
JOURNAL OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 1, January 1988 

REDUCED HAUSDORFF DIMENSION 
AND CONCENTRATION-CANCELLATION 

FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLOW 

RONALD J. DIPERNA AND ANDREW MAJDA 

CONTENTS 

1. Introduction 
2. Defect measures 
3. Concentration-cancellation 
4. Uniform distribution functions 
5. Chebyshev inequalities 
6. L P velocity estimates 
7. Space-time defects 
Appendix: Truncation, interpolation, and Holder continuity in time 

1. INTRODUCTION 

The Euler equations for an inviscid incompressible 2-D fluid flow are given 
by 

Dv / Dt = -V P , x E R2, t > 0, 
divv = 0, v(x ,0) = vo(x) 

(1.1 ) 

where v = t(v\, v2) is the fluid velocity, p is the scalar pressure, Dv/Dt = 
ov/ot+(v·V)v, and Vo is an initial incompressible velocity field, i.e. div Vo = O. 

In this paper, we study the detailed limiting behavior of approximate solution 
sequences for 2 - D Euler with vortex sheet initial data. A sequence of smooth 
velocity fields VB(X, t) is an approximate solution sequence for 2 - D Euler 
provided that v is incompressible, i.e. div v = 0, and satisfies the following 
properties: 

(1) The velocity fields VB have uniformly bounded local kinetic energy, i.e. 

( 1.2) 

for any R, T> 0 . 

Received by the editors November 3, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 35D99, 76C99. 
First author partially supported by National Science Foundation grant #83-01135. 
Second author partially supported by National Science Foundation grant #86-11110. 

59 

© 1988 American Mathematical Society 
0894-0347/88 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



60 R. J. DIPERNA AND ANDREW MAJDA 

(2) The corresponding vorticity, 0/ = curl ve , is uniformly bounded in L I , 
i.e. 

( 1.3) max! lo/(x, t)1 dx ~ C 
O~I~T 

for any T> O. 
(3) The velocity field ve is weakly consistent with 2-D Euler, i.e. for all 

smooth test functions, rp E COO (R 2 X (0,00)) with div rp = 0, 

( 1.4) lim!! rpl . ve + "ilrp: ve ® l dx dt = O. 
e-+O 

Here v ® v = (VjV) , "ilrp = (orpJ8x) , and A : B denotes the matrix product 
L: j .j ajjb jj • We remark in passing that the definition of approximate solution 
sequence, as given in § 1 of [4], includes the requirements that ve vanishes 
uniformly as Ixl -+ 00 and also that ve is uniformly Lipschitz in some negative 
Sobolev space in order to interpret the initial data in a weak sense in the limit. 
These precise definitions are not needed here except for the discussion in the 
appendix which links the results here with those presented in [3, 4]. 

Approximate solution sequences for 2-D Euler can be generated in a variety 
of ways. Three important processes for generating approximate 2-D Euler se-
quences with a fixed initial velocity field Vo are the following: smoothing the 
initial data, the zero diffusion limit of 2-D Navier-Stokes solutions, and the 
algorithm of computational vortex dynamics. Each of these is described in de-
tail in the companion paper of the authors [4]. The requirements of a uniform 
local kinetic energy bound and weak consistency with 2-D Euler stated in (1.2) 
and (1.4) are natural conditions on approximate solution sequences. The uni-
form L I-bound on the vorticity (1.3) enables us to treat approximate solution 
sequences with initial data that regularize a fixed initial incompressible velocity 
field Vo with the following two properties: 

( 1.5) The velocity Vo has locally finite energy and the vorticity Wo is 
a Radon measure with compact support. 

Initial data with these properties are important from the applied point of 
view since they arise in the study of the evolution of vortex sheets (see [3, 
4] for additional discussion and references). We call velocity fields satisfying 
(1.5) vortex sheet data. Indeed, since vorticity is transported in 2-D flows, i.e. 
Dw / Dt = 0 , the uniform L I control of vorticity for approximate velocity fields 
postulated in (1.3) is a natural condition to impose on approximate solution 
sequences with vortex sheet initial data. 

The weak formulation of the 2-D Euler equations is obtained by multi-
plying (1.1) by suitable test functions and integrating by parts. A function 
v E L~oc(R2 X (0,00)) is a weak solution of 2-D Euler provided that 

(1.6A) 
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REDUCED HAUSDORFF DIMENSION 61 

for all test functions rp E C;; (R 2 X (0,00)) with div rp = 0 and v is incom-
pressible in the weak sense, i.e. 

(1.6B) / / \l rp . v dx dt = 0 

for all scalar test functions rp E C;; . 
This paper as well as the authors' companion paper [4] are concerned with 

the following basic questions: 
If Vo is vortex sheet initial data, is there a weak solution of 
2-D Euler on R2 x (0,00) with initial data vo? If vt is an 

(1.7) approximate solution sequence for 2-D Euler, does l converge 
to a weak solution of 2-D Euler as e 1 O? Do new phenomena 
occur in the limiting process? 

To the authors' knowledge, this paper as well as the companion papers [3, 4] 
are the first to address these questions in the mathematical literature. There 
are some special results for piecewise analytic initial data utilizing Cauchy-
Kowaleski theorems which are referenced in [4]. 

For a general approximate solution sequence satisfying (1.2)-(1.4), it is not 
difficult to prove that there is a velocity field v E L~oc {R2 X (0, oon so that a 
subsequence vt satisfies 

live - vIlLP(n) ~ 0, 1 ::; p < 2, 

vt ~ v weakly in L2(Q) , 
( 1.8) 

as e ~ O. Here and below, 0 is any space-time region of the form 0 = 
{(x, t)llxl ::; R, 0 < t < T} and LP is the standard Lebesgue space. The fact 
(1.8) is proved in Theorem 1.1 of[4]. In [3, 4] several explicit examples of exact 
smooth solution sequences for 2-D Euler are constructed satisfying the uniform 
bounds in (1.2)-(1.4), but so that new phenomena occur in the limiting process, 
a finite amount of kinetic energy concentrates on a set of measure zero and 

(1.9) In Ivl2 < liminf In Il12. 
As a consequence of (1.9), the issue of whether v defines a weak solution of 
2-D Euler is subtle since 

(1.10) lim r rpv~v~ =I- ( rpv.v. 
t-+O J n I J J n I J 

for suitable test functions rp E C;; (0) and the definition of weak solution from 
(1.6) involves combinations of such quadratic terms. 

In this paper we introduce a new tool to measure weak convergence, the re-
duced defect measure. Our main results are the following. We prove that the 
reduced defect measure associated with an approximate sequence of velocity 
fields for 2-D Euler always concentrates on a space-time set of Hausdorff di-
mension less than or equal to one. This concentration phenomena can occur 
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despite the fact that the standard weak-star defect measure introduced by Lions 
[6, 7] may attach positive mass to space-time sets of positive three-dimensional 
Lebesgue measure. Examples from [3, 4] prove that this result is sharp. Further-
more, under the assumption that the reduced defect measure concentrates on a 
space-time set with Hausdorff dimension strictly less than one, we prove that, 
despite the phenomena in (1.9) and (1.10), there is concentration-cancellation 
and v is a weak solution of the 2-D Euler equations. 

The remainder of the introduction includes a precise description of these 
results as well as a sketch of the overall argument which links together sev-
eral technical results presented in detail in subsequent sections. The results 
presented here are part of a general program of the authors to study the devel-
opment of concentrations and oscillations in fluid flows in both two and three 
space dimensions. The interested reader can consult [3, 4] for a discussion of 
several- additional phenomena which occur in 3-D fluid flows as well as a de-
tailed description of concentrations in 2-D flows from another viewpoint. In 
this connection we mention that if we replace the bound for vorticity in (1.3) 
by the slightly stronger uniform L P bound for some p with 1 < p, then no 
concentrations as described in (1. 9) occur and ve converges strongly to v in 
L2(Q) with v a classical weak solution for 2-D Euler (see [4]). 

One of our main tools in assessing the size of energy concentrations is the 
reduced defect measure 0 associated with an arbitrary L 2 weakly convergent 
sequence (ve ~ v) through the definition, 

(1.11) O(E) = lim sup / { Il - vl 2 dx dt 
e--+O JE 

where E is a Borel subset of R2 x R+ . The set function 0 is a nonnegative 
outer measure which vanishes precisely on those sets E where ve converges 
strongly to v; 0 is concentrated on the L 2 exceptional sets of the sequence ve 
where convergence is weak but not strong. 

Definition. A finitely subadditive outer measure 0 is concentrated inside a set 
E, i.e. E is a concentration set for 0, if E C is a countable union of null sets 
of O. 

Notice that in general the reduced defect measure 0 is a finitely subadditive 
outer measure. Typically, it is not continuous from below. In particular, the 
countable union of null sets need not be a null set, as is the case for a countably 
additive outer measure. 

The weak star defect measure introduced by Lions in the theory of concen-
tration compactness [6, 7] is the Radon measure (J so that 

Il - vl2 ~ (J weak star. 
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The reduced defect measure has two properties which are crucial for the 
developments here: 

For any closed set F, e(F) :::; O'(F) , and the sequence ve 

converges strongly to v on a set E if and only if e(E) = o. 

In particular, at the end of § 1 from [4], several examples are given where 
0' attaches positive weight to a closed set with positive Lebesgue measure for 
steady sequences satisfying (1.2) and (1.3) while the analysis here guarantees 
that e concentrates on a set with one-dimensional Hausdorff measure. General 
properties of the reduced defect measure are discussed in §2. 

