
Reduced Hardware Transactions: A New Approach to
Hybrid Transactional Memory

Alexander Matveev
Tel-Aviv University

matveeva@post.tau.ac.il

Nir Shavit
MIT and Tel-Aviv University
shanir@csail.mit.edu

ABSTRACT

For many years, the accepted wisdom has been that the
key to adoption of best-effort hardware transactions is to
guarantee progress by combining them with an all software
slow-path, to be taken if the hardware transactions fail re-
peatedly. However, all known generally applicable hybrid
transactional memory solutions suffer from a major draw-
back: the coordination with the software slow-path intro-
duces an unacceptably high instrumentation overhead into
the hardware transactions.

This paper overcomes the problem using a new approach
which we call reduced hardware (RH) transactions. Instead
of an all-software slow path, in RH transactions part of the
slow-path is executed using a smaller hardware transaction.
The purpose of this hardware component is not to speed up
the slow-path (though this is a side effect). Rather, using
it we are able to eliminate almost all of the instrumentation
from the common hardware fast-path, making it virtually as
fast as a pure hardware transaction. Moreover, the “mostly
software” slow-path is obstruction-free (no locks), allows ex-
ecution of long transactions and protected instructions that
may typically cause hardware transactions to fail, allows
complete concurrency between hardware and software trans-
actions, and uses the shorter hardware transactions only to
commit.

Finally, we show how to easily default to a mode allowing
an all-software slow-slow mode in case the “mostly software”
slow-path fails to commit.

Categories and Subject Descriptors

D.4.1 [Process Management]: Concurrency, Synchroniza-
tion, Multiprocessing, Threads

Keywords

Multicore Software, Hybrid Transactional Memory, Obstruction-
freedom

1. INTRODUCTION
IBM and Intel have recently announced hardware support

for best-effort hardware transactional memory (HTM) in up-
coming processors [16, 17]. Best-effort HTMs impose lim-
its on hardware transactions, but eliminate the overheads
associated with loads and stores in software transactional
memory (STM) implementations. Because it is possible for
HTM transactions to fail for various reasons, a hybrid trans-
actional memory (HyTM) approach has been studied exten-
sively in the literature. It supports a best effort attempt
to execute transactions in hardware, yet always falls back
to slower all-software transactions in order to provide better
progress guarantees and the ability to execute various sys-
tems calls and protected instructions that are not allowed in
hardware transactions.

The first HyTM [7, 10] algorithms supported concurrent
execution of hardware and software transactions by instru-
menting the hardware transactions’ shared reads and writes
to check for changes in the STM’s metadata. This approach,
which is the basis of all the generally applicable HyTM pro-
posals, imposes severe overheads on the hardware transac-
tion – the HyTM’s frequently executed fast-path.

Riegel et al. [13] provide an excellent survey of HyTM
algorithms to date, and the various proposals on how to
reduce the instrumentation overheads in the hardware fast-
path. There are three key proposed approaches, each with
its own limitations.

The first is Phased TM [11], in which transactions are
executed in phases, each of which is either all hardware or
all software. Phased TM performs well when all hardware
transactions are successful, but has poor performance if even
a single transaction needs to be executed in software, be-
cause it must switch all transactions to a slower all-software
mode of execution. Though this is a good approach for some
workloads, in general it is not clear how to overcome frequent
switches between phases.

The second approach, Hybrid Norec [5], is a hybrid ver-
sion of the efficient Norec STM [6]. In it, write transactions’
commits are executed sequentially and a global clock is used
to notify concurrent read transactions about the updates
to memory. The write commits trigger the necessary re-
validations and aborts of the concurrently executing trans-
actions. The great benefit the Norec HyTM scheme over
classic HyTM proposals is that no metadata per memory
location is required and instrumentation costs are reduced
significantly. However, as with the original Norec STM, scal-
ability is limited because the conflicts cannot be detected at
a sufficiently low granularity.

11

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SPAA’13, July 23–25, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

The third approach, by Riegel et al. [13], effectively re-
duces the instrumentation overhead of hardware transac-
tions in HyTM algorithms based on both the LSA [15] and
Norec [6] STMs. It does so by using non-speculative opera-
tions inside the hardware transactions. Unfortunately, these
operations are supported by AMD’s proposed ASF transac-
tional hardware [4] but are not supported in the best-effort
HTMs that IBM and Intel are bringing to the marketplace.

1.1 The Big “If” in Hybrid Transactional Mem-
ory

What will the cost of the instrumentation of the hardware
transactions in HyTM be in upcoming hardware?

Unfortunately, access to such processors is not available
yet. Thus, in an attempt to answer the question, we con-
ducted a number of “emulation”benchmarks on todays Intel
processors. We emulated an idealized HTM execution by
running virtual transactions that execute the same sets of
instructions but modify the shared data structure in a way
that does not affect the logic of the concurrently executing
transactions.

For example, to implement an update method of a red-
black tree as a transaction, the method searches for a node
with a key chosen from a given distribution and writes a
dummy value to this node. The dummy value is read by
concurrent readers, but it is not logically used for decisions
during the tree traversals. In this way, the transactions can
run correctly and not crash, and still pay the cache coher-
ence traffic that is associated with the writes. To make this
emulation more precise, we also introduce an abort ratio
similar to that known from past STM-based benchmarks.

What we found in our emulated benchmarks is that in a
traditional HyTM implementation, as opposed to the ideal
HTM, the overhead in hardware transactions of loading and
conditionally branching on the shared STM meta data, is
excessively high. This conforms with findings in prior work
that stated that the overhead of traditional HyTM imple-
mentations is high [5, 13]. As can be seen from the graph of
the red-black tree benchmark in Figure 1, with meta data
loading, testing and branching, the performance of an HTM
goes from 5-6x faster to being only 2x faster than a TL2
STM [8]. In other words, adding the meta data loads and
“if” branches to the HTM transactions eliminates much of
the benefits of running in hardware.

Obviously, the results of our benchmarks should be taken
with a large grain of salt, in particular because processors
with HTM support (such as Intel’s Haswell) will most likely
have caching and speculation paths that differ from those
we used, and yet, we believe our emulations have a chance
of proving true, at least qualitatively.

The conclusion to be taken from this data – consistent
with the arguments made by others (See [5, 13]) – is that
HyTM makes sense only if we can remove the meta-data ac-
cesses and conditional branches from as much of the HTM
code as possible. As we noted above, existing algorithms
that provide this on standard architectures, despite their
good performance on some benchmarks, suffer from scala-
bility issues or have overall limited applicability. Thus, the
question is if one can devise a broadly applicable HyTM
algorithm that will have reduced conditional branching and
meta data access along the hardware fast-path, and will thus
be scalable.

1.2 Reduced Hardware Transactions
This paper presents a new broadly applicable approach:

reduced hardware (RH) transactions. RH transactions al-
low an extensive reduction of the instrumentation overhead
of the hardware fast-path transactions on all upcoming ar-
chitectures, without impairing concurrency among hardware
and software transactions, and with various other scalabil-
ity benefits. We present the RH1 reduced hardware HyTM
protocol in the body of this paper, and provide the RH2
protocol in the appendix, to be viewed at the committee’s
discretion.

As we noted earlier, all known HyTMs have the best-effort
hardware fast-path default to a purely software slow-path
if they fail repeatedly due to hardware constraints (These
constraints can be the result of transactions that are sim-
ply too long, or because they call protected or OS related
instructions that are simply not allowed in HTM). In an
RH transaction protocol, instead of having the hardware
fast-path default to a pure software slow-path, it defaults
to a “mixed” path that consists mostly of software but also
includes a shorter best-effort hardware transaction during
the commit. Though others have proposed STMs that have
hardware elements [14, 2], unlike them, the goal here is not
to improve the slow-path software’s performance. Rather,
by introducing this shorter hardware transaction into the
software slow-path, we are able to remove most of the meta-
data accesses and conditional branches from the common
hardware fast-path, making it virtually as fast as pure hard-
ware.

