
REDUCED INSTRUCTION SET COMPUTERS

Prof. Vojin G. Oklobdzija

Integration

Berkeley, CA 94708

Keywords: IBM 801; RISC; computer architecture; Load/Store Architecture; instruction
sets; pipelining; super-scalar machines; super-pipeline machines; optimizing compiler;
Branch and Execute; Delayed Branch; Cache; Harvard Architecture; Delayed Load;
Super-Scalar; Super-Pipelined.

Fall 1999

V.G. Oklobdzija Reduced Instruction Set Computers 2

1. ARCHITECTURE

The term Computer Architecture was first defined in the paper by Amdahl, Blaauw and
Brooks of International Business Machines (IBM) Corporation announcing IBM
System/360 computer family on April 7, 1964 [1,17]. On that day IBM Corporation
introduced, in the words of IBM spokesman, "the most important product announcement
that this corporation has made in its history".

Computer architecture was defined as the attributes of a computer seen by the machine
language programmer as described in the Principles of Operation. IBM referred to the
Principles of Operation as a definition of the machine which enables machine language
programmer to write functionally correct, time independent programs that would run
across a number of implementations of that particular architecture.

The architecture specification covers: all functions of the machine that are observable by
the program [2]. On the other hand Principles of Operation. are used to define the
functions that the implementation should provide. In order to be functionally correct it is
necessary that the implementation conforms to the Principles of Operation.
Principles of Operation document defines computer architecture which includes:

• Instruction set

• Instruction format

• Operation codes

• Addressing modes

• All registers and memory locations that may be directly manipulated
or tested by a machine language program

• Formats for data representation

Machine Implementation was defined as the actual system organization and hardware
structure encompassing the major functional units, data paths, and control.

Machine Realization includes issues such as logic technology, packaging and
interconnections.

Separation of the machine architecture from implementation enabled several embodiment
of the same architecture to be built. Operational evidence proved that architecture and
implementation could be separated and that one need not imply the other. This separation
made it possible to transfer programs routinely from one model to another and expect
them to produce the same result which defined the notion of architectural compatibility.
Implementation of the whole line of computers according to a common architecture
requires unusual attention to details and some new procedures which are described in the
Architecture Control Procedure. The design and control of system architecture is an

V.G. Oklobdzija Reduced Instruction Set Computers 3

ongoing process which objective is to remove ambiguities in the definition of the
architecture and in some cases, adjust the functions provided [1-3].

1.1. RISC Architecture

A special place in computer architecture is given to RISC. RISC architecture has been
developed as a result of the 801 project which started in 1975 at the IBM T.J.Watson
Research Center and was completed by the early 1980s [5]. This project was not widely
known to the world outside of IBM and two other projects with similar objectives started
in the early 1980s at the University of California Berkeley and Stanford University
[9,10]. The term RISC (Reduced Instruction Set Architecture), used for the Berkeley
research project, is the term under which this architecture became widely known and
recognized today.

Development of RISC architecture started as a rather "fresh look at existing ideas" [5-7]
after revealing evidence which surfaced as a result of examination of how the instructions
are actually used in the real programs. This evidence came from the analysis of the trace
tapes, a collection of millions of the instructions that were executed in the machine
running a collection of representative programs [12]. It showed that for 90% of the time
only about 10 instructions from the instruction repertoire were actually used. Then the
obvious question was asked: "why not favor implementation of those selected instructions
so that they execute in a short cycle, and emulate the reset of instructions". The following
reasoning was used: "If the presence of a more complex set adds just one logic level to a
10 level basic machine cycle, the CPU has been slowed down by 10%. The frequency and
performance improvement of the complex functions must first overcome this 10%
degradation, and then justify the additional cost" [5]. Therefore RISC architecture starts
with a small set of most frequently used instructions which determines the pipeline
structure of the machine enabling fast execution of those instructions in one cycle. If
addition of a new complex instruction increases the “critical path” (typically 12-18 gate
levels) for one gate level, than the new instruction should contribute at least 6-8% to the
overall performance of the machine.
One cycle per instruction is achieved by exploitation of parallelism through the use of
pipelining. It is parallelism through pipelining that is the single most important
characteristic of RISC architecture from which all the remaining features of the RISC
architeture are derived. Basically we can characterize RISC as a performance oriented
architecture based on exploitation of parallelism through pipelining.

