-oxygen functional groups that might improve the interaction with the
water, thereby allowing them to absorb more water and consequently to have a significant
increase in pore size [32]. SIS-rGO scaffolds are, however, highly hydrophobic, mainly due
to the absence of polar groups on the surface of rGO [26]. This feature considerably limits
the interactions with the water, thereby preventing water absorption and consequently
leading to smaller changes in pore size. Additionally, images revealed that pores within the
scaffolds are well distributed and highly interconnected, which is an essential characteristic
for cell adhesion, migration and proliferation [32].
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Porosity of the scaffolds was studied by the liquid displacement method. Figure 5
shows that the porosities of the scaffolds are higher than 97%. However, there is a sta-
tistically significant difference between the SIS-rGO and the crosslinked SIS and SIS-GO
scaffolds. This result suggests that reductions in ascorbic acid and temperature are likely
to impact the porosity. Nevertheless, all the scaffolds exhibit a porosity that is sufficient
for proper cell distribution and migration as well as penetration of body fluids, which is
beneficial for increasing the amount of nutrients available to the cells [20].
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3.3. Scaffolds Biological Characterization

To obtain a first insight into the potential of the developed scaffolds for tissue re-
generation, cell proliferation and chronic wound healing applications, we carried out
hemolysis, cytocompatibility in Vero cells, and platelet interaction tests. Figure 6A,B show
the hemolytic activity of the different scaffolds as tested in both extracts of the materials
and by direct contact, respectively. All the results demonstrated an average hemolytic
below 1% for both measurements. According to the ISO standard 10993: 2009, the obtained
results confirmed the high hemocompatibility of the SIS scaffolds, as previously discussed
elsewhere [32,35]. This was also the case after conjugation of GO [32,36]. Figure 6C shows
the cytocompatibility of the nanocomposites in Vero, HaCat and HFF-1 cells. All the scaf-
folds showed cell viability higher than 90%, and in the case of crosslinked SIS and SIS-GO,
it even approached 100%. This is easily explainable by the superior biocompatibility of SIS,
and the enhanced cell attachment by interactions with the oxygen functional groups and
the cell membrane proteins [19]. The cell viability reduction for SIS-rGO can be attributed
to the high hydrophobicity of rGO (due to the absence of oxygen-rich functional groups),
which limits interactions with cell membrane proteins, and consequently the ability of cells
to attach [19]. This suggests that cells preferentially attach to highly hydrophilic surfaces, a
result that agrees well with the findings of Ramsay et al. [37]. Finally, Figure 6D,E show the
interaction of the scaffolds with human platelets through platelet deposition and activation
assays. Figure 6D indicates that there is no statistically significant difference between the
platelet deposition for crosslinked SIS, SIS-GO and SIS-rGO scaffolds. This implies that
both GO and rGO had no significant effect on the platelet deposition and aggregation over
the well-known effect of collagen [38]. Figure 6E shows SEM images of platelet adhesion
on the different scaffolds.
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Figure 6. Hemolytic effect of the nanocomposites tested by extracts (A) and direct contact (B).
(C) Cell viability of the different scaffolds in Vero, HaCat and HFF-1 cells (Alamar blue assay).
Platelet activation tested by LDH quantification assay (D) and SEM images of platelet deposition (E)
evaluated in crosslinked SIS, SIS-GO and SIS-rGO scaffolds. Red arrows show activated platelets.
Results with a p-value ≤ 0.05 (*) were considered statistically different. Symbol * corresponds to
statistically significant difference with a p-value in the range of 0.01 ≤ p-value ≤ 0.05, ** to statistically
significant difference with a p-value in the range of 0.001 ≤ p-value < 0.01, *** to p-value in the range
of 0.0001 ≤ p-value ≤ 0.001 and **** to p-value < 0.0001.

3.4. Cell Morphology and Distribution

Morphology of Vero cells was studied 24 h after seeding by confocal image analysis.
As shown in Figure 7A, Vero cells maintain their polygonal shape in all the different
scaffolds. Moreover, yellow arrows indicate the presence of cells strongly attached to
the scaffold, thereby indicating that the developed scaffolds are likely to support living
Vero cells and promote cell spreading and proliferation. However, SIS-rGO scaffolds
present some cells with a spherical shape (white arrows), thereby suggesting no proper
attachment in those areas, which can be attributed to the hydrophobicity imparted by the
rGO. Nevertheless, it appears that the fewer oxygen groups on the surface of rGO allow
for the successful interaction with Vero cells in some areas (Figure 7A, yellow arrows) [9].
Furthermore, cell nuclei are homogeneously distributed along the scaffolds in the xy plane,
which suggests a higher cell concentration surrounding the pores. Finally, Figure 7B shows
3D reconstructions of the scaffolds. It is possible to observe a uniform distribution of the
cells, however, due to the high optical density of the samples, observation in the z axis was
impeded at a depth higher than 70 µm from the surface.
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Figure 7. (A) Analysis of Vero cell morphology via confocal imaging. Yellow arrows present cells
that exposed the typical elongated morphology confirming strong adhesion to the matrix, and white
arrows expose cells with irregular round-shape morphology indicating poor adhesion to the matrix.
(B) Three-dimensional reconstruction of cell distribution of Vero cells in all the developed scaffolds
(confocal images 20×). Cell nuclei were stained with Hoechst 33342 (Blue) and actin filaments with
Alexa Fluor 594 Phalloidin (Red).

4. Conclusions

Multifunctional SIS-GO and SIS-rGO nanohybrid scaffolds were successfully devel-
oped in this study. The obtained results demonstrate the remarkable biocompatibility in
terms of hemocompatibility, negligible cytotoxicity (Vero, HaCat and HFF-1 cells) and
no negative impact on platelet activation and deposition. Additionally, structural char-
acteristics such as pore size, distribution, and interconnectivity, as well as their notable
cell attachment abilities, also corroborated the potential of the developed nanoengineered
scaffolds for their suitable application in several fields, such as regenerative medicine,
tissue engineering and wound healing. Future research should be focused on testing the
potential of the scaffolds in specific electrostimulation applications and relevant physio-
logical environments. Finally, it is very important to analyze the effect of the developed
scaffolds on cell proliferation and cytotoxicity during long-term stimulation experiments,
as well as in additional cell lines and eventually in vivo.
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