One of four main results in this paper is an estimate for the Hausdorff di-
mension of the concentration set for the reduced defect measure. In order to 
state this theorem, we recall that the weight which y-order Hausdorff measure 
assigns to a set is expressed as a limit of premeasures, 

H Y (E) = lim H: (E) = sup H: (E) 
,-+0 ,>0 

with the premeasure H: given by 

)i • {'" y } H, (E) = mf ~rjlE ~ UBj' rj :::; r . 

Here {B j } is a countable cover of E by open balls. The main part of this 
paper is a proof of the following theorem. 

Theorem 1. Consider any approximate solution sequence for 2-D Euler satisfying 
(1.2) - (1.4). Then the reduced defect measure e of a subsequence is concen-
trated inside a space-time set E of Hausdorff dimension less than or equal to 
one, i.e. 

H 1+t5 (E) = 0 for all t5 > o. 
The examples of fluid flows in [3, 4] show that this theorem is sharp. The 

other main result in this paper connects the Hausdorff dimension of the reduced 
defect measure and the phenomena of concentration-cancellation mentioned 
earlier. 

Theorem 2. Suppose ve is a sequence of 2-D Euler solutions which converges 
weakly in L 2 to a vector field v. If the reduced defect measure is concentrated 
inside a space-time set with Hausdorff dimension less than one then v is a weak 
solution of 2-D Euler, i.e. satisfies (1.6). 

The proof of Theorem 2 is given in §3. This result is a corollary of a stronger 
result which applies to steady elliptic sequences satisfying (1.2)-( 1.4) which we 
present first in §3. 

The proofs in §3 reveal a surprisingly robust property of the inertial terms in 
the equations of incompressible flow. These terms have the form 

(1.1.2) T(rp,v)=! ! V'rp:v0V with divrp =0. 
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The inertial terms are completely insensitive to concentrations in the energy field 
so that despite the appearance of concentrations as described in (1.9) and (1.10), 
the limit is still a weak solution. Our results in §3 combined with the steady 
state analysis in §§4-6 prove that this is always the case for steady fluid flows 
with external forces. We need the slightly stronger postulate on the Hausdorff 
dimension of the concentration set in Theorem 2 for the general time-dependent 
case. It is not clear that Theorem 2 is valid for general time-dependent approxi-
mate solution sequences for 2-D Euler satisfying (1.2)-( 1.4). It is an interesting 
problem to investigate this issue. 

The proof of Theorem 2 relies on the rotational invariance of the inertial 
terms and the following device. For a given test function rp, we construct a 
shadow sequence of test functions rpt which shields rp from the kinetic energy 
defects in vt so that rpt --+ rp and 

lim T(rpe, vel = T(rp, v). 
e-+O 

The shadow sequence rpe depends on the sequence ve • 
The results in §§4-7 combine to give the proof of Theorem 1. Actually, the 

results in §§4-6 apply to elliptic sequences which satisfy the uniform kinetic 
energy and vorticity bounds in (1.2) and (1.3) and thus apply to approximate 
solution sequences for 2-D Euler at fixed time. In §7, we piece together the 
results at fixed time together with various temporal Holder estimates proved 
in the Appendix through interpolation inequalities to conclude the proof of 
Theorem 1. 

At any fixed time t, the velocity field for a 2-D incompressible flow which 
vanishes as Ixl--+ 00 can be recovered from the vorticity w = curl v through a 
stream function VI satisfying 

( 1.13) 
I:lVl = w, 

.L t 
V = V VI = (-VlX2 ' Vlx .)· 

The stream function VI is determined within a constant by convolution of w 
with the logarithmic potential. More precisely, the incompressible velocity field 
is determined directly from the vorticity by the convolution 

( 1.14) v(x) = f K(x - y)w(y) dy JR 2 

with the kernel K given by 

K(x) = (21lIxl)-2 ( ~2 ) . 

In §§4-6, we estimate the Hausdorff dimension of elliptic sequences satisfying 
the following uniform bounds 

( 1.15) 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REDUCED HAUSDORFF DIMENSION 65 

Through a straightforward truncation argument for approximate solution se-
quences of 2-D Euler sketched in the Appendix, we assume here and below that 
the velocity fields VB have compact support inside the ball Ixl :::; R. In this sit-
uation there is a steady velocity field v satisfying (1.8) with 0 = {xllxl :::; R}. 
Furthermore, the argument presented in §§4-6 yields the following theorem. 

Theorem 3. If VB converges weakly to v under the uniform energy and vorticity 
bounds in (1.15), then the reduced defect measure 0 concentrates inside a set I 
with Hausdorff dimension zero, i.e. 

H t5 (I) = 0 for all ~ > o. 
In this argument, we produce a family of closed sets F, ~ n. r > 0, so that 

(1.16) O(F,) = lim sup ( IvB - vl 2 dx = 0 
e-O iFr 

and the Hausdorff premeasure of the complement satisfies 

(1.17) H:(F:):::; C 

where C is a constant independent of ~ and r. By first letting r then ~ tend 
to zero along sequences we deduce Theorem 3. 

The closed sets F, are determined by the uniformization theorem proved in 
§4. We introduce the vorticity maximal function 

WB(S, x) = Iwel{B(s, x)} = ( lwei dy. 
i1y-xl<s 

The content of the uniformization theorem is that for a subsequence it is pos-
sible to find a closed set F, with complement satisfying (1.17) so that 

sup s -15 WB(S, x) :::; K(r). 
XEFr 
s:::;1 

Using the above uniform estimate on the vorticity maximal function on F, we 
prove in §6 that this leads to an improved uniform velocity estimate on F, of 
the form 

( Ivel q dx :::; K(r) 
iFr 

for some q > 2. With the above uniform bound in Lq(F,) for q > 2 and 
the fact from (1.8) that VB --+ V strongly in LP (0) for any p < 2, simple 
interpolation yields the conclusion in (1.16). 

The uniformization theorem in §4 is proved through the use of Riesz poten-
tials and a generalized Chebyschev inequality involving Hausdorff premeasure 
presented in §5. This inequality is suggested by earlier work of Federer and 
Ziemer [5] using capacities instead of Hausdorff premeasures. Actually, Theo-
rem 3 is also valid for appropriate logarithmic Hausdorff measures. Although 
we do not develop all the necessary details here, we do present several important 
facets of this generalization here (also see §3 of [4]). In §7 we piece together 
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space-time exceptional sets by utilizing the arguments just presented at fixed 
time together with various temporal Holder estimates which are described in 
the Appendix. 

2. DEFECT MEASURES 

This section deals with two set-functions which record the loss of compactness 
in weakly 'convergent sequences, the weak-star defect measure, and the reduced 
defect measure. In the context of 2-D incompressible fluid flow and vortex 
sheet initial data, the weak-star defect measure has already been discussed in 
§1 of [4]. The reduced defect measure is the main concept utilized in this 
paper. The main theoretical advantage of the reduced defect measure is that 
this measure vanishes on a closed set if and only if there is strong convergence 
on this set. On the other hand, the weak-star defect measure can attach positive 
weight to a closed set where there is strong convergence. In fact, the examples 
of elliptic sequences given at the end of § 1 of [5] provide explicit examples of 
this phenomena relevant for the 2-D Euler equations with vortex sheet initial 
data. 

The general setting is the following. We consider an arbitrary sequence of 
functions ue so that ue converges weakly to u, i.e. 

ue -> U in L q. q > 1. 

For simplicity in exposition, we assume that all distributions under discussion 
have support inside a fixed compact subset of RN . Thus, the L q norm of ue 
is uniformly bounded with respect to e and the local average of ue converges 
to the local average of u, 

lim L uedx = L udx 

for all measurable sets E in RN. We consider the sequence of measures ae 
associated with the densities IUe - ulq : 

ae(E) = L IUe - ul q dx. 

Since the total mass of ae is uniformly bounded, there exists a subsequence 
that converges in the weak-star topology to a measure a, i.e. 

lim I rpdae = I rpda 

for all continuous functions qJ. The limiting measure a encodes information 
on the sets where convergence is weak but not strong. 

Definition 2.1. Assume that ue converges in the weak topology of L q to U and 
that IUe - ulq converges in the weak-star topology. The measure 

a = w· -limlue - ulq 

is called the weak-star defect measure of the sequence ue • 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REDUCED HAUSDORFF DIMENSION 67 

In the special case of noncompact Sobolev embeddings, the weak-star defect 
measure was introduced by P. L. Lions (see [6, 7] as well as the discussion in §1 
of [5] for the relation between the Lions theory and problems with vortex sheet 
initial data). 

One general problem is to determine the relationship between the vanishing 
of a and strong convergence. If ue converges strongly in L q to u on a set 
E, does a(E) = O? If a vanishes on E, does ue converge strongly on E? 
In the special case where E = RN it is clear that ue converges strongly to U 

if and only if a vanishes identically. In general the structure of E influences 
the answers and indicates various features of sensitivity which motivate our 
introduction of the reduced defect measure. The answer to the above questions 
when the set E is either closed or open is contained in the following. 

Lemma 2.1. (1) If a vanishes on a closed set F, then the restriction of Ue to 
F converges strongly to the restriction of U to F. 

(2) If ue converges strongly to U on an open set G then a( G) = O. 

In general, strong convergence on a set E is not equivalent to the vanishing 
of a on E. The above lemma is an immediate consequence of the following 
characterization of weak-star convergence for measures. 