RISC architecture has proven itself and several mainstream architectures today are of the
RISC type. Those include SPARC (used by Sun Microsystems workstations, an outgrow
of Berkeley RISC), MIPS (an outgrow of Stanford MIPS project, used by Silicon
Graphics), and a super-scalar implementation of RISC architecture, IBM RS/6000 (also
known as PowerPC architecture).

V.G. Oklobdzija Reduced Instruction Set Computers 4

1.2. RISC Performance

Since the early beginning, the quest for higher performance has been present in every
computer model and architecture. This has been the driving force behind the introduction
of every new architecture or system organization. There are several ways to achieve
performance: technology advances, better machine organization, better architecture, and
also the optimization and improvements in compiler technology. By technology,
machine performance can be enhanced only in proportion to the amount of technology
improvements and this is, more or less, available to everyone. It is in the machine
organization and the machine architecture where the skills and experience of computer
design are shown. RISC deals with these two levels - more precisely their interaction and
trade-offs.

The work that each instruction of the RISC machine performs is simple and straight
forward. Thus, the time required to execute each instruction can be shortened and the
number of cycles reduced. Typically the instruction execution time is divided in five
stages, machine cycles, and as soon as processing of one stage is finished, the machine
proceeds with executing the second stage. However, when the stage becomes free it is
used to execute the same operation that belongs to the next instruction. The operation of
the instructions is performed in a pipeline fashion, similar to the assembly line in the
factory process. Typically those five pipeline stages are:

IF – Instruction Fetch

ID – Instruction Decode

EX – Execute

MA – Memory Access

WB – Write Back

By overlapping the execution of several instructions in a pipeline fashion (as shown in
Fig. 1.), RISC achieves its inherent execution parallelism which is responsible for the
performance advantage over the Complex Instruction Set Architectures (CISC).

Fig. 1. Typical five stage RISC pipeline

At any given time there are
5 instructions in different stages of
execution

IF D EX MA WBI1:

I2:

I3:

I4:

I5: IF

D

EX

MA

V.G. Oklobdzija Reduced Instruction Set Computers 5

The goal of RISC is to achieve execution rate of one Cycle Per Instruction (CPI=1.0)
which would be the case when no interruptions in the pipeline occurs. However, this is
not the case.

The instructions and the addressing modes in RISC architecture are carefully selected and
tailored upon the most frequently used instructions, in a way that will result in a most
efficient execution of the RISC pipeline.

The simplicity of the RISC instruction set is traded for more parallelism in execution. On
average a code written for RISC will consist of more instructions than the one written for
CISC. The typical trade-off that exists between RISC and CISC can be expressed in the
total time required to execute a certain task:

 Time (task) = I x C x P x T0

I = No. of Instructions / Task
C = No. of Cycles / Instruction
P = No. of Clock Periods / Cycle (usually P=1)
T0 = Clock Period (nS)

While CISC instruction will typically have less instructions for the same task, the
execution of its complex operations will require more cycles and more clock ticks within
the cycle as compared to RISC [19]. On the other hand RISC requires more instructions
for the same task. However, RISC executes its instructions at the rate of one instruction
per cycle and its machine cycle requires only one clock tick (typically). In addition, given
the simplicity of the instruction set, as reflected in simpler machine implementation, the
clock period T0 in RISC can be shorter allowing RISC machine to run at the higher speed
as compared to CISC. Typically as of today RISC machines have been running at the rate
in excess of 667 MHz reaching 1 GHz, while CISC is hardly at 500MHz clock rate.