Here, in a nutshell, is how the RH1 HyTM protocol works.
(We assume familiarity with global-time based STM algo-
rithms such as TL2 [8] or LSA [15]). The RH1 protocol has
a multi-level fallback mechanism: for any transaction it first
tries a pure hardware fast path; If this fails it tries a new
“mixed” slow-path, and if this fails, it tries an all software
slow-slow-path.

On the slow-path, RH1 runs a global-time based STM
transaction (such as TL2 [8] or TinySTM [12]) in which each
memory location has an associated time-stamp that will be
updated when written. The transaction body is executed
purely in software, collecting read and write sets, and post-
poning the actual data writes to the commit phase. The key
new element in RH1, is that the commit phase is executed
in a single speculative hardware transaction: the read and
write locations are validated based on an earlier read of the
global clock, and if successful, the actual writes are applied
to memory together with an updating of the time-stamps
based on a new read of the global clock. Unlike TL2 or
TinySTM, there are no locks (only time-stamps), and the
transaction is obstruction-free.

Perhaps surprisingly, this change in the slow-path allows
us to completely remove all of the testing and branching
in the hardware fast-path for both reads and writes. The
hardware fast-path transaction needs only to read the global
clock (which is updated only rarely by concurrent slow-path
transactions that happen to fail) and use it to update the
time-stamps of locations it writes. Intuitively, this suffices
because for any slow-path transaction, concurrent hardware
transactions will either see all the new values written, or
all the old ones, but will fail if they read both new and
old versions because this means they overlapped with the
slow-path’s hardware commit. The writing of the new time-

12

stamps on the fast path makes sure to fail inconsistent slow-
path transactions.

How likely to fail is the hardware part of the mixed slow-
path transaction? Because in the slow-path the transaction
body is executed purely in software, any system calls and
protected instructions that might have failed the original
hardware transaction can now complete in software before
the commit point. Moreover, the RH1 slow-path hardware
transaction simply validates the time-stamps of each loca-
tion in the read-set (not the data itself), and writes each
location in the write-set. The number of locations it ac-
cesses is thus linear in the size of the meta-data accessed,
which is typically much smaller than the number of data
locations accessed. For example, for the red-black tree, the
read-set time-stamp meta-data is 1/4 the size of the loca-
tions actually read, and we would thus expect the mixed
slow-path to accommodate transactions that are 4x longer
than the all-hardware fast-path.

If some slow-path transaction still fails to complete, we
show that it is easy to fall back briefly to a slow-slow-path
mode, in which concurrent hardware and software both run a
more complex protocol that allows software TL2 style trans-
actions. Alternately, once could default first to a mode of
running an alternative RH2 protocol which has a shorter
hardware transaction on the slow-path rather than a full
STM, and manages to avoid instrumenting reads in the fast-
path hardware transactions. We note that in our slow-path
and slow-slow-path we have not added an implicit privatiza-
tion mechanism (see for example [1]) which would be neces-
sary in unmanaged environments, and leave this for future
work.

In summary, the RH1 protocol allows virtually uninstru-
mented hardware transactions and mixed hardware-software
slow-path transactions that (1) execute the transaction body
fully in software (2), significantly extend the length of the
transaction, (3) run concurrently with hardware fast-path
transactions, and (4) provide obstruction-free progress guar-
antees. Our emulation results suggest that the RH1 proto-
col performs as well as pure HTM transactions on a variety
of benchmarks including red-black trees, hash-tables, and
linked lists, spanning the parallelism and transaction-length
range.

2. REDUCED HARDWARE TRANSACTIONS
We begin with an overview of our obstruction-free RH1

hybrid transactional memory protocol.

2.1 RH1 Algorithm Overview
Our algorithm is a variation of the TL2 or LSA-style STM

algorithms [8, 15], and we will assume the reader’s familiar-
ity with these algorithms. In a similar way to TL2, the
shared memory range is divided into logical stripes (parti-
tions), each with an associated metadata entry. The soft-
ware and hardware transactions communicate by inspecting
and updating the metadata entries for the memory loca-
tions they read and write. In our hybrid TM every transac-
tion has a pure hardware fast-path implementation, a mostly
software slow-path implementation that uses a shorter hard-
ware transaction for its commit protocol, and an all software
slow-slow-path in case both of the others fail repeatedly.

Transactions must maintain a consistent snapshot of the
locations read during their execution. To this end a global
version clock is introduced, used by both fast and slow-

path transactions to update local version time-stamps upon
writing. Slow-path transactions identify conflicts by read-
ing this shared global version clock on start, and comparing
it against the stripe version for every location read. If a
location is overwritten after a transaction started, then its
timestamp will reflect this causing the transaction to abort,
and otherwise the locations read form a consistent snapshot.
In TL2 the transaction body is executed collecting a read set
and a write set, then validating the time-stamps of all the
locations in these sets, and writing the new values with in-
creased time stamps. The TL2 software commit is executed
after taking locks on all locations to be updated, but one of
the advantages of the scheme here is that we will not need
them.

Now, to achieve our goal of making the fast-path hard-
ware transactions execute at hardware speed, we make two
observations about a TL2 style Hybrid protocol executed in
both hardware and software modes.

The first observation is that if we execute all the commit-
time writes of the slow-path in a single hardware transac-
tion, then in order to be consistent the fast-path hardware
transaction does not need to do any testing of locations it
accesses: it will either see all of them or none of them, since
if it sees only part of them then the other transaction must
have written concurrently and the hardware transaction will
have a cache invalidation and abort.

The second observation is that if we have the hardware
transaction update the time-stamps of the locations it writes
using the latest value of the global version clock, then it will
cause any concurrent software transaction that reads these
locations to fail its commit time validation of the timestamps
of its read and write sets.

There is one little caveat to this simple approach. The
hardware transaction might manage to slip in the middle of
the commit and write immediately after a successful valida-
tion and before all the updated writes are executed atomi-
cally in hardware. Traditionally, as in TL2 or TinySTM, this
is prevented by holding locks on the locations to be written.
In RH1 we do not wish to use locks since they would have to
be updated also in the hardware transaction, introducing an
overhead. Instead, the solution is to have the validation and
the write-back of the write-set values be part of one hard-
ware transaction. With this change, we are guaranteed that
the slow-path is also consistent. (In the appendix we show
the RH2 protocol that uses locks, requires only the writes
of data to be executed in a single hardware transaction, but
introduces the added overhead into the hardware path in
order to update the locks.).

2.2 The RH1 Algorithm Details
The global stripe version array holds the stripe versions

(time-stamps). Each thread is associated with a thread local
context that includes; tx version, the global version counter
value read on transaction start, read set, a buffer of the loca-
tions read, and a write set, a buffer of the locations written.
All of the versions are 64bit unsigned integers, initialized
to 0, and the read set with the write set can be any list
implementation.