Proposition. Suppose ae is an arbitrary sequence of measures. Then a = w* -
lim ae if and only if the following two conditions hold: 

a(G) $liminfae(G) 

for all open sets G and 

for all closed sets F. 

A sketch of the key part of this proposition is given at the end of this section. 
To summarize the above proposition, the evaluation functional on measures 
L£(a) = a(E) is lower semicontinuous if E is open and upper semicontinuous 
if E is closed in the weak-star topology. In general, there is no preferred 
inequality if E is neither open nor closed and the operations of restriction and 
weak-star limit do not commute. 

The second inequality in the above proposition motivates the definition of 
the reduced defect measure which we give below and have already mentioned in 
the Introduction. Indeed, the examples given at the end of § 1 from [5] are ex-
amples of elliptic sequences satisfying the additional structure for vortex sheets 
for 2-D incompressible flow where the weak star-defect measure a attaches 
positive weight to closed sets where the convergence is strong; the strong con-
vergence claimed above follows from the analysis given in this paper. Thus, the 
inequalities in the proposition are often strict inequalities. 

The facts above motivate the following definition. 
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Definition 2.2. Assume that u e converges weakly to u in L q (R n), q > 1 . The 
outer measure 0 defined by 

O(E) = lim sup Ie IUe - ulq dx 

is called the reduced defect measure of the sequence ue ' 

Remark. The following important fact follows from the definition. 
o vanishes on E if and only if ue converges strongly to u 
in Lq(E). 

Furthermore, from the second inequality in the proposition above, we see that 
for any closed set F, 

O(F) = lim sup ! IUe - ulq dx :::; a(F). 

This inequality implies that 0 might be small on closed sets where the measure 
a is large. In fact, in this paper we prove that O(F) is extremely small on 
closed sets F where a attaches positive weight. 

Remark. Simple examples show that in general 0 is a finitely sub additive outer 
measure. 

Finally, we sketch the proof of the first inequality in the proposition. Thus 
we assume that a = w· -limae and deduce that a(G) ~ liminfae(G) for all 
open sets G. Since a is a Radon measure, a is inner (outer) regular. Thus 
for any r5 > 0, there exists a compact K with KeG and 

a(G) - r5 :::; a(K). 

By Urysohn's lemma, there exists f E Co(RN) so that f satisfies 0 :::; f:::; 1 
and also 

Therefore, 

f(x) = 1, 

f(x)=O, 
xEK, 
xE GC • 

a(G) - r5 :::; a(K) :::; ! fda = lim if dae :::; lim! f dae :::; limae(G). 

We prove the second inequality in the proposition by using the outer regularity 
of a in a similar fashion. The proof of the fact that the two inequalities 
guarantees weak convergence utilizes approximation by simple functions and is 
left as an exercise for the reader. 

3. CONCENTRA TION-CANCELLA TION 

In this section we consider exact solution sequences satisfying the basic 
bounds (1.2)-(1.4). For arbitrary vortex sheet initial data such sequences are 
generated by smoothing the initial data (see §1 of [5]). Here we prove Theo-
rem 2 as described in the Introduction. First, we formulate and prove a stronger 
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result for steady solution sequences for 2-D Euler with external forces and satis-
fying uniform local energy and L I vorticity bounds. This steady state theorem 
provides the first link between the Hausdorff dimension of the concentration 
set of the reduced defect measure and concentration-cancellation. The proof of 
Theorem 2 is a simple corollary of the proof of this steady state theorem. 

The formulation of the steady problem is the following. Consider a sequence 
of fields ve = ve(x) on R2 such that 

(3.1) divve ® ve = Ie 
where Ie converges weakly to f in L I . Assume that ve converges weakly in L 2 
to v and that the corresponding reduced defect measure f) is concentrated on a 
set with Hausdorff dimension less than one. As indicated earlier this hypothesis 
holds if the total vorticity is uniformly bounded in the sense that 

(3.2) total mass W e ~ C 

where we is viewed as a measure. Indeed, as described in Theorem 3 of the 
Introduction, the uniform bound (3.2) guarantees that f) is concentrated on a 
set with zero Hausdorff dimension. However, for the purpose of establishing 
the weak closure property it suffices to assume that ve converges strongly on the 
complement of a set with dimension less than one. 

As described in the Introduction, the precise interpretation of the latter state-
ment is the following. There exists a parameter y < 1 and a family of sets 
F" r > 0 , such that 

(3.3) H: (F:) ~ c 
where c is independent of rand 

(3.4) lim { IVe - vI2 dx = O. iFr 
We may assume without loss of generality that F: is a countable union of open 
balls Bj with y-summable radii rj: 

(3.5) '"' r Y < c' ~ J - , 

In short, only fine open covers enter the analysis. 

Theorem 3.1. Suppose v is the weak L 2 limit of a steady 2-D Euler sequence Ve 

for which the reduced defect measure is concentrated inside a set with Hausdorff 
dimension less than one. Then v solves 

divv ® v = f 
if Ie converges weakly to f in L I . 

Proof. The essential ingredients are the covariant structure of the equations 
and the fact that ve converges strongly to v on the complement of a set whose 
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orthogonal projection onto any line L has arbitrarily small one-dimensional 
Lebesgue measure. 

The appropriate family of sets is provided by F,. If PL denotes orthogonal 
projection onto L and if m denotes one-dimension Lebesgue measure on L 
then 

c '" '" Y I-y I-y m{PL(F,)} ::; C ~ r) = ~ r)r) ::; cr . 

Since y < 1 and r may be taken arbitrarily small, the Lebesgue measure of the 
projection, i.e. the sum of the lengths of the intervals on L corresponding to 
the balls B), is arbitrarily small. 

The goal is to prove that 

f \l rp: v (/9 v dx = - f ( rp ,f) dx 

for all rp in the space of smooth divergence-free vector fields with compact 
support. The tensor contraction takes the following form in components: 

\lrp: v (/9 v = LV)rpJoX)ViV) 

where Vi denotes the components of the vector v in a specified orthonormal 
frame. The choice of the frame is arbitrary. 

Since the problem is local we may assume without loss of generality that all 
of the members of the sequence ve are supported inside a fixed compact set. 
Indeed, for this reason it suffices to assume that the restriction of e to any 
compact set has Hausdorff dimension less than one. 

For technical reasons it is convenient to introduce a scalar potential function 
y/ whose orthogonal gradient corresponds to rp: 

1. 
rp = (rpl' rp2) = \ly/ = (-oy//ox2, oy//ox I )· 

At this level, the divergence-free condition on rp is automatically satisfied and 
the steady equations take the form 

(3.6) 

The objective is to verify (3.6) for all C2 functions 11. 
By appealing to the Fourier resolution 

y/ = f ei(x'~)~(c;)dc; 
and a simple density argument, it is sufficient to prove (3.6) for all plane waves, 
i.e. functions of the form 

(3.7) 

where h depends on one variable. The strategy is to fix the normal c; and prove 
(3.6) for all C2 functions h. 
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In general orthogonal coordinates, the left side of (3.6) takes the form 

I I 02" 2 2 (0 2" 0 2,,) o 0 (V2 - VI) + --2 - --2 vl v2dxI dx2· 
XI X2 OX2 OXI 

We may choose coordinates so that e = (1,0) in which case equation (3.6) 
acting on plane waves of the form (3.7) reduces to 

(3.8) I I h"(XI)vlv2dxl dX2 = I I h'(xl)h.dxI dx2· 

In order to pass to the limit it suffices to construct a truncated test function 
which vanishes on the set where convergence is weak and then remove the 
truncation. 

Fix r > O. Notice that ve converges strongly to V except on a set whose 
projection I onto the xI-axis has small Lebesgue measure: I is a union of 
intervals I j with small total length: 

LIIjl ~t5. 
Here the set I is the orthogonal projection of F,c onto the xI-axis. 

Let 1" denote the characteristic function of I C and consider special test func-
tions of the form 

h = IX I Z 1"(S)k" (s) ds dz 

where k is an arbitrary C2 function with compact support. Notice that the 
second derivative of h vanishes on the set where convergence may be weak but 
not strong: 

h" = 1"k" 

for almost all points. Here h is a C l function whose second derivative in the 
sense of distributions is represented by an L 00 function, namely 1"k". Test 
functions with this degree of regularity are admissible in the weak formulation 
of the equations since the vector fields v under consideration lie in L 2 : the 
associated quadratic terms such as VI v2 lie in LI and allow any L oo multiplier. 
A simple approximation argument using the Lebesgue dominated convergence 
theorem confirms this fact. 

Taking h in this special truncated class yields the equation 

(3.9) I I 1"(xI)k"(XI)V~v; dXI dX2 = I I h'(xILt;. dXI dx2· 

Since ve converges strongly to v on the complement of the set where 1" vanishes 
and since Ie converges weakly to f it follows that 

(3.10) 

The last step is to fix the function k and take a sequence of functions 1" j 

which tend pointwise almost everywhere to the identity. In this case the right 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 R. J. DIPERNA AND ANDREW MAJDA 

side of (3.10) converges to the integral of k'1; since h~ converges uniformly 
to k': 

limh~ = lim IX "Cl" ds = k'(s). 

by Lebesgue's theorem. The left side of (3.10) converges to the integral of 
k" u l u2 and we conclude that 

I I k'\ v2 dx = I k'1; dx 

for all C2 functions k with compact support. Thus (3.6) holds for all C2 

functions of the form 11 = k{(x. C;)} . 
The existence of the characteristic functions "C i approaching the identity 

pointwise a.e. follows from the structure of the projection I(r) of the excep-
tional set F: onto the Xl-axis. We simply take a sequence of values rj tending 
to zero: the one-dimensional Lebesgue measure of I(rj) tends to zero since it 
is bounded by crJ-I'; the characteristic function of the complement tends to 
zero pointwise a.e. 