The trade-off between RISC and CISC can be summarized as follows:

a. CISC achieves its performance advantage by denser program consisting of a fewer
number of powerful instructions.

b. RISC achieves its performance advantage by having simpler instructions resulting in
simpler and therefore faster implementation allowing more parallelism and running at
higher speed.

2. RISC MACHINE IMPLEMENTATION

The main feature of RISC is the architectural support for the exploitation of parallelism
on the instruction level. Therefore all distinguished features of RISC architecture should
be considered in light of their support for the RISC pipeline. In addition to that RISC
takes advantage of the principle of locality: spatial and temporal. What that means is that
the data that was used recently is more likely to be used again. This justifies the

V.G. Oklobdzija Reduced Instruction Set Computers 6

implementation of a relatively large general purpose register file found in RISC machines
as opposed to CISC. Spatial locality means that the data most likely to be referenced is in
the neighborhood of a location that has been referenced. It is not explicitly stated, but that
implies the use of caches in RISC.

2.1. Load / Store Architecture

Often, RISC is referred to as Load/Store architecture. Alternatively the operations in its
instruction set are defined as Register-to-Register operations. The reason is that all the
RISC machine operations are between the operands that reside in the General Purpose
Register File (GPR). The result of the operation is also written back to GPR. Restricting
the locations of the operands to the GPR only, allows for determinism in the RISC
operation. In the other words, a potentially multi-cycle and unpredictable access to
memory has been separated from the operation. Once the operands are available in the
GPR the operation can proceed in a deterministic fashion. It is almost certain that once
commenced the operation will be completed in the number of cycled determined by the
pipeline depth and the result will be written back into the GPR. Of course, there are
possible conflicts for the operands which can, never the less, be easily handled in
hardware. The execution flow in the pipeline for a Register-to-Register operation is
shown in Fig.2.

Fig. 2. Pipeline Flow of a Register-to-Register operation

IAR

Instr.
Cache

IR

Instruction Fetch

Register
File

Decode

φ0 φ1 φ0 φ1 φ0 φ1

Data
Cache

Register
File

φ0 φ1 φ0 φ1

Decode Execute Cache Access Write Back

ALU

Operation Destn.Source1 Source2

WA

V.G. Oklobdzija Reduced Instruction Set Computers 7

Memory Access is accomplished through Load and Store instructions only, thus the term
“Load/Store Architecture” is often used when referring to RISC. The RISC pipeline is
specified in a way in which it must accommodate both: operation and memory access
with equal efficiency. The various pipeline stages of the Load and Store operations in
RISC are shown in Fig. 3.

Fig. 3. The Operation of Load/Store Pipeline

2.2. Carefully Selected Set of Instructions

The principle of locality is applied throughout RISC. The fact that only a small set of
instructions is most frequently used, was used in determining the most efficient pipeline
organization with a goal of exploiting instruction level parallelism in the most efficient
way. The pipeline is “tailored” for the most frequently used instructions. Such derived
pipeline must serve efficiently the three main instruction classes:

• Access to Cache: Load/Store
• Operation: Arithmetic/Logical
• Branch

Given the simplicity of the pipeline the control part of RISC is implemented in hardware,
unlike its CISC counterpart which relies heavily on the use of micro-coding.

IAR

Cache
Instr.

IR

IF

Register
File

Decode

Data
Cache

DEC
E-Address
Calculation Cache Access WB

ALU

WR RD

Displacement E-Address = B+Displacement

Register
File

Data from Cache

Base

WAD-S

V.G. Oklobdzija Reduced Instruction Set Computers 8

However, this is the most misunderstood part of RISC architecture which has even
resulted in the inappropriate name: RISC. Reduced Instruction Set Computer implies, that
the number of instructions in RISC is small. This has created a widely spread
misunderstanding that the main feature characterizing RISC is a small instruction set.
This is not true. The number of instructions in the instruction set of RISC can be
substantial. This number of RISC instructions can grow until the complexity of the
control logic begin to impose an increase in the clock period. In practice this point is
further beyond the number of instructions commonly used. Therefore we have reached a
possibly paradoxical situation, that several of representative RISC machines known
today, have an instruction set larger than that of CISC.