The global version counter is manipulated by theGVRead()
and GVNext() methods, for reading and “advancing” it, and
we use the GV6 [8, 3] implementation that does not modify
the global counter on GVNext() calls, but only on transac-
tional aborts. This design choice avoids unnecessary aborts

13

Algorithm 1 RH1 fast-path transaction implementation

1: function RH1 FastPath start(ctx)
2: HTM Start()
3: ctx.next ver ← GVNext()
4: end function

5:
6: function RH1 FastPath write(ctx, addr, value)

⊲ update write location version
7: s index← get stripe index(addr)
8: stripe version array[s index]← ctx.next ver

⊲ write value to memory
9: store(addr, value)

10: end function

11:
12: function RH1 FastPath read(ctx, addr)

⊲ no instrumentation - simply read the location
13: return load(addr)
14: end function

15:
16: function RH1 FastPath commit(ctx)
17: HTM Commit()
18: end function

Algorithm 2 RH1 slow-path transaction implementation

1: function RH1 SlowPath start(ctx)
2: ctx.tx version← GVRead()
3: end function

4:
5: function RH1 SlowPath write(ctx, addr, value)

⊲ add to write-set
6: ctx.write set← ctx.write set ∪ {addr, value}
7: end function

8:
9: function RH1 SlowPath read(ctx, addr)

⊲ check if the location is in the write-set
10: if addr ∈ ctx.write set then
11: return the value from the write-set
12: end if

⊲ log the read
13: ctx.read set← ctx.read set ∪ {addr}

⊲ try to read the memory location
14: s index← get stripe index(addr)
15: ver before← stripe version array[s index]
16: value← load(addr)
17: ver after ← stripe version array[s index]
18: if ver before ≤ ctx.tx version and

ver before = ver after then

19: return value
20: else

21: stm abort(ctx)
22: end if

23: end function

24:

25: function RH1 SlowPath commit(ctx)
⊲ read-only transactions commit immediately

26: if ctx.write set is empty then

27: return

28: end if

⊲ a single hardware transaction that performs read-set
revalidation and write-back

29: HTM Start()
⊲ read-set revalidation

30: for addr ∈ ctx.read set do
31: s index← get stripe index(addr)
32: version← stripe version array[s index]
33: if version > ctx.tx version then

34: HTM Abort(ctx)
35: end if

36: end for

⊲ perform the actual writes and update the locations’
versions

37: next ver ← GVNext()
38: for addr, new value ∈ ctx.write set do
39: s index← get stripe index(addr)
40: stripe version array[s index]← next ver
41: store(addr, new value)
42: end for

43: HTM Commit()
44: if the HTM failed then

45: fallback to RH2
46: end if

47: end function

of the hardware transactions that call for GVNext() (spec-
ulate on the global clock), in order to install it to the write
locations.

Algorithm 1 shows the implementation of the RH1 fast-
path transaction. The fast-path starts by initiating a hard-
ware transaction (line 2). It performs the reads without any
instrumentation (line 13), and the writes with minimal in-
strumentation that only updates write location’s version on
every write (lines 6 - 8). On commit, it simply performs the
hardware transaction commit instruction (line 17).

Algorithm 2 shows the implementation of the RH1 slow-
path. The slow-path starts by reading the global version to
its local tx version variable (line 2). During the execution,
the writes are deferred to the commit by buffering them to a
local write-set (line 6), and scanning this write-set on every
read operation (lines 10-11). If the read location is not found
in the local write-set, then it is read directly from the mem-
ory, followed by a consistency check (lines 14-18). This check
verifies that the read location has not been overwritten since
the transaction has started, based on the following invariant:

If the read location has been already updated from the time
the current transaction started, then the location’s version
must be greater than the transaction’s version, tx version.
The fast-path and slow-path commits ensure this invariant.
Finally, the slow-path commit executes a single hardware
transaction that first performs the read-set revalidation, and
then the write-back, that includes making the actual mem-
ory updates and installing of the next global version to the
stripe versions of the write locations (lines 29 - 42).

2.3 RH1 Algorithm Limitations - Fallback to
RH2 and the all-software slow-slow-path

The RH1 slow-path commit executes a single hardware
transaction that performs the read-set revalidation and the
write-back. This hardware transaction may fail for vari-
ous reasons. In the common-case, the failure reason will be
contention, and some kind of contention management mech-
anism can be applied to handle the transactional retries.
In more rare situations, the hardware transaction may fail
due to some hardware limitation. Note, that this hardware

14

transaction accesses a predefined memory range (the meta-
data range), and it performs only simple memory reads and
writes. Therefore, on Intel architectures with RTM [17], the
most likely reason for a constant failure of this transaction
is a capacity overflow of the hardware reads buffer. In other
words, the transaction metadata cannot fit in the L1 cache
of the processor. To handle these cases, the algorithm per-
forms fallback to RH2 that we describe in Appendix A and
Appendix B.

RH2 reduces the HTM requirements of the slow-path trans-
actions by performing only the commit-time write-back in
a single hardware transaction (not including the read-set
revalidation). The core idea is to introduce locks to the fast-
path and the slow-path, and force the slow-path “expose” its
read-set for the duration of the slow-path commit.

Still, one might worry about the progress guarantees of
RH2, because the slow-path commit-time hardware transac-
tion that performs the write-back atomically may fail. This
would mean that the transaction’s write-set cannot be ac-
commodated inside the L1 cache of the processor, which is
unlikely for real-world transactions. We show that in any
case RH2 can easily fallback to a fully pure software slow-
path in which it performs an all software commit and the
fast-path transactions inspect the metadata for every read
and write, in a similar way to the standard hybrid TMs. The
switch to fully software RH2 slow-path aborts the current
RH2 fast-path transactions and restarts them in the RH2
fast-path-slow-read mode. We call this special mode the all
software slow-slow-path.

3. PERFORMANCE EVALUATION

!"!!#$!!%

&"!!#$!&%

'"!!#$!(%

'"&!#$!(%

)"!!#$!(%

)"&!#$!(%

*"!!#$!(%

*"&!#$!(%

'%)% +% (% ,% '!% ')% '+% '(% ',%)!%

-
.
/
0
1%
2
3
4
5
0
6
.
7
8
%

79:;45%.<%/=540>8%

?-@%

A/07>05>%?B-@%

-C)%

D?'%E08/%

!""#$%&'()$*&+),-+,$./012(($

3"4$56,-7&+)$

!""#$%&'()$*&+),-!""#$%&'()$*&+),-+,$./012(($

Figure 1: The graphs show the throughput of 100K
sized Red-Black Tree for 20% writes. In this test we
can see that the standard Hybrid TMs eliminate the
benefit that HTMs can achieve, because they instru-
ment the reads and writes of the hardware transac-
tions. In contrast, RH1 preserves the HTMs benefit
by avoiding hardware reads instrumentation.

We evaluate our hybrid TM by constructing a set of spe-
cial benchmarks that can be executed on current multicore
processors, that is, without the (yet unavailable) HTM sup-
port. Our results should thus be taken with a grain of salt,
and if you will, skeptic minds should treat our quantitative
results as being mostly qualitative.

Our idea is to emulate an HTM transaction execution by
running its logic and its reads and writes using plain loads

and stores. There is no speculation, and the cache perfor-
mance is obviously not the same as with an HTM mecha-
nism, but we believe that the transaction with plain reads
and writes is close to being a lower-bound on the perfor-
mance of a real HTM system; we would be surprised if an
all-hardware HTM, with its added functionality, can perform
better.

The problem with executing non-instrumented transac-
tions is that they cannot detect concurrent conflicts and
maintain a consistent snapshot of the locations read. As
a result, the non-instrumented transactions may crash and
get into deadlocks. To avoid this problem, for every bench-
mark, we constrain the set of possible executions to the ones
that will work correctly, and report the performance results
for these specific executions. We try to make these execu-
tions as realistic as possible by emulating the expected abort
ratio for every number of threads.

3.1 Red-Black Tree Emulation Overview
Our red-black tree implementation, the Constant Red-

Black Tree, must allow only executions that are correct with
non-instrumented transactions that simulate the HTM. We
populate the RB-Tree with 100K nodes, and execute concur-
rent operations that do not modify the structure of the tree.
Update operations only modify dummy variables inside the
tree’s nodes, while the lookups traverse the nodes and read
these dummy variables, paying the cache-coherence traffic
for their fake updates.