A similar argument using plane waves in R2 x R leads to a proof of Theorem 
2 stated in the Introduction dealing time-dependent concentration-cancellation. 

Proof of Theorem 2. We consider the distributional form of the equations, 
namely 

(3.11 ) II(qJ,·V)+VqJ:v®vdxdt=O 

where div qJ = 0 and express the test field qJ in terms of a scalar potential 11 
1. qJ = V 11 = (-a11/ax2' a11/aXI)' 

Here 11 = 11(Y) and Y = (x. t). In terms of 11 the equation becomes 

(3.12) II(V1. 11I . V) +VV1. 11:V®vdxdt =0. 

Since vt converges weakly to v in L 2 , we have 

(3.13) !~I l(v1. 11I . vt)dxdt = I l(v1. 11t . v)dxdt 

if V1.111 lies in L2. 

As in the proof of Theorem 3.1 we shall appeal to the Fourier transform 
to reduce the problem to verifying (3.12) for plane wave test functions, i.e. 
functions of the form 

(3.14) 

We remark that if both C;I and C;2 vanish, then 11 depends only on t and the 
equation (3.12) holds as a consequence of L2 weak convergence (3.13). Thus, 
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selecting appropriate coordinates we may assume without loss of generality that 
eI = 1 and e2 = O. 

As in the proof of Theorem 3.1 we shall verify (3.12) for potentials ", of the 
form (3.14) where 

(3.15) h = IX IZ r(s)k" (s) ds dz , 

k is an arbitrary C2 function and r is a bounded approximation of the iden-
tity. Fixing k and letting r approach the identity yields (3.12) for all ", of the 
form (3.14) with h replaced by k. This is the desired result. The verification 
of this outline proceeds as follows. 

In the aforementioned coordinates we have 
2 I I VV1.",: l ® l dx dt = I I I ~X~ v~v; dX I dX2 dt 

= I I I r(teo + XI )k" (teo + XI )v~v; dX I dX2 dt. 

By hypothesis the Hausdorff dimension of the space-time exceptional set is less 
than one. Thus ve converges to v in L 2 on the complement of a set whose 
space-time (orthogonal) projection I onto the line through (eo' 1,0) has arbi-
trarily small Lebesgue measure. Choosing r to be the characteristic function 
of Ie as in the proof of Theorem 3.1 shows that 

lim I I VV1.",: l ® ve dx dt = I I VV1.",: v ® v dx dt 

for functions ", of the form (3.14) and (3.15). Combining this statement with 
(3.13) yields the basic relation (3.12) for all such ",. Since r may be taken 
arbitrarily close to the identity we deduce that (3.12) holds for all ", of the 
form ", = k(y . e) where k is an arbitrary C2 function. 

Remark 1. The analysis of the steady problem above does not imply that the 
form 

S(rp, ue) = I Vrp: ve ® ve dx 

is continuous in the weak topology of L 2 if rp is smooth and divergence-free. 
If the test function is smooth and fixed the limiting process may produce a 
value which differs from S(rp, ve ). However, we observe in this connection 
that if the weak-star defect measure is concentrated inside a set with Hausdorff 
dimension less than one, then S as well as its time-dependent counterpart T 
are continuous in the weak L 2 topology: 

lim S ( rp , ve ) = S ( rp , v) 

if ).l is concentrated inside a set E such that H Y (E) < 00 for some y < 1. 
The proof follows the lines of Theorem 3.1. 
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Remark 2. In general the statement that the weak-star defect measure is con-
centrated on a small set is stronger than the corresponding statement for the 
reduced defect measure. Nevertheless u satisfies the equation although u is 
not accessible through the sequence ve from the viewpoint of Sand T and 
the classical weak topology. A progressive renormalization of the topology can 
suppress weak-star defects: a slight variation on the arguments above shows that 
there exists a sequence of smooth fields rp e tending to rp such that 

limS(rpe' vel = S(rp, v) 
although it may happen that 

limS(rp, vel =F S(rp, v) 
in general. A similar statement holds for T. 

4. UNIFORM DISTRIBUTION FUNCTIONS 

Our goal here is to prove the uniformization theorem described earlier in 
the Introduction. We begin our discussion with several preliminary remarks 
and then we state this theorem. The proof of this theorem is completed in this 
section except for results which are a corollary of the Chebyshev inequality, 
described in the next section. 

Let w denote a nonnegative Borel measure on R n with compact support. 
In this section we are concerned with the behavior of the radial distribution 
function of w: 

w(x, s) = w{B(s, xn 
where B denotes the open ball of radius s centered at x. 

We first remark that w decays at most points of the space Rn. Fix pos-
itive numbers r5 and r and consider the closed set E on which w decays 
algebraically of order r5: 

E = {x:w(s,x) $l if 0 $ s $ r}. 

The exceptional set E C on which decay is lost has finite r5-order Hausdorff 
premeasure: 

J C H, (E ) $ const. TMw 
(see Lemma 4.1 below). Thus, the weight which w assigns to a ball of radius 
s decays locally like l except possibly for a set with "dimension" equal to r5. 
The size of the exceptional set is bounded in terms of the total mass of wand 
a constant that depends only on r5. The proof relies on a standard covering 
lemma. 

A general problem deals with the existence of uniform exceptional sets. Given 
a family of Borel measures with uniformly bounded total mass, does there exist 
a sequence all of whose members exhibit prescribed decay on the complement 
of a small set? We shall answer this question in the affirmative through a study 
of the associated Riesz potentials. Without loss of generality we shall assume 
that all distributions under discussion are supported inside the unit ball. 
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The existence of uniform exceptional sets for uniformly bounded measures 
is established in the following theorem. 

Theorem 4.1. Consider a family of nonnegative measures W on R n satisfying 
TMw ~ 1 . Fix parameters 0 and )I such that 0 > 0 and )I > no. There exists 
a sequence wk with the following property. For every positive r there exists a 
closed set F, such that 

o F, C {x:wk(s,x) ~ Ks , 0 ~ s ~ 1, k ~ l/r} 

and the )I-order Hausdorff premeasure of level r satisfies 

(4.1) H:(F:) ~ c(o,)I) 

where 

(4.2) -0 K=c+cr 

and c is a universal constant. 

Remark 1. The smaller the value of r the farther along the sequence it is nec-
essary to go in order to achieve uniformity in decay of the distribution function. 
The choice of k ~ llr is taken for convenience. 

Remark 2. The premeasure of the uniform exceptional set F: is bounded by 
a constant which depends only on 0 and )I. The restriction of )I to values 
greater than no is adopted for simplicity so that the growth of the coefficient 
K in (4.2) is described by the same parameter as the decay of the distribution 
function, namely o. Similar results hold for arbitrary )I. 

Several preliminary remarks are in order. We recall that the weight which 
)I-order Hausdorff measure assigns to a set is expressed through a limit of pre-
measures: 

H Y (E) = lim H: (E) = sup H: (E) . 
,-0 ,>0 

The premeasure H: (E) is obtained by considering the most efficient countable 
cover of E by open balls Bj and adding their radii rj to the specified power 
)I: 

H:(E) = inf{I:rJ:E C UBj' rj ~ r}. 

In general H: is subadditive. In the limit as the level of observation r ap-
proaches zero, only the fine covers enter into the countably additive measure 
H Y • 

More generally, a Hausdorff measure H P may be defined through limits 
of premeasure Hf based on an arbitrary continuous increasing function P 
vanishing at the origin: 

(4.3) Hf (E) = inf {I: p(r) } . 
For technical reasons associated with covering arguments it is convenient to 
assume P(5s) ~ KP(s) for some constant K. 
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Lemma 4.1. Suppose w is a nonnegative measure with finite total mass. The 
closed set 

E C = {x: w(s, x) ~ P(s) if 0 ~ s ~ r15} 
satisfies 

(4.4) 

Proof. Standard continuity properties of measures imply that E C is closed. In 
order to verify (5.2), we observe that 

E = {x: w(s, x) > P(s) for some s with 0 ~ s ~ r15} 

can be covered by a union of balls centered at points in E: 

E c U{B(s(x),x):x E E, 0 ~ s(x) ~ rI5}. 

A standard covering lemma stated below implies there exists a countable number 
of points x j in E such that the sequence 

B j = B(s(x) , x j ) 

is disjoint and covers E after a five-fold expansion: 

EcUB;, 
Summing the inequalities 

yields 
LP(5s) ~ KLw(B) = Kw{UBj } ~ KTVw 

since B j are disjoint. Thus E can be covered by a countable union of balls, 
namely B; , whose radii 5s j are summable with respect to P and do not exceed 
the prescribed level r. Inequality (4.4) follows from definition 4.3. 

Covering Lemma. If J is an arbitrary family of balls Bo. contained in a bounded 
set of R n then there exists a countable disjoint collection Br . of J whose five-fold 

J 

expansion covers J : 
UBo. C UB5rj · 
J 

We refer the reader to [8] for a proof. 
With this preliminary information, we next describe the proof of the uni-

formization theorem. 