For example: IBM PC-RT Instruction architecture contains 118 instructions, while IBM
RS/6000 (PowerPC) contains 184 instructions. This should be contrasted to the IBM
System/360 containing 143 instructions and IBM System/370 containing 208. The first
two are representatives of RISC architecture while the later two are not.

Fig. 4. Branch Instruction

2.3. Fixed format instructions

What really matters for RISC is that the instructions have fixed and predetermined format
which facilitates decoding in one cycle and simplifies the control hardware. Usually the
size of RISC instructions is also fixed to the size of the word (32-bits), however, there are

IR

Register
File

Decode

φ1 φ0 φ1

Decode

Instr.
Cache

Instruction Address Register:
IAR

+4 MUX

+

Offset

IAR+4

Ra=Rb

φ1 φ0

Instruction Fetch

Yes

It is Branch

Condition is satisfied ?

V.G. Oklobdzija Reduced Instruction Set Computers 9

cases where RISC can contain two sizes of instructions 32-bits and 16-bits. Later is the
case of IBM ROMP processor used in the first commercial RISC IBM PC/RT. The fixed
format feature is very important because RISC must decode its instruction in one cycle. It
is also very valuable for super-scalar implementations [13]. Fixed size instructions allow
Instruction Fetch Unit to be efficiently pipelined (by being able to determine the next
instruction address without decoding the current one). This guarantees only single I-TLB
access per instruction.

One cycle decode is especially important so that the outcome of the Branch instruction
can be determined in one cycle in which the new target instruction address will be issued
as well. The operation associated with detecting and processing a Branch instruction
during the Decode cycle is illustrated in Fig.4. In order to minimize the number of lost
cycles, Branch instructions need to be resolved, as well, during the Decode stage. This
requires a separate address adder as well as comparator which are used in the Instruction
Decode Unit. In the best case one cycle must be lost when Branch instruction is
encountered.

2.4. Simple Addressing Modes

Simple Addressing Modes are the requirements of the pipeline. Namely, in order to be
able to perform the address calculation in the same pre-determined number of pipeline
cycles in the pipeline, the address computation need to conform to the other modes of
computation. It is a fortunate fact that in the real programs the requirements for the
address computations favors three relatively simple addressing modes:

(a.) Immediate
(b.) Base + Displacement
(c.) Base + Index

Those three addressing modes take approximately over 80% of all the addressing modes:
(a.) 30-40% (b.) 40-50% (c.) 10-20% according to [11]. The process of calculating the
operand address associated with Load and Store instructions is shown in Fig.3.

2.5. Separate Instruction and Data Caches

One of the often overlooked but essential characteristics of RISC machines is existence
of Cache memory. The second most important characteristic of RISC (after pipelining) is
its use of the locality principle. The locality principle is established in the observation
that on the average the program spends 90% of the time in the 10% of the code. The
instruction selection criteria in RISC is also based on that very same observation that the
10% of the instructions are responsible for 90% of the code. Often the principle of the
locality is referred too as a 90-10 rule [11].

V.G. Oklobdzija Reduced Instruction Set Computers 10

In case of the cache this locality can be spatial and temporal. Spatial locality means that
the most likely location in the memory to be referenced next will be the location in the
neighborhood of the location that was just referenced previously. On the other hand, the
temporal locality means that the most likely location to be referenced next will be from
the set of memory locations that were referenced just recently. The cache operates on this
principle.