More precisely, we expose a read-only and a write oper-
ation: rb-lookup(key), and rb-update(key, value). The rb-
lookup(key) makes the usual tree traversal, looking for the
node with the given key, and making 10 dummy shared reads
per node visited. The rb-update(key, value) also executes the
usual tree traversal to find the node with the given key, and
then makes fake modifications. It writes a dummy value to
the dummy variable in the node it found and its two chil-
dren; it does not touch the pointers or the key value. To
make the modifications mimic tree rotations, the operation
makes the same fake modifications to triplets of nodes, going
up from the node it found to the root. The number of nodes
climbed up the tree is selected at random, so that getting to
the upper levels and the root will happen with diminishing
probability, as in a real tree implementation.

We estimate the expected abort ratio for a given execu-
tion by first executing with the usual TL2 STM implemen-
tation. Then, we force the same abort ratio for the hybrid
execution by aborting HTM transactions when they arrive
at the commit. Obviously the STM abort ratio is only an
estimate of the HTM abort ratio. Real HTM may add more
aborts because of the internal hardware implementation lim-
itations, or may reduce the number of aborts because of the
reduced transaction execution window (hardware transac-
tions execute faster); making them less vulnerable to con-
flict. Therefore, the STM abort ratio is probably somewhere
in the middle.

3.2 Red-Black Tree Emulation Execution
The benchmark first creates a 100K node red-black tree,

and then spawns the threads that execute the rb-lookup(key)
and rb-update(key, value) operations as transactions. We
vary the number of threads and the write ratio (the per-
centage of update transactions).

We execute the benchmarks on Intel 20-way Xeon E7-4870

15

!"#$""#%&$)*+,-'./,0'*+,-'12--,0*+,-'3/,4(0'*+,-' '/+7*+,-'%'()*12860'/./,0'*12860'/9:2/0*12860'/

;0(6)(/)*&?+@

C"#$""#%&$)*+,-'./,0'*+,-'12--,0*+,-'3/,4(0'*+,-' '/+7*+,-'%'()*12860'/./,0'*12860'/9:2/0*12860'/

;0(6)(/)*&?+@

%#%%,-%%.

#%%,-%.

"#%%,-%(.

"#*%,-%(.

+#%%,-%(.

+#*%,-%(.

&#%%,-%(.

". +. !. (.). "%. "+. "!. "(. "). +%.

/
0
12
3.
4
5
6
72
8
0
9
:
.

9;<=67.0>.1?762@:.

A/B.

C129@27@.AD/B.

/E+.

FA".G2:1.

FA".BHI."%.

FA".BHI."%%.

$""D*E2)'B*126B0(60*%FG+/''*

C"H*-80(I26B*

%#%%,-%%.

#%%,-%.

"#%%,-%(.

"#*%,-%(.

+#%%,-%(.

+#*%,-%(.

&#%%,-%(.

&#*%,-%(.

". +. !. (.). "%. "+. "!. "(. "). +%.

/
0
12
3.
4
5
6
72
8
0
9
:
.

9;<=67.0>.1?762@:.

A/B.

C129@27@.AD/B.

/E+.

FA".G2:1.

FA".BHI."%.

FA".BHI."%%.

$""D*E2)'B*126B0(60*%FG+/''*

!"H*-80(I26B*

%J. "%J. +%J. &%J. !%J. *%J. (%J. $%J.)%J. '%J. "%%J.

/E+.

C129@27@.AD/B.

FA".G2:1.

A/B.

F62@./H<6. K7H16./H<6. L0<<H1./H<6. M7HN216./H<6. O9167/P./H<6.

;,6J<'G+K/'()*3'/L2/-(6M'*F/'(N)2=6*

%#%%. %#*%. "#%%. "#*%. +#%%. +#*%. &#%%. &#*%.

".

/E+.

C129@27@.AD/B.

FA".G2:1.

A/B.

;,6J<'G+K/'()*;O'')8O*

%#%%. %#*%. "#%%. "#*%. +#%%. +#*%. &#%%. &#*%.

".

/E+.

C129@27@.AD/B.

FA".G2:1.

A/B.

;,6J<'G+K/'()*;O'')8O*

%J. "%J. +%J. &%J. !%J. *%J. (%J. $%J.)%J. '%J. "%%J.

/E+.

C129@27@.AD/B.

FA".G2:1.

A/B.

F62@./H<6. K7H16./H<6. L0<<H1./H<6. M7HN216./H<6. O9167/P./H<6.

;,6J<'G+K/'()*3'/L2/-(6M'*F/'(N)2=6*

Figure 2: The top graphs show the throughput of 100K sized Red-Black Tree for varying number of write
s; 20% and 80%. The middle and the bottom graphs show the single-thread speedup and performance
breakdown.

chip with 10 2.40GHz cores, each multiplexing 2 hardware
threads (HyperThreading). Each core has a private write-
back L1 and L2 caches and the L3 cache is shared.

The algorithms we benchmark are:

HTM Hardware Transactional Memory without any instru-
mentation: all of the transactions are executed with-
out instrumenting the reads and the writes. This rep-
resents the best performance that HTM can achieve.

Standard HyTM The Standard Hybrid Transactional Mem-
ory : This represents the best performance that can be
achieved by current state-of-the-art hybrid TMs [13].
To make the hybrid as fast as possible, we execute only
the hardware mode implementation, by executing and
retrying transactions only in hardware, without any
software fallback. We implement the hardware mode
transaction with instrumented read and write opera-
tions, and make the commit immediate without any
work. The hardware transaction reads and writes are
minimally instrumented; each read and write accesses
the STM metadata and creates a fake “if” condition
check on its contents. The “if” condition does not
change the execution logic; its only purpose is to show
the resulting instrumentation overheads that occur for
the standard hybrid TMs.

RH1 Mixed Reduced Hardware Transactions 1: Our new
hybrid TMwith hardware commit in the slow-path and
uninstrumented hardware reads. This implementation
uses both the all hardware fast-path and the mixed
hardware-software slow-path.

RH1 Fast This is the RH1 fast-path only. All of the aborts
are retried in hardware mode.

TL2 This is the usual TL2 STM implementation [8], that
uses a GV6 global clock.

The standard hybrid TM algorithms instrument the read
and write operations of the hardware transaction. In con-
trast, our new hybrid TM executes the reads with no instru-
mentation and the writes with an additional write. There-
fore, our first benchmark goal is to measure the cost of
adding instrumentation to the hardware operations. Fig-
ure 1 shows the penalties introduced by instrumenting the
reads of the hardware transactions. Since, we are only in-
terested in the hardware instrumentation overhead, this test
is not using the RH1 slow-path mode, and retries the hard-
ware transactions in fast-path mode only. The TL2 and
HTM graphs show the results for STM and HTM executions
respectively. We can see that HTM performs 5-6x better
than STM, and by adding instrumentation to the hardware
reads in Standard HyTM, a dramatic performance penalty
is introduced that makes HTM only 2x better than STM.
In contrast, RH1 Fast with the non-instrumented hardware
reads, executes approximately at the same speed as HTM,
and preserves the 5x speedup of the HTM.