Proof. The theorem follows as a corollary of a similar statement that establishes 
a uniform pointwise bound on the associated Riesz potentials, 

qJ(x) = f 1 t5 dw (y). JRn Ix-yl 
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We shall show that there exist large closed sets F, such that 

(4.5) qJk(X) ~ K(r) for k ~ Ijr 

if x E F, . It follows that 

-J 1 1 S wk(s,x)~ Jdwk~qJk(x)~K. 
B(s.x) Ix - yl 

More refined results can be obtained using more general kernels. 
The strategy is to show that the associated Riesz potentials qJ lie in a compact 

subset of Wl.P if p < nj(6 + 1). We establish this fact in the remainder of 
this section. To complete the proof of the theorem we use the following lemma, 
which is a corollary of the Chebyschev inequality established in the next section. 
The proof of this lemma is postponed until that section. 

Lemma 4.2. Assume that fk --+ f in W l •p (Rn) with 1 < p < n. There exists a 
subsequence so that for every positive e there exists a Borel set P such that fk 
converges pointwise to f on P and H'Y(pc ) = 0, Y = n - p + e. Furthermore, 
P is an increasing limit of sets Pj on which fk converges uniformly to f. The 
y-order premeasure of Pj tends to zero. More precisely, 

where a j ,rj tend to zero. 

P=UPj , 

H~(P;) ~ aj 

Using the compactness of the Riesz potentials qJk to be established below, 
we complete the proof. We apply Lemma 4.2 to qJk' Thus, there exists a 
subsequence qJk and a function qJ in Wi ,p so that qJk converges to qJ on the 
complement of a set with bounded y-order premeasure. Since the limit potential 
qJ belongs to Wi ,p (Rn ), qJ has a pointwise bound on the complement of a set 
with bounded y-order premeasure (see the main Chebyschev inequality in the 
next section and [5]). Combining the two exceptional sets provides a uniform 
pointwise bound (4.5) on a sequence of potentials qJk where F, satisfies (4.1). 

The compactness of the potentials qJ follows from the hypothesized uniform 
bound on the total mass of the measures w. 

If D S denotes the operator defined through the Fourier transform by 

1)5 qJ = 1c!IS qJ 

then 
S ! 1 D qJ = J+ dw(y) Ix- yl S 

provided that 6 + s < n . 
Indeed, on the Fourier side we have 

DsqJ = 1c!IS qJ = clc!nc!l-n+J w(c!) = clc!l-n+(J+s) w(c!) , 
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since 
1.v1-8 = el<!1 8- n if 0 < () < n. 

Since all of the measures ware supported inside a fixed compact set, namely 
the unit ball, Jensen's inequality implies 

S p J 1 ID qJ(x)1 :5 e (15 ) dw(y). Ix - yl +s p 

Integration with respect to x yields a uniform bound of the form 

f IDsqJl P dx:5 eJJ 1 (15 ) dxdw:5 e J R" Ix _ yl +s P 

if (t5 + s) p < n . 
As discussed in the Appendix above (A-12), for the purpose of obtaining the 

uniform estimates on the potentials in (4.5) when w has bounded support, we 
can use the Bessel potentials defined in (A-12) (see Stein [8]) in an equivalent 
fashion as we used the Riesz potentials above. The identical argument given 
above applies and we obtain a uniform bound on the Bessel potentials qJ of 
order t5 in L "P forany t with (t5+t)p < n. Here L 1.P is the space of tempered 
distributions u so that (1 + 1<!12)1/2U(c!) has an inverse Fourier transform in 
LP(Rn) • 

The injection, L"P -+ W l - e .p , is continuous for any e > 0 and the injection 
W I •P -+ W s .P is compact for t > s [1, 8]. Thus, if we consider uniformly 
bounded measures supported inside a fixed ball, the estimate above proves that 
the associated Riesz potentials restricted to any bounded subset of R n lie in a 
compact subset of Ws .P provided that (t5 + s) p < n. Since for n = 2. s = 1 
satisfies these restrictions, the proof is complete. 

5. CHEBYSHEV INEQUALITIES 

Our objective here is to establish the result on uniform convergence of func-
tions W1,p(R n ). p < n, which we stated in Lemma 4.2. Also, in order to 
complete the proof of the uniformization theorem of the last section, we need 
to prove that an arbitrary function I in W 1•p (Rn) is uniformly bounded ex-
cept for a set with small l'-order Hausdorff premeasure with l' = n - p + e . 
Both of these results are corollaries of a refinement of the classical Chebyshev 
inequality which we develop here. This refinement is similar to the Cheby-
shev inequality from [5] except here we replace p-capacity by an appropriate 
Hausdorff premeasure. We also present a logarithmic refinement. 

The classical Chebyshev inequality states that the Lebesgue distribution func-
tion a of an element I of LP(Rn ) is dominated by an algebraic function of 
order p: 

(5.1 ) a(A) = H n {x: III ~ A} :5 ;..-p J I/IP dx. 

For functions with compact support, the essential behavior is associated with 
large values of ;... 
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If f lies in W l .p then n-dimensional Lebesgue measure can be replaced 
in (5.1) by a finer set function, namely y-order Hausdorff premeasure where 
y = n - p + 8 and 8 is arbitrarily small. 

Theorem 5.1. If 8 > 0 and p < n then there exists a constant c = c(n, p, 8) 
such that 

H~(}){x: If I ~ A} ~ cOP 
for all f in WI,p(R n) where 

0= a/A, a = {In IV flP dX} liP, 

r(O) = cOqln , q = np/n - p. 
Remark 1. The detailed structure of the level function r( 0) is not crucial for 
the applications to the Euler equations. We shall make use only of the fact 
that r tends to zero for fixed A as a tends to zero and for fixed a as A 
tends to infinity. This is due essentially to the fact that premeasure depends 
monotonically on the level: 

H: (E) ~ H: (E) if r > s. 

Remark 2. In treating discontinuous functions f it is convenient to replace f 
by the corresponding Lebesgue function Lf: if x is a Lebesgue point of f 
then Lf(x) is the associated Lebesgue value, otherwise Lf is zero. We shall 
adopt this convention throughout the paper. 

Remark 3. If f lies in W l .p (R n ), p < n , then the complement of the Lebesgue 
set has vanishing H Y measure, y = n - p + 8 for all positive 8 [5]. 

Proof. We claim that the interval set 

A = {x: If I ~ A} 

is contained in a set of the form 

D = {x: r -Y r IV flP dy ~ M for some r with 0 < r ~ ro} 
lB(r.x) 

if the parameters ro and M are chosen appropriately. In short, A is contained 
in a set where the gradient fails to exhibit uniform local decay of a specific order: 
the normalized local maximal function of the gradient remains above M for 
some ball of radius r ~ ro' The choice of ro and M are given below. 

A standard argument using the covering lemma of the previous section shows 
that 

Y -If fPd H5ro (D) ~ const. M IV I Y 

with a universal constant. Since A is contained in D a similar inequality holds 
for A and yields the desired result. The proof of the inclusion is based upon 
the standard fact that the pointwise values of a function are dominated by the 
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normalized maximal function of the derivative. At a Lebesgue point I may be 
expressed as a telescoping sum of dyadic local averages: 

(5.2) 

where 

I(x) = fo(X) + L fj+1 (x) - fj(X) 
j~1 

fj = t I(y)dy 
J 

and Bj = Bj(rj' x), rj = r j ro' The slash denotes integration with respect to 
normalized Lebesgue measure 

tidY = m;E) tidy. 

An application of the Poincare inequality reveals the dependence on the local 
behavior of the derivative: 

since the difference of the two consecutive averages is bounded by the average 
oscillation, 

Ilj+1 - fjl :5 2n 10 II - fjl dy. 
J 

Suppose that A is not contained in D and choose a Lebesgue point z in A 
such that 

It follows that 

(5.3) 

J IY'/IP dY:5 Mr-PH if 0 < r:5 roo 
JB(r.z) 

since z lies in A and rj :5 ro' The strategy is to select M and ro so that (5.3) 
is violated. For this purpose the first term on the right of (5.2) can be estimated 
using the Sobolev inequality: 

Ifo(z)1 = Ito Idyl :5 {to I/lq dY } I/q 

:5 r~n/q {in I/lq dy } l/q :5 clr~n/qa, 

where c1 is a universal constant and Bo = B(ro' z). Letting 
n~ e/p c2 = 2 L...Jrj 

j 

yields the inequality 

(5.4) A. < c r-n/qa+c M 1/P 
- I 0 2 
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as a consequence of (5.3). We conclude that A is contained in D if ro and 
M are chosen so that each term of the right side of (5.4) equals ).,/3: 

The value of c in the conclusion of the theorem is easily derived from c i and 
c2 • 

One of the consequences of the generalized Chebyshev inequality is the fol-
lowing refinement of Egorotrs theorem, which we used in Lemma 4.2. 

Theorem 5.2. Suppose 1; converges to f in Wi ,P(Rn ), p < n, Then there 
exists a subsequence fk with the following properties. For every positive e there 
exists a Borel set P such that fk converges pointwise to f on P and BY (pc) = 
0, y = n - p + e. Furthermore, P is an increasing limit of sets Pj on which fk 
converges uniformly to f. The y-order premeasure of Pj tends to zero. More 
precisely, 

(5.5) 

where a j and rj are certain specified sequences. 

Remark 1. As mentioned above, pointwise values refer to the associated Lebes-
gue functions. The associated Lebesgue functions converge uniformly on the 
complement of a small set. 