Fig. 5. Pipeline Flow of the Branch Instruction

The RISC machines are based on the exploitation of that principle as well. The first level
in the memory hierarchy is the general-purpose register file GPR, where we expect to
find the operands most of the time. Otherwise the Register-to-Register operation feature
would not be very effective. However, if the operands are not to be found in the GPR, the
time to fetch the operands should not be excessive. This requires the existence of a fast
memory next to the CPU – the Cache. The cache access should also be fast so that the
time allocated for Memory Access in the pipeline is not exceeded. One-cycle cache is a
requirement for RISC machine and the performance is seriously degraded if the cache
access requires two or more CPU cycles. In order to maintain the required one-cycle
cache bandwidth the data and instruction access should not collide. It is from there that
the separation of instruction and data caches, the so called Harvard Architecture, is a
must feature for RISC.

2.6. Branch and Execute Instruction

Branch and Execute or Delayed Branch instruction is a new feature of the instruction
architecture that was introduced and fully exploited in RISC. When a Branch instruction
is encountered in the pipeline, one cycle will be inevitably lost. This is illustrated in Fig.
5.

IF D EX MA WBbreq:

IFinst+1:

target: IF D EX MA WB

the earliest available target instruction address

V.G. Oklobdzija Reduced Instruction Set Computers 11

RISC architecture solves the lost cycle problem by introducing Branch and Execute
instruction [5,7] (also known as Delayed Branch Instruction), which consists of an
instruction pair: Branch and the Branch Subject instruction which is always executed. It
is the task of the compiler to find an instruction which can be placed in that, otherwise
wasted, pipeline cycle.

The subject instruction can be found in the instruction stream preceding the branch
instruction, in the target instruction stream or in the fall-through instruction stream. It is
the task of the compiler to find such an instruction and to fill-in this execution cycle [8].

Given the frequency of the branch instructions which varies from one out of five to one
out of fifteen (depending on the nature of the code) the number of those otherwise lost
cycles can be substantial. Fortunately a good compiler can fill-in 70% of those cycles
which amounts to an up to 15% performance improvement [11]. This is the single most
performance contributing instruction from the RISC instruction architecture.

However, in the later generations of super-scalar RISC machines (which execute more
than one instruction in the pipeline cycle) Branch and Execute instruction has been
abandoned in favor of Brand Prediction [13] [21] .

The Load instruction can also exhibit this lost pipeline cycle as shown in Fig.6.

Fig. 6. Lost cycle during the execution of the Load Instruction

The same principle of scheduling an independent instruction in the otherwise lost cycle,
that was applied for in Branch and Execute, can be applied to Load instruction. This is
also known as Delayed Load.
An example of what the compiler can do to schedule instructions and utilize those
otherwise lost cycles is shown in Fig.7. [8,11].

dependency

IF D Addrs C-Acc write

IF D EX MA WB

Ld:

Add:

data needed

data available from cache

data written to register

data available from the register file

ld r5, r3, d

add r7, r5, r3

V.G. Oklobdzija Reduced Instruction Set Computers 12

2.7. Optimizing Compiler

A close coupling of the compiler and the architecture is one of the key and essential
features in RISC that was used in order to maximally exploit the parallelism introduced
by pipelining. The original intent of the RISC architecture was to create a machine that is
only “visible through the compiler” [5,7]. All the programming was to be done in High-
Level Language and only a minimal portion in assembler. The notion of the “Optimizing
Compiler” was introduced in RISC [5,7,8]. This compiler was capable of producing a
code that was as good as the code written in assembler (the hand-code). Though there
was a strict attention given to the architecture principle [1-2] adhering to the absence of
the implementation details from the principle of the operation, this is perhaps the only
place where this principle was violated. Namely, the optimizing compiler needs to
“know” the details of the implementation, the pipeline in particular, in order to be able to
efficiently schedule the instructions. The work of the optimizing compiler is illustrated in
Fig. 7.

Fig. 7. An Example of Instruction Scheduling by Compiler

2.8. One Instruction per Cycle

The objective of one instruction