Figure 2 shows the performance of our RH1 Mixed that
first tries the fast-path, and on abort, retries the transac-
tion in the slow-path. RH1 Fast, RH1 Mixed 10, and RH1
Mixed 100 mean that 0%, 10%, and 100% of the aborted
transactions are retried in the slow-path mode respectively.
We compare the different variants of the RH1 Mixed to the
best case Standard HyTM that uses only a hardware mode
for its aborted transactions. For 20% writes, the RH1 Mixed
slow-path mode penalty is not significant, because the abort
ratio is low (approximately 5%). But for the 80% writes
case, where the abort ratio is high (approximately 40%),
the software fallback introduces a significant penalty. De-

16

!"#$""#%&$)*+,-'./,0'*+,-'12--,0*+,-'3/,4(0'*+,-' '/+7*+,-'%'()*12860'/./,0'*12860'/9:2/0*12860'/

;0(6)(/)*&?+@

C"#$""#%&$)*+,-'./,0'*+,-'12--,0*+,-'3/,4(0'*+,-' '/+7*+,-'%'()*12860'/./,0'*12860'/9:2/0*12860'/

;0(6)(/)*&?+@

%#%%,-%%.

#%%,-%.

"#%%,-%(.

"#*%,-%(.

+#%%,-%(.

+#*%,-%(.

&#%%,-%(.

&#*%,-%(.

". +. !. (.). "%. "+. "!. "(. "). +%.

/
0
1
2
3.
4
5
6
7
2
8
0
9
:
.

9;<=67.0>.1?762@:.

A/B.

C129@27@.AD/B.

/E+.

FA".G2:1.

FA".BHI."%.

FA".BHI."%%.

$D*E2)'B*126B0(60*;2/0')*>,B0*

PH*-80(I26B*

%#%%,-%%.

"#%%,-%(.

+#%%,-%(.

&#%%,-%(.

!#%%,-%(.

*#%%,-%(.

(#%%,-%(.

$#%%,-%(.

)#%%,-%(.

'#%%,-%(.

"#%%,-%$.

". +. !. (.). "%. "+. "!. "(. "). +%.

/
0
1
2
3.
4
5
6
7
2
8
0
9
:
.

9;<=67.0>.1?762@:.

A/B.

C129@27@.AD/B.

/E+.

FA".BHI."%%.

$"D*Q<'-'60B*126B0(60*&(BK*+(:<'*

!"H*-80(I26B*

".

"#+.

"#!.

"#(.

"#).

+.

+#+.

+#!.

+#(.

+#).

&.

%. +%. *%. '%.

C
5
6
6
@
;
5
.

Q7H16:.567R6912S6.
!%%. +%%. "%%. !%.

$!CD*%(6)2-*9//(?*

%&*;O'')8O*R;*;0(6)(/)*&?+@*

Figure 3: The results for the hash-table, sorted-list, and random-array benchmarks (from left to right).

spite this, RH1 Mixed 100 performs slightly better than the
same Standard HyTM for the mix of 80% writes. Recall,
that Standard HyTM uses only the hardware mode for its
execution and retries, but still is slightly slower than RH1
Mixed 100.

In order to understand the factors that affect the per-
formance, we measured the single-thread speedups and the
single-thread performance breakdowns of the different algo-
rithms involved in Figure 2. The single-thread speedup is
normalized to the TL2 performance. They show the rela-
tive time used for the transactional read, write and commit
operations, with the time used for the transaction’s private
code execution (local computations inside the transaction),
and the time used for the inter-transactional code (code not
inside a transaction). We can see that there is a correlation
between the single-thread speedup and the algorithm’s over-
all performance. Also, the single-thread breakdown shows
that the read time is the dominating reason for the slowdown
of the Standard HyTM relative to RH1.

3.3 Hash Table Emulation
We implemented a Constant Hash Table benchmark us-

ing an approach similar to the one we used in the Con-
stant Red-Black Tree. The benchmark inserts 1000K dis-
tinct elements into the hash table. Then, the benchmark
spawns the threads that execute the hash query(key) and the
hash update(key, val) operations, where the number of up-
dates is defined by the writes ratio parameter. The hash update
makes a query for the given key, and when the node with
the key is found, it updates to the dummy variables inside
this node, without touching the structure (pointers) of the
hash table.

In Figure 3, the left graph shows the hash table results
for 20% writes. In contrast to the red-black tree, the hash
table transactions are much shorter and introduce less STM
overhead relative to the non-transactional code. As a result,
for the hash table, HTM improves the TL2 STM perfor-
mance by approximately 40%, where in the red-black tree it
provides a 5x factor improvement. Additionally, the abort
ratio is very small (approximately 3%) due to the highly dis-
tributed nature of hash table access. Still, the throughput
of the Standard HyTM remains as low as that of the STM,
while the RH1 Mixed 100 preserves the HTM’s advantage
over STM.

3.4 Sorted List Emulation
The Constant Sorted List benchmark creates a 1K sorted

list of distinct elements, and spawns the threads that execute
the list search(key) and the list update(key, val) operations.
The list update searches for the node with the given key
by a linear scan, and then, makes updates to the dummy
variables inside this node, without touching the structure of
the list.

In Figure 3, the middle graph shows the sorted list re-
sults for a mix that includes 5% writes. This benchmark
represents a heavy-contended case for the STM. The trans-
actions are long, introducing a significant STM overhead,
and are prone to aborts because the list search(key) opera-
tion makes a linear scan that implies in a shared list prefix
by all currently executing transactions. The abort ratio is
approximately 50% for 20 threads. We can see that the
HTM is 4x faster than the TL2 STM. As in the previous
benchmarks, the Standard HyTM eliminates the HTM ben-
efit and improves on the TL2 STM by only 50%, while the
RH1 Fast preserves the HTM speedup. The introduction of
the software mode aborts in RH1 Mixed 10 and RH1 Mixed
100 degrades the hybrid performance for high number of
threads.

3.5 Random Array Emulation - Measuring the
Effect of the Reads/Writes Ratio

The RH1 fast-path executes instrumented writes with non-
instrumented reads. A common rule is that in real-world
applications with transactions, the ratio of reads to writes is
approximately 4 to 1 (20% writes). Still, since in the RH1
fast-path writes are not free, it is interesting to see the effect
of increasing their number inside a transaction.

The Random Array is a shared array with 128K entries.
Transactions simply access random array locations to read
and write, without any special additional logic. This setup
allows us to control the transaction length and the number of
reads and writes inside a transaction. All of the executions
have 20 threads.

In Figure 3, the right hand graph shows the speedup that
RH1 Fast gains over Standard HyTM for different trans-
action lengths (400, 200, 100 and 40 shared accesses) and
different write percentages inside a transaction (0%, 20%,
50% and 90% of writes). We can see that for long trans-
actions the speedup decreases as the fraction of writes in-
creases. For short transactions, the speedup change is less
significant, because the overall effect of the small transac-
tions on the benchmark is much less than that of the long
ones. The interesting result is that even with mixes of 90%

17

writes, RH1 with sufficiently long transactions provides a
good speedup of 1.3-1.7x relative to the Standard HyTM.
The reason is the different cache-coherence behavior of the
two algorithms. RH1 does not read metadata on hardware
reads, and only writes metadata on hardware writes. In
contrast, Standard HyTM reads and writes the metadata
on hardware reads and writes respectively. This introduces
significantly more cache traffic between concurrently execut-
ing transactions, resulting in a performance degradation.

4. ACKNOWLEDGEMENTS
This work was supported in part by NSF grant CCF-

1217921, ISF grant 1386/11, DoE ASCR grant ER26116/DE-
SC0008923, and by grants from the Oracle and Intel corpo-
rations.

5. REFERENCES

[1] D. Dice A. Matveev and N. Shavit. Implicit
privatization using private transactions. In Transact
2010, Paris, France, 2010.

[2] Hagit Attiya and Eshcar Hillel. A single-version stm
that is multi-versioned permissive. Theory Comput.
Syst., 51(4):425–446, 2012.

[3] Hillel Avni and Nir Shavit. Maintaining consistent
transactional states without a global clock. In
SIROCCO, pages 131–140, 2008.