Remark 2. The rate at which aj and rj in (5.5) tend to zero depends on the 
manner of indexing. We shall take aj = 1/ j for convenience. 

Proof. Consider the deviation set As ,k at level s and tolerance 1/ k : 

As,k = {x: l!s(x) - f(x)1 ~ l/k}, 

A uniform deviation set D m ,k for indices above m is defined by intersection: 

D = nA m,k s,k' 
s?:m 

A typical uniform convergence set takes the form 

u= n Dm(k),k 
k?:ko 

for some integer-valued function m(k). The definitions imply that fk con-
verges uniformly to f on U. The problem is to estimate the complement: 

(5.6) Fk = U A;,k' 
s?:m(k) 

Taking 
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and A = 1 I k in the generalized Chebyshev inequality yields the following bound 
on a typical term in (5.5): 

H:'(A~.k) ~ ceo:: 

where rs = r(ko:s )' By passing to a subsequence we may assume that the 
sequence O:m is nonincreasing. Consequently, 

H Y (A c ) < H Y (A c ) < ce o:P 'm s.k - '. s.k - s 
if s ;:::: m by virtue of the monotonicity properties of premeasure. Notice that 
r m ;:::: rs' 

Sub additivity yields an upper bound on the union of complements, 

(5.7) H:m (U A~.k) ~ ce L ex:. 
s?m s?m 

By passing to a subsequence we may assume that 
(5.8) 

and then choose a function m(k) so that the right side of (5.7) is summable, 
e.g., 

Therefore 

e L o:P ~ l/k2 . 
s?m(k) 

H~ (Fk ) ~ clk2 
where rk = r(kO:m(k))' By passing to a subsequence we may assume that rk is 
nonincreasing and hence that 

H~ (Fk ) ~ H~ (Fk) ~ cle. 
Fixing j and summing on k yields the desired result 

H~ (UFk) ~cLllk2~clj 
k?J k?J 

by defining 
P; = U Fk · 

k?J 

Remark 1. The proof provides a criterion to select a subsequence with the de-
sired uniform convergence properties, namely the summability condition (5.8) 
together with associated monotonicity conditions. The existence of a selection 
principle is useful in the analysis of defects in the time dependent Euler equa-
tions. 

In order to obtain the logarithmic refinement on the size of the exceptional 
set it is necessary to extend the Chebyshev inequality to more general convex 
functions as follows. 

Let g be an increasing convex function on [0, 00) vanishing at the origin 
and m a positive integer. 
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Theorem 5.3. Suppose h is a positive decreasing continuous function on (0.00) 
such that 

(5.9) fOO h(e -s) ds :5 1. 

If y = sn g{s-m h(s)} then Hausdorffpremeasure based on the function y satis-
fies the inequality 

(5.10) 

for all smooth compactly supported functions f on Rn. The level r is defined 
by 

n -1/ f r = cA I I dy 

and c is a universal constant. 

Remark 2. The right side of (5.9) may be replaced by an arbitrary positive 
constant. The change influences only the choice of c. 

Remark 3. The inequality (5.10) extends by closure to elements of the associ-
ated Orlicz-Sobolev space. 

Remark 4. The rate at which the level r approaches zero as A. tends to infinity 
may be improved. The refinement is not required for the present applications 
to the Euler equations. 

Proof. Take A. = 1 and consider A = {x: If I 2: I}. We claim that 

A cD = {x: r g(IDm fl) dy :5 cy(s) for some 0 < s :5 n} . 
iB(S.x) 

The dyadic representation (5.2) yields 

1 :5lf(x)1 :511o(x)1 +2n~r7 Ie IDmfldy 
J 

if x lies in A. Jensen's inequality implies that 

(5.11) 1 :51101 + 2n ~ r7 a j 

where 

aj = g-I {lsi g(lDm fl)dY } . 

Suppose x does not lie in D and choose the parameters so that each term on 
the right of (5.11) does not exceed 1/3. The first term is easily handled: 

1101 :5 t If I dy :5 cr -n / If I dy. 
B(r.x) 

The second term admits an upper bound of the form 

2n~h(r) = 2n~h(2-jr) 
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since x is in DC and uj :5 r;mh(rj ). Thus it suffices to consider decreasing 
functions h such that 

( 5.12) 

where c is an appropriate constant. The dyadic sequence rj = r2- j may 
be replaced by any exponential sequence and the constant in (5.12) may be 
normalized to unity. 

Remark 5. Theorem 5.3 is the key ingredient in the proof of the logarithmic 
refinement on the size of exceptional sets for Poisson sequences mentioned in 
the Introduction. 

6. LP VELOCITY ESTIMATES 

In the last two sections, we developed a uniformization theorem which yields 
a uniform decay rate for the radial distribution functions of vorticity, w(s, x) = 
w{B(s, x)} , on a closed set with complement having small Hausdorff premea-
sure. Here we shall prove that if the radial distribution function w decays with 
order J on a set F, then the velocity field v = V.l Ij/ admits a uniform L P 

bound on the set F for some p with p > 2. This fact combined with the 
discussion presented in the Introduction and §4 yields Theorem 3 on Hausdorff 
dimension of the reduced defect for elliptic sequences stated in the Introduction. 

Without loss of generality, we assume that the stream function Ij/ satisfying 
ll.Ij/ = w has support in the unit ball (see the Appendix). We will prove that 
if the radial distribution function, w(s, x) = w{B(s, x)}, of the measure w 
decays on a set F with order J, then the velocity field v = V.l Ij/ lies in the 
Marcinkiewicz space M P where p = 2 + J/(I - J), i.e. 

As usual, 

(6.1 ) 

uF(l) == H2 {x E F: Ivl > l} :5 crP. 

v denotes the orthogonal complement of the gradient of Ij/: 

.1 
u=v.llj/=j(X- Y ) dw(y). 

Ix _ yl2 

Theorem 6.1. Suppose w is a Borel measure on R2 such that TMw:5 I. If 
for all x E F, 

(6.2) 

then 
w(s, x) :5 Ki for 0 :5 s :5 I 

luF(l)I/P :5 cJ- 1 + cK 
where c is a universal constant. 

In other words, the L 00 norm of the normalized maximal function of the 
vorticity dominates the M; norm of the velocity: 

M;(v) :5 cJ- 1 + c suprJ(x, w) 
xEF 
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M;(v) = SUpAO'F(A)I/P. 
-J rJ(X. W) = sups W(S. X). 

s 

85 

Remark 1. If W is an arbitrary measure with finite total mass on R2 then v 
lies in L P for all p < 2. An application of Jensen's inequality to (6.1) shows 
that 

Ivlp ::; cpTMw. 
The constant c p approaches infinity as p approaches the value 2. 

Remark 2. M: is boundedly embedded in Lq(F) if p> q since 

! Iflq dx = - 1000 Aq dO' = 1000 qAq-IO'(A)dA 

so the weak estimate yields L q bounds for 2 < q < p . 

Proof. We shall derive pointwise bounds on u over sets Ak of the form 

Ak = {x:w(s.x)::; ks lH if 0 ::; s::; 11k} 

and examine their growth with k in comparison to the size of Ak • For this 
purpose we assume for simplicity that 'II is smooth. The general case is easily 
treated by approximation. 

For arbitrary x we have 

(6.3) lu(x)1 ::; c ! Ix - yl-I dw = C 10 1 
S -I dw(s. x). 

If x lies in Ak n F , an integration by parts is permissible in (6.3) to yield 

lu(x)l::; cw(l.x) +c 10 1 s-2w(s.x)dx. 

Splitting the integral at 11k and using the global 6-order decay (6.2) yields 

Io l / k -IH /1 -2+J lu(x)l::;c+ck s ds+c Ks ds. 
o I/k 

The optimal choice of e, namely e = 6, produces the following pointwise 
bound on Ak : 

lu(x)1 ::; c + dk l - J 

where d = c6- 1 + cK. 
If we choose k so that 

(6.4) I-J 2c + dk = A 

then {x E F: lui> A} C A~ and consequently 

O'F(A) = H2{X E F: lui> A}::; H2(A~). 
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Thus the problem reduces to an estimate on the two-dimensional Lebesgue mea-
sure of A~. From the definition it follows immediately that 

I+J( c) k H5/k Ak ~ cl 
using the covering lemma of §5. Thus A~ can be covered by a countable union 
of balls B j with (1 + 0 )-summable radii r j such that r j ~ 51 k : 

Therefore 

GF(A.) ~ 'LH2(B) = c 'LrJ-JrJ+J ~ ckJ- 1 'LrJ+J ~ ckJ-2. 
Expressing k in terms of A. through equation (6.4) yields the desired upper 
bound on GF(A.) for values of A. greater than a fixed constant and hence the 
conclusion of the theorem. 

Remark 3. As mentioned earlier, we may combine Theorem 4.1 on uniform 
exceptional sets with this corollary to obtain a uniform restricted L P estimate 
for sequences of measures with uniformly bounded total mass. As a function of 
o , the associated exceptional sets has uniformly bounded Hausdorff premeasure 
of order co . This observation yields Theorem 3. 

7. SPACE-TIME DEFECTS 

This section concerns the size of space-time L 2 defects for approximate 
solution sequences for 2-D Euler. By definition these approximate solution 
sequences have uniformly bounded local kinetic energy and vorticity 

(7.1 ) ( Iv(x, t)1 2 dx + TMw(·, t) ~ K 
Jlxl~R 

with K a fixed constant for arbitrary R, T > 0 with 0 ~ t ~ T. Here we 
prove the theorem on space-time defects in approximate solution sequences for 
2-D Euler stated in the Introduction. The strategy of the proof combines tem-
poral compactness for Riesz potentials and Holder estimates in time together 
with the argument for elliptic sequences at fixed time presented in the last three 
sections. The compactness estimates and Holder estimates in time are valid for 
any approximate solution sequences for 2-D Euler and involve various interpo-
lation arguments. These lemmas are proved in the Appendix so that the main 
argument is not interrupted. Next, we give the proof of Theorem 1 from the 
Introduction. 

Given the sequence of measures, we utilize the associated Riesz potentials, 

qI(X, t) = ! Ix - yl-Jlwl(y, t). 

The following lemma generalizes the uniformization theorem, proved earlier in 
§4 for elliptic sequences. 
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Lemma 7.1. Fix 0 and )' such that )' > 20. Given a family of solutions satis-
fying (7.1) there exists a subsequence uk with the following property. For each 
t there exists a collection of closed subsets F,(t) , r> 0, of R2 such that 

(7.2) H: {F: (tn ~ c, 

(7.3) 

if x lies in F,(t) and k;::: l/r. The constant on the right of (7.2) is universal. 

Remark. The pointwise bound (7.3) implies that the associated radial distribu-
tion functions 

Wk(s, x, t) = Iwk(·, t)I{Bs(xn 
exhibit temporally uniform o-order decay if x lies in the complement of the 
exceptional set F: ( t) . 
Proof. First we apply Lemma A.2 from the Appendix, which establishes com-
pactness of the Riesz potentials in spaces of the form X = C {[O, T] ; W S ,p} , 
(0 + s)p < 2. Taking s = 1 and p = 2/(20 + 1) for example guarantees the 
existence of a sequence rp j in X and an element rp on X such that rp j con-
verges to rp in X. In order to produce the exceptional sets F: (t) for all t and 
r it suffices to select a subsequence rp k that rapidly converges to rp. For this 
purpose let 

Q j = sup f IVrpj(x, t) - Vrp(x, tW dx. 
O<t<T 

As a consequence of Remark 1 in §5 it suffices to select a subsequence Q k with 
certain monotonicity properties such that Qk is summable in order to construct 
the exceptional sets. We immediately have 

f IVrpk(x, to) - Vrp(x, to)I P dx ~ Q k 

for each to. Thus rp(., t) converges fast enough to rp(., to) in Wi ,p for each 
to· 

We conclude from uniformization Theorem 4.1 that there exists an appro-
priate family F: (to) of exceptional sets for each to if k ;::: 1/ r . 

With the above facts as background, we next formulate a general theorem. 
This theorem yields Theorem 1 for approximate solution sequences for 2-D 
Euler stated in the Introduction as an immediate corollary. We develop this 
corollary after we state Theorem 7.1. 

Theorem 7.1. Fix positive numbers e,)" Q, p, and q such that 1 < q < p. 
Suppose {v} is a 2 -D Euler sequence which satisfies (7.1) and the following 
property. For every tin [O,T] there exists a family of closed sets F,(t) , r>O, 
in R2 such that 

(7.4) 
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where c is a fixed constant and all members v of the sequence satisfy 

(7.5) Iv(" t l ) - v(" t2)ILq '5: clltO
, 

(7.6) 

The conclusion is that if s satisfies q < s < p then there exists a family of closed 
sets G" r> 0, in R2 x [0, T] such that 

(7.7) H:+I+t(G~) '5: c1 

and all members v of the sequence satisfy 

(7.8) IvIU(Gr) '5: c1 ' 

where the constants depend on c and s. Here all LP norms are local over 
Ixl '5: R. 

First, we describe the fashion in which the above theorem yields Theorem 1, 
the result on Hausdorff dimension for the reduced defect measure for approxi-
mate solution sequences for 2-D Euler. We only need to verify the hypotheses 
in (7.4)-(7.6) with p > 2 since (7.7), (7.8), and the fact that ve converges 
strongly to v in LT (B R (0) x [0, TD for r < 2 yield the required result on the 
reduced defect by simple interpolation. We have already verified the hypothe-
sis in (7.4) through the argument in Lemma 7.1. To verify (7.6), we need to 
restrict to members of the sequence still denoted by v k which satisfy k ~ 1/ r : 
the smaller the choice of the level r the farther along the sequence one must 
proceed in order to achieve uniformity in the LP bound. The choice k ~ 1/ r is 
a matter of indexing. With the remark below Lemma 7.1, we verify the uniform 
LP-bound with 2 < p < 2+<5/1-<5 required in (7.6) by applying Theorem 6.1 
on uniform velocity estimates from §6. Finally, in the Appendix, we verify that 
every approximate solution sequence for 2-D Euler satisfies the Holder bound. 

Remark 1. No constraints are required on the parameters q and a which 
specify the degree of temporal regularity; q may be arbitrarily close to one 
and a may be arbitrarily close to zero. The reason is that the bound on the 
size of the exceptional sets F,e (t) is uniform in t. Weak temporal continuity 
conditions suffice to construct a space-time exceptional set out of a family of 
spatial exceptional sets. 

Finally, we give the proof of Theorem 7.1. 

Proof. The objective is to estimate restricted distribution functions of the form 

u().) = m3{(x, t)eG, n [0, T] : Ivl ~).} 
where m3 denotes 3-dimensional Lebesgue measure and G,(t) denotes the 
cross section of G, at time t. 

We shall show that u '5: c;.-P by estimating a Riemann sum over a uniform 
finite mesh {tj: 1 '5: j '5: m2N} where m and N are integers chosen in an 
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appropriate fashion: 

U(A) = loT f dt ~ E sup{lf(t)I: t E I j }l1t 
J 

where 
f(t, A) = m2{x E Gr(t): Iv(x, t)1 ~ A}, 
I j = {t: It - tjl ~ l1t}. 

89 

The mesh consists of m2N points t j that partition [0, T] into intervals of 
equal length l1t. Thus, the pth order Marcinkiewicz norm of the restriction 
of u to Gr is bounded by a fixed constant. The same can be said for the L S 

norm if s < p. Here and in the following we use the symbol v to denote an 
arbitrary member of the sequence vk • 

The exceptional set Gr is constructed in the following way. Fix r and select 
a point t j of the mesh. Consider the spatial exceptional set F; = F: (t j) • 

Notice that the )I-order premeasure of F: is bounded uniformly with respect 
to r by (7.4). Without loss of generality we may assume that FJ is a countable 
union of balls B. k in R2 with radii r. k satisfying 

J. J. 

(7.9) Er;'k ~ c and rj .k ~ r. 
Associate with each ball a cylinder with height h j : 

(7.10) Cj .k = B j .k x {t: It - t) ~ h/2}. 

We define the space-time exceptional set G~ to be a union of cylinders, namely 

(7.11) GC = UC. k r J. 
j .k 

and require that the heights satisfy the following inequalities 

(7.12) "h1+t < c and h. < r L.JJ - J-

where c is a fixed constant. We first observe that the cylindrical premeasure 
of G~ is bounded uniformly with respect to r by virtue of (7.11) and (7.12). 
In general the (r, 7r )-order cylindrical Hausdorff premeasure of a set E is de-
termined by the most efficient countable cover with cylinders of height h j and 
sectional radius rj: 

HrT.7!(E) = inf {E r;h;: E C U C(rj' h)} 

where r j ~ rand h j ~ r. For the special case at hand we have 

(7.13) HY·l+e(Gc) <""rY h1+t<c"h1+t<c r r - L.J L.J J.k J - L.J J -

using (7.11) and (7.12). The definitions of h j and tj are given below. 
Cylindrical and spherical premeasure satisfy the following inequality 

(7.14) HrH7f (E) ~ cHrT •7f (E) 
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where the constant depends only on r, 7t and the dimension of the space. Thus, 
the upper bound (7.4) on the y + 1 + e-order premeasure of G~ follows from 
(7.13) and (7.14). 

In order to obtain the desired upper bound on a we shall first show that 
(7.15) a(A) ~ cTA.- P + CT!itaqA-q. 

To this end, we shall show that 

(7.16) 

if t E I j where 

(7.17) -p 1 Idq -q A j = CA and B j = C t - t j A . 
Substitution of the pointwise bounds (7.17) into the Riemann sum yields (7.15). 

In order to prove (7.16) we first observe that if t lies in I j then the t-section 
of G~ contains FJ . Thus 

f(t ,A) ~ m2{x E Fj: Iv(x, t)1 ~ A} 

if t E I j • The triangle inequality implies that 

f(t ,A) ~ m2{x E Fj: Iv(x, tj)1 > A12} + m2{x E Fi Iv(x, t) - v(x, t)1 > A12} 

and therefore (7.16) holds with 
A j = m2{x E Fj : Iv(x, t)1 > AI2}, 

2 B j = m2{x E R : Iv(x, t) - v(x, t)1 > A12} 

if t E I j • The restricted L P bound (7.9) yields the desired bound on the 
spatial distribution function of the restriction of v to Fj and hence on A j • 

The temporal Holder estimate (7.5) yields the desired bound on B j • Thus 
(7.17) holds. 

Finally, the integer N is chosen so that the factor !itaq in (7.15) compensates 
for the large term r q on the right side of (7.15). We rewrite (7.15) in the form 

a ~ cTA. - P + cTA. - P P 
where 

P = !itaq AP- q = (rN - 1 Ttq AP- q. 
We fix A and choose N sufficiently large to guarantee that P is dominated by 
a fixed constant. 