[4] Dave Christie, Jae-Woong Chung, Stephan
Diestelhorst, Michael Hohmuth, Martin Pohlack,
Christof Fetzer, Martin Nowack, Torvald Riegel,
Pascal Felber, Patrick Marlier, and Etienne Rivière.
Evaluation of amd’s advanced synchronization facility
within a complete transactional memory stack. In
Proceedings of the 5th European conference on
Computer systems, pages 27–40, New York, NY, USA,
2010. ACM.

[5] Luke Dalessandro, François Carouge, Sean White,
Yossi Lev, Mark Moir, Michael L. Scott, and
Michael F. Spear. Hybrid norec: a case study in the
effectiveness of best effort hardware transactional
memory. SIGPLAN Not., 46(3):39–52, March 2011.

[6] Luke Dalessandro, Michael F. Spear, and Michael L.
Scott. Norec: streamlining stm by abolishing
ownership records. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 67–78, New
York, NY, USA, 2010. ACM.

[7] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchangco, Mark Moir, and Daniel Nussbaum. Hybrid
transactional memory. SIGPLAN Not.,
41(11):336–346, October 2006.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In Proc. of the 20th International
Symposium on Distributed Computing (DISC 2006),
pages 194–208, 2006.

[9] D. Dice and N. Shavit. Tlrw: Return of the read-write
lock. In Transact 2009, Raleigh, North Carolina, USA,
2009.

[10] Sanjeev Kumar, Michael Chu, Christopher J. Hughes,
Partha Kundu, and Anthony Nguyen. Hybrid
transactional memory. In Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and

practice of parallel programming, PPoPP ’06, pages
209–220, New York, NY, USA, 2006. ACM.

[11] Yossi Lev, Mark Moir, and Dan Nussbaum. Phtm:
Phased transactional memory. In In Workshop on
Transactional Computing (Transact), 2007.
research.sun.com/scalable/pubs/
TRANSACT2007PhTM.pdf, 2007.

[12] C. Fetzer P. Felber and T. Riegel. Dynamic
performance tuning of word-based software
transactional memory. In PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming, pages 237–246,
New York, NY, USA, 2008. ACM.

[13] Torvald Riegel, Patrick Marlier, Martin Nowack,
Pascal Felber, and Christof Fetzer. Optimizing hybrid
transactional memory: the importance of
nonspeculative operations. In Proceedings of the 23rd
ACM symposium on Parallelism in algorithms and
architectures, SPAA ’11, pages 53–64, New York, NY,
USA, 2011. ACM.

[14] Arrvindh Shriraman, Virendra J. Marathe, Sandhya
Dwarkadas, Michael L. Scott, David Eisenstat,
Christopher Heriot, William N. Scherer III, and
Michael F. Spear. Hardware acceleration of software
transactional memory. Technical report, DEPT. OF
COMPUTER SCIENCE, UNIV. OF ROCHESTER,
2006.

[15] P. Felber T. Riegel and C. Fetzer. A lazy snapshot
algorithm with eager validation. In 20th International
Symposium on Distributed Computing (DISC),
September 2006.

[16] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson
Amaral, Martin Ohmacht, Christopher Barton, Raul
Silvera, and Maged Michael. Evaluation of blue
gene/q hardware support for transactional memories.
In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques,
PACT ’12, pages 127–136, New York, NY, USA, 2012.
ACM.

[17] Web. Intel tsx
http://software.intel.com/en-
us/blogs/2012/02/07/transactional-synchronization-
in-haswell,
2012.

APPENDIX

A. RH1 FALLBACK TO RH2
In this section we present the RH1 code modifications that

implement the fallback to RH2.
RH1 uses a global is RH2 fallback counter variable to per-

form the switch to the RH2 mode. The RH1 slow-path
atomically increments this global counter before executing
the fallback RH2 slow-path commit code, and decrements it
on fallback finish. As a result, the is RH2 fallback counter
indicates the number of currently executing RH2 slow-path
transactions, and the RH1 fast-path transactions can use
this global counter to decide when to execute the RH2 fast-
path transactions. Upon the first is RH2 fallback incre-
ment, all currently executing RH1 fast-path transactions
must abort and restart in RH2 fast-path mode. For this
purpose, the RH1 fast-path monitors this global counter for

18

Algorithm 3 RH1 fast-path and slow-path modifications for switching to RH2

1: function RH1 FastPath start(ctx)
2: if is RH2 fallback > 0 then

3: RH2 FastPath start(ctx)
4: return

5: end if

6: HTM Start()
⊲ RH1 fast-path monitors the is RH2 fallback global

counter to be 0 for the duration of the hardware transaction
7: if is RH2 fallback > 0 then ⊲ speculative load of the

global value
8: HTM Abort(ctx)
9: end if

10: end function

11:
12: function RH1 SlowPath commit(ctx)

⊲ read-only transactions commit immediately
13: if ctx.write set is empty then

14: return

15: end if

⊲ a single hardware transaction that performs read-set
revalidation and write-back

16: HTM Start()
⊲ read-set revalidation

17: for addr ∈ ctx.read set do
18: s index← get stripe index(addr)
19: version← stripe version array[s index]
20: if version > ctx.tx version then

21: HTM Abort(ctx)
22: end if

23: end for

⊲ perform the actual writes and update the locations’
versions

24: next ver ← GVNext()
25: for addr, new value ∈ ctx.write set do
26: s index← get stripe index(addr)
27: stripe version array[s index]← next ver
28: store(addr, new value)
29: end for

30: HTM Commit()
31: if the HTM failed then

32: fetch and add(is RH2 fallback)
33: RH2 SlowPath commit(ctx)
34: fetch and dec(is RH2 fallback)
35: end if

36: end function

the duration of the transaction by speculatively reading this
global counter and verifying its value is zero, immediately
after the hardware transaction starts. In addition, before
the hardware transaction starts, the RH1 fast-path checks
this global counter to be greater than 0, and if so, then it
executes the RH2 fast-path, else it runs the RH1 fast-path.
Algorithm 3 presents the RH1 fast-path and slow-path mod-
ifications that support the switching to the RH2 algorithm.

B. RH2 ALGORITHM OVERVIEW
In this section we give a brief overview of the RH2 hybrid

protocol. Our main RH1 protocol falls back to RH2 upon
persistent failure of the RH1 slow-path commit-time hard-
ware transaction. RH2 reduces the HTM requirements of
the slow-path transactions by performing only the commit-
time write-back in a single hardware transaction (not includ-
ing the read-set revalidation). The core idea is to introduce
locks to the fast-path and the slow-path, and force the slow-
path “expose” its read-set for the duration of its commit.

Still, one might worry about the progress guarantees of
RH2, because the slow-path commit-time hardware transac-
tion that performs the write-back may fail. This would mean
that the transaction’s write-set cannot be accommodated in-
side the L1 cache of the processor, yet as we show even in
this case, RH2 can easily fallback to a fully pure software
slow-path that performs the whole commit in the software,
and the fast-path transactions inspect the metadata for ev-
ery read and write, in a similar way to the standard hybrid
TMs. The switch to full software RH2 slow-path aborts the
current RH2 fast-path transactions and restarts them in the
RH2 fast-path-slow-read mode. We call this special mode
the all software slow-slow-path.

The main difference between RH1 and RH2 is the fact
that RH2 uses locks for synchronization between the fast-
path and the slow-path. The RH2 slow-path commit locks
the write-set, revalidates the read-set, and then executes
a small hardware transaction that performs the write-back.
The RH2 fast-path writes inspect these locks, while the reads

execute without any instrumentation. Now, since the RH2
slow-path is not executing the read-set revalidation inside
a hardware transaction, a problematic scenario may occur
between the fast-path and the slow-path as follows: a slow-
path transaction arrives at the commit, locks its write-set
and revalidates its read-set. Now, before the new values
are actually written to the memory, a fast-path transaction
starts, reads a location that is currently locked, and decides
to overwrite a location inside the read-set of this slow-path
transaction. Then, the fast-path transaction commits suc-
cessfully, and the slow-path finalizes the commit using an
atomic memory write-back. In this scenario, one of the
transactions must abort, yet both commit successfully.

The problem is that the un-instrumented fast-path trans-
action reads cannot see that a location is currently being
locked by a concurrent slow-path transaction. To overcome
this race, during the slow-path commit, the transaction makes
its read-set visible to the writes of the fast-path transaction.
In this way, fast-path transactions cannot write to a read-set
of a concurrently committing slow-path transaction.

The read-set visibility is implemented by adding a read
mask for every memory stripe. The bits of the read mask
are associated with threads: the transaction of thread K
makes its read-set visible by setting the K-th bit of every
read location’s read mask. To set the K-th bit on and off, we
use a non-blocking fetch-and-add synchronization primitive.
In our implementation, we use a 64bit read mask to represent
64 active threads, and a fetch-and-add atomic primitive to
turn the read mask’s bits on and off. For larger thread
numbers, additional read masks are required. See [9] for a
discussion of the scalability of the mask array approach.

A fast-path hardware transaction collects the write-set,
and on commit, detects if there is a concurrent slow-path
transaction executing. If so, it inspects the read masks of
the locations in the write-set before committing. It sums up
the total of all mask bits and aborts the transaction if this
sum is greater than zero, that is, one of the mask’s bits was
made non-zero by some concurrent slow-path transaction.

Usually, making an STM’s reads visible results in poor

19

performance, since every STM read is augmented with a
write to shared memory. In our implementation the read
visibility works differently, because it is applied only during
the commit phase of the software write transactions. Any
other transactions, hardware or software read-only, are not
performing this visibility procedure, and do not pay any
additional overhead for their reads. Additionally, we use an
efficient fetch-and-add synchronization primitive to update
locations’ read masks, instead of using a compare-and-swap
(CAS) operation that can fail multiple times before turning
on the required bit. As a result, our software transactions
with a commit-time visible read-set have nearly the same
performance as that of state-of-the-art STMs.

C. RH2 ALGORITHM DETAILS
Here we present the implementation details of RH2 hy-

brid protocol. Algorithm 4 and Algorithm 5 show the RH2
fast-path and slow-path. Algorithm 6 presents the fast-path-
slow-read mode implementation for the pure software slow-
path execution, and Algorithm 7 presents slow-path addi-
tional helper functions, that implement the locking and vis-
ibility mechanisms.

In a similar way to RH1, the memory range is divided into
logical stripes (partitions), each with a stripe version and a
stripe read mask. Additionally, a global version counter is
used to coordinate the transactions, and each thread is asso-
ciated with a thread local context that includes; tx version,
the global version read on transaction start, read set, a buffer
of the locations read, and a write set, a buffer of the loca-
tions written. All of the versions are 64bit unsigned integers,
initialized to 0, and the read set and write sets can be any
list implementation.

The global version counter is manipulated by theGVRead()
andGVNext() methods, for reading and“advancing”it, which
can be implemented in different ways. We use the GV6 [3, 8]
implementation that does not modify the global counter on
GVNext() calls, but only on transactional aborts. This de-
sign choice avoids unnecessary aborts of the hardware trans-
actions that call GVNext() (speculate on the global clock)
in order to install it to the write locations.

The RH2 slow-path commit protocol is based on two basic
mechanisms: (1) locking a location, and (2) making the loca-
tion visible. The location’s stripe version lowest order bit is
reserved for locking. Transactions lock a location by setting
the stripe version to the thread’s lock value ctx.thread id *
2 + 1 : that turns on the lowest order bit and encodes the
thread id into the lock. The visibility of a location is rep-
resented by its read mask. Every bit of the read mask is
associated with some active thread, so a 64bit read mask
can hold information for 64 threads. In our implementation
the threads are assigned ids from 0 to 63, and these ids are
used to “index” the read masks (more threads require more
read masks per stripe). A thread with id K will turn on
the K-th bit in the location’s read mask to indicate that
it’s reading it, and will reset this bit to remove this indica-
tion. We use the fetch and add() synchronization primitive
to turn on and off bits in read masks, instead of using a
CAS operation that can fail multiple times before actually
succeeding (implementation in Algorithm 7).

Algorithm 5 shows the implementation of the RH2 slow-
path. The slow-path starts by reading the global version to
its local tx version variable (line 2). During the execution,
the writes are deferred to the commit by buffering them to a

local write-set (line 6), and scanning this write-set on every
read operation (lines 10-11). If the read location is not found
in the local write-set, then it is read directly from the mem-
ory, followed by a consistency check (lines 14-18). This check
verifies that the read location has not been overwritten since
the transaction has started, based on the following invariant:
If the read location has been already updated from the time
the current transaction started, then the location’s version
must be greater than the transaction’s version, tx version.
The fast-path and slow-path commits ensure this invariant.

Upon RH2 slow-path commit, the write-set locations are
locked and the read-set is made visible (lines 29 - 30). Lock-
ing is done by setting the location’s stripe version to the
thread’s lock value ctx.thread id * 2 + 1. This value turns
on the lowest order bit, the one reserved for locking, and
encodes the thread that locked the location. Location visi-
bility is done by turning on the thread-associated bit in the
location’s read mask (shown in Algorithm 7). Then, the
next global version is generated (line 44), and the read loca-
tions are revalidated (line 31), ensuring they have not been
overwritten from the transaction’s start. After a successful
revalidation, the new values are written-back to the mem-
ory by using a hardware transaction (line 32 - 43). On a
successful write-back, the write locations are unlocked, by
updating their versions to the new next global version, and
the read locations’ visibility is removed, by turning off the
thread-associated bit in every read location’s read mask.

Now, if the RH2 slow-path commit-time small hardware
transaction fails due to contention reasons, then it is retried
again. Else, aborts all of the current fast-path transactions
and restarts them in the fast-path-slow-read mode, and per-
forms the slow-path write-back in pure software (lines 36 -
42). RH2 implements this switch through a global inte-
ger is all software slow path variable, that counts the num-
ber of slow-paths that currently execute the commit-time
write-back in pure software. Current fast-path transactions
monitor this global variable to be 0 during their execution
(by speculatively loading it), and on its modification (by
the slow-path) automatically abort. On fast-path start, the
transactions check this global variable, and if its not zero,
they switch to the fast-path-slow-read mode.

Algorithm 4 shows the implementation of the RH2 fast-
path hardware transaction. The fast-path performs specula-
tive reads and writes, where the writes are augmented with
logging the addresses written (line 13) and the reads proceed
as is, without any instrumentation. These reads cannot be
inconsistent, because, as we said, the slow-path transactions
perform the actual memory writes atomically.

Finally, the fast-path commit verifies that the read masks
of the write locations are all 0 (lines 25 - 33), before initi-
ating the HTM commit instruction. Additionally, the write
locations are speculatively locked (lines 34 - 45), by verifying
that they are not locked by others, and by writing the spe-
cial thread lock-mask value to each one of them. Then the
HTM commit instruction is executed, and upon success, the
write locations are updated and locked atomically. Finally,
it gets the next global version, and installs it to the write
location (lines 48 - 52).