It is convenient to regard the set of points t j as a union of a sequence of 
finite meshes Mk defined inductively as follows. Assume with loss of generality 
that Tlr is an integer and let m = Tlr. Take Ml to consist of tj = jr 
where 1 ~ j ~ m. Given Mk define Mk+l = Mk U Ck where Ck denotes 
the collection of midpoints of the subintervals of (0, T) determined by Mk • 

Notice that M k+1 contains twice as many points as M k • Thus, Mk consists 
of m2k points t j' 1 ~ j ~ m2k , which partition (0, T) onto intervals of 
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equal length and may be regarded as a disjoint union, Mk = U;':-oJ Ci by taking 
Co=MJ • 

If tj lies in Ci , define the corresponding hj to be r/2 i , i.e., the distance 
between consecutive points of Ci • Thus the sum of the heights associated with 
points of Ci equals T and 

Lh:+e = LL{h~+e:tj E CJ:::; L(r2- i ) L{h/tj8CJ 
i i j 

:::; T L(r2- i / :::; const. 
i 

ApPENDIX: TRUNCATION, INTERPOLATION, 
AND HOLDER CONTINUITY IN TIME 

Here we verify that we can truncate approximate solution sequences for 2-D 
Euler which satisfy the conditions from Definition 1.1 of [4]. We also prove the 
temporal Holder continuity estimate in (7.5) needed in the proof of Theorem 1 
as well as the temporal compactness lemma for Riesz potentials which we used 
to begin the proof of Lemma 7.1. 

The requirement that the velocity field vanishes uniformly at infinity for the 
approximate sequence of velocity fields guarantees that the stream function ",£ 
satisfying 

(A-I) £ 'l"71. £ V=v'" 
splits into a sum of stream functions 

",£ = vt(lxl, t) + Ijl(X, t) 
with 

and 
ijl(x, t) = 2~ / log Ix - yl(;/(y, t) dy. 

Here (;)£(y, t) is a smooth rapidly decreasing function with 

/ (;)£(y,t)dy = 0, 

For a fixed function p with p E C';, P? 0, supp p S;;; {xllxl < R + I}, P =- / 
for Ixl < R , we consider p",£ which satisfies 

(A-2) !l.(p",£) = pa/ + 2V p . V",£ + !l.p",£ 

and 

(A-3) 1. (£) £ £ 1. V . p", = pv + '" V p. 
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We need to verify a uniform L 2 bound as in (1.2) for V.l (p",t) and a uniform 
L I bound for !J.(p",t). The stream functions ",t are only determined within 
an additive constant so we modify ijit(x. t) by a constant as follows 

27tijit = { ( log Ix - yla/(y. t) dY } 
Jlx-YI~4R+4 

+ { ( log Ix - yl(;/(y. t) dy - /lOg+ Iyl(;/(y. t) dY } 
J 1x- YI?4R+4 

-t -t 

= "'I + "'2 . 
The first term in brackets, iji~, is a convolution and satisfies 

(A-4) lIiji~lIu' ~ cq,lIa/liv ~ cq' 

for any q' > 1 while the second term in brackets satisfies 

(A-5) max L IDO iji; I ~ C(R)lIwtllv ~ C(R). 
Ixl~R lol~1 

The required uniform LI bound in (A-2) and the uniform L2 in (A-3) follow 
directly from the estimates in (A-4), (A-5), and the corresponding bounds in 
(1.2) and (1.3) on vt and 0/ . 

Next we prove the Holder continuity estimate from (7.5). 

Lemma A.t. Let vt be an approximate solution sequence of velocity fields for 
2-D Euler, then for any p with 1 ~ p < 2. there is a number Q. 0 < Q < 1 • so 
that 

(A-6) 

Proof. From the definition of approximate solution sequence (see Definition 
1.1 of [4]), pvt is a uniformly Lipschitz function with values in U)~L,2(R2) ~ 

U)~L'P(R2) with p ~ 2 for some number L > 0 and any p E C:'(R2). This 
guarantees that for p ~ 2 , 

(A-7) 

for some fixed constant C. The function pvt satisfies the elliptic system 
t .1 t t t curl(pv ) = V p. v + pw == F, . 

div(pvt) = V P • vt = F; . 
(A-B) 

The inhomogeneous term of the right-hand side of (A-B) are uniformly bounded 
I ' in L as a consequence of (1.2) and (1.3). By Sobolev's lemma, W S ,p --+ C 

for s> NIp', so by duality, L' --+ W-s,p for s> N((p - 1)lp). p> 1, and 
therefore 

(A-9) IIFtLs,p ~ C for s > 2((p - 1)/ p) 
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and p > I . Solutions of the elliptic system in (A-8) gain a derivative, therefore 

IIpvelll_S,p ::; C(IIFeILs_p + IIpvellL2) ::; C 

for s > 2( (p - 1)/ p). Thus, for I < p < 2 , we have for some s I = I - s > 0, 

(A-tO) O::;t::;T. 

From the interpolation inequality to be discussed below, there is a number a 
with 0 < a < I so that 

(A-II) IIpVe(tl) - pv£(t2)II LP ::; Cllpve(tl) - pve(t2)1I~:;lIpv£(tl) - pv\t2)II~L,P' 

With the Lipschitz bound in (A-7) and the uniform bound in (A-IO), we verify 
the Holder estimate in (A-6) through the interpolation inequality in (A-II). 

In Lemma 7.1, we always work with a truncated vorticity with support con-
tained inside a ball BR = {xllxl < R}. The Riesz potentials are used for 
bounded values of Ixl in order to apply the uniformization theorem. It is well 
known that Bessel potentials are equivalent to Riesz potentials of the same or-
der for bounded values of x when applied to positive measures with support 
inside a fixed bounded set (see the Appendix of [1]). Thus, we prove a temporal 
compactness lemma for the corresponding Bessel potentials, 

(A-12) rp = f G6 (x - y)dlwl(y), 

with the kernel G6 given explicitly on page 132 of [8] and with the Fourier 
transform of G6 , 06 = (1 + leI2)-6/2. We have the following compactness 
lemma for Bessel potentials. 

Lemma A.2. Fix positive numbers 0, s , and p such that p > 1 and (0 + s) p < 
2, if ve is a sequence of approximate velocity fields for 2-D Euler and we is the 
corresponding truncated vorticity field associated with pv£ with p E C;'(R2) , 
then there exists a subsequence ve for which the associated Bessel potentials 

rpe(x, t) = f G6 (x - y)dlwel(y) 

converge to a function rp in C([O, T], »J:n, i.e., 

lim sup IIpl rpe(x, t) - PI rp(x, t)lIs p = 0 
e-+OO~t~T ' 

for every PI E C;' . 
In §4, we already verified that the Bessel potentials of uniformly bounded 

measures with mass in B R lie in a bounded subset of »J:C;P (RN) for any 't' with 
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(o+r)p < N. Thus, p) rp lies in a bounded subset of ~:/ . Since the injection, 
i:~:/ -+ ~~p is a compact mapping for r >s and (o+r)p< N, (o+s)p< 
N, by the Lions-Aubin lemma, we only need to verify the temporal Holder 
continuity of p)rp in some negative normal space, W- R .p • From Lemma A.I, 
the truncated vorticity 0/ satisfies the temporal Holder estimate 

(A-13) II((/(t)) - ((/(t2)1I-).P ~ cit) - tl"· 

It is well known [1, Chapter VII] that the Bessel potential Go maps W-I.p 
boundedly into W-)+o-e. p for any e > 0; this fact, coupled with the esti-
mate in (A-13), yields the negative-norm temporal Holder estimate required to 
complete the proof of Lemma A.2. 

It remains to discuss the interpolation inequality in (A-II). We utilize the 
spaces L S ' P , I < p < 00, defined through Bessel potentials as the tempered 
distributions u so that the inverse Fourier transform of (1 + lel2)s/2u(e) belongs 
to L P with norm lIullu." (see Stein [8] and Adams [1] for the facts we quote 
below). The spaces satisfy the estimates 

lI ullu2 ." ~ Ilullul ... ' S2 ~ s) , 
(A-I4) lIulls.p ~ Cellullu+"'" 

lIullu-.... ~ CellulIs.p any e > O. 

The constants in the comparison between W s .P and L S 'P blow up in general 
as e -+ O. The L S ' P spaces satisfy the interpolation inequality 

(A-IS) 

for s2 < S < s) and appropriate () with 0 < () < 1. The facts in (A-I4) and 
(A-IS) combine to yield (A-II). The proof of (A-IS) proceeds in a standard 
fashion. We pick rp E C;' with rp(e) == 1 for lei < 1 and supp rp ~ {ellel > 2}. 
We write for 0 < e ~ 1 , 

(A-I6) 
(1 + leI2/u(e) = {(I + leI2)(S-S!l/2(I - rp(ee)(l + leI2/,/2u(en 

+ {( 1 + leI2)(s-S2)/2 rp(ee)( 1 + leI 2)S2/2u(en. 

From the explicit L P bounds guaranteed by the Marcinkiewicz multiplier the-
orem (see [8]) and (A-I6), we deduce the bound 

(A-I7) lIullu ... ~ qil-Sllullul ... + eS2-sllullu2 ... ). 

By minimizing the right-hand side over e with 0 < e ~ 1, we obtain (A-IS). 
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