20

Algorithm 4 RH2 fast-path transaction implementation

1: function RH2 FastPath start(ctx)
2: if is all software slow path > 0 then

3: RH2 FastPath SR start(ctx)
4: return

5: end if

6: HTM Start()
⊲ Fast-Path monitors the is all software slow path global

counter to be 0 for the duration of the hardware transaction
7: if is all software slow path > 0 then ⊲ speculative load

of the global value
8: HTM Abort(ctx)
9: end if

10: end function

11:
12: function RH2 FastPath write(ctx, addr, value)

⊲ log the write
13: ctx.write set← ctx.write set ∪ {addr}

⊲ write value to memory
14: store(addr, value)
15: end function

16:
17: function RH2 FastPath read(ctx, addr)

⊲ no instrumentation - simply read the location
18: return load(addr)
19: end function

20:
21: function RH2 FastPath commit(ctx)

⊲ read-only transactions commit immediately
22: if ctx.write set is empty then

23: return

24: end if

⊲ verify the write-set locations are not read by concurrent
software transactions

25: total mask ← 0
26: for addr ∈ ctx.write set do

27: s index← get stripe index(addr)
28: mask arr ← stripe read mask array

⊲ ‖ - bitwise OR operation
29: total mask ← total mask ‖ mask arr[s index]
30: end for

31: if total mask 6= 0 then

32: HTM Abort() ⊲ there is a concurrent software reader
33: end if

⊲ put locks on the write-set locations.
34: lock mask ← (ctx.thread id ∗ 2) + 1
35: for addr ∈ ctx.write set do
36: s index← get stripe index(addr)
37: cur ver ← stripe version array[s index]
38: if is locked by me(ctx, cur ver) then

39: continue

40: end if

41: if is locked(cur ver) then

42: HTM Abort()
43: end if

44: stripe version array[s index]← lock mask
45: end for

46: HTM Commit()
47: if HTM commit successful then

⊲ now the write-set locations are updated and locked -
unlock the write-set locations by updating their versions to
the next one.

48: next version← GVNext()
49: for addr ∈ ctx.write set do
50: s index← get stripe index(addr)
51: stripe version array[s index]← next version
52: end for

53: return

54: end if

55: end function

Algorithm 5 RH2 slow-path transaction implementation

1: function RH2 SlowPath start(ctx)
2: ctx.tx version← GVRead()
3: end function

4:
5: function RH2 SlowPath write(ctx, addr, value)

⊲ add to write-set
6: ctx.write set← ctx.write set ∪ {addr, value}
7: end function

8:
9: function RH2 SlowPath read(ctx, addr)

⊲ check if the location is in the write-set
10: if addr ∈ ctx.write set then
11: return the value from the write-set
12: end if

⊲ log the read
13: ctx.read set← ctx.read set ∪ {addr}

⊲ try to read the memory location
14: s index← get stripe index(addr)
15: ver before← stripe version array[s index]
16: value← load(addr)
17: ver after ← stripe version array[s index]
18: if ver before ≤ ctx.tx version and

ver before = ver after then

19: return value
20: else

21: stm abort(ctx)
22: end if

23: end function

24:

25: function RH2 SlowPath commit(ctx)
⊲ read-only transactions commit immediately

26: if ctx.write set is empty then

27: return

28: end if

⊲ set locking and visibility
29: lock write set(ctx)
30: make visible read set(ctx)

⊲ commit validation
31: revalidate read set(ctx)

⊲ perform the writes atomically
32: while True do

33: HTM Start()
34: write the write-set values to memory
35: HTM Commit()
36: if the HTM transaction failed due to contention then

37: continue ⊲ retry HTM transaction
38: else

39: fetch and add(is all software slow path)
40: write-back the write-set using regular store instruc-

tions.
41: fetch and dec(is all software slow path)
42: end if

43: end while

⊲ reset locking and visibility
44: next version← GVNext()
45: release locks(addr, next version)
46: reset visible read set(ctx)
47: end function

21

Algorithm 6 RH2 fast-path-slow-read transaction implementation

1: function RH2 FastPath SR start(ctx)
2: ctx.tx version← GVRead(ctx, global version)
3: HTM Start()
4: end function

5:
6: function RH2 FastPath SR write(ctx, addr, value)

⊲ log the write
7: ctx.write set← ctx.write set ∪ {addr}

⊲ write value to memory
8: store(addr, value)
9: end function

10:
11: function RH2 FastPath SR read(ctx, addr)

⊲ try to read the memory location
12: s index← get stripe index(addr)
13: version← stripe version array[s index]
14: value← load(addr)
15: if ¬ is locked(version) and version ≤ ctx.tx version

then

16: return value
17: else

18: HTM abort(ctx)
19: end if

20: end function

21:
22: function RH2 FastPath SR commit(ctx)

⊲ read-only transactions commit immediately
23: if ctx.write set is empty then

24: HTM Commit()
25: end if

⊲ put locks on the write-set locations.
26: lock mask ← (ctx.thread id ∗ 2) + 1
27: for addr ∈ ctx.write set do
28: s index← get stripe index(addr)
29: cur ver ← stripe version array[s index]
30: if is locked by me(ctx, cur ver) then

31: continue

32: end if

33: if is locked(cur ver) then

34: HTM Abort()
35: end if

36: stripe version array[s index]← lock mask
37: end for

38: HTM Commit()
39: if HTM commit successful then

⊲ now the write-set locations are updated and locked -
unlock the write-set locations by updating their versions to
the new one.

40: next version← GVNext()
41: for addr ∈ ctx.write set do
42: s index← get stripe index(addr)
43: stripe version array[s index] = next version
44: end for

45: return

46: end if

47: end function

Algorithm 7 RH2 slow-path transactions: additional functions

1: function is locked(stripe version)
2: return (stripe version & 1) = 1 ⊲ checks if the low order

bit is 1
3: end function

4:
5: function is locked by me(ctx, stripe version)
6: lock mask ← (ctx.thread id ∗ 2) + 1
7: return version = lock mask
8: end function

9:
10: function lock write set(ctx)
11: lock mask ← (ctx.thread id ∗ 2) + 1
12: for addr ∈ ctx.write set do
13: s index← get stripe index(addr)
14: ver ← stripe version array[s index]
15: if is locked by me(ctx, ver) then

16: continue ⊲ to next - already locked
17: end if

18: if is locked(ver) then

19: stm abort(ctx) ⊲ someone else locked
20: end if

21: if ver 6= CAS(stripe version array[s index], ver, lock mask)
then

22: stm abort(ctx) ⊲ someone else locked
23: end if

24: end for

25: end function

26:
27: function revalidate read set(ctx)
28: for addr ∈ ctx.read set do
29: s index← get stripe index(addr)
30: version← stripe version array[s index]
31: if is locked by me(ctx, version) then

32: continue

33: end if

34: if is locked(ctx, version) then

35: stm abort(ctx)

36: end if

37: if version > ctx.tx version then

38: stm abort(ctx)
39: end if

40: end for

41: end function

42:
43: function release locks(addr, new version)
44: for addr ∈ ctx.write set do
45: s index← get stripe index(addr)
46: stripe version array[s index]← new version
47: end for

48: end function

49:
50: function make visible read set(ctx)
51: for addr ∈ ctx.read set do
52: s index← get stripe index(addr)
53: mask arr ← stripe read mask array
54: id← ctx.thread id
55: if (mask arr[s index] & 2id) = 0 then

⊲ turn ON the id-th bit of the read mask
56: fetch and add(mask arr[s index], 2id)
57: end if

58: end for

59: end function

60:
61: function reset visible read set(ctx)
62: for addr ∈ ctx.read set do
63: s index← get stripe index(addr)
64: mask arr ← stripe read mask array
65: id← ctx.thread id
66: if (mask arr[s index] & 2id) 6= 0 then

⊲ turn OFF the id-th bit of the read mask
67: fetch and add(mask arr[s index], (−2id))
68: end if

69: end for

70: end function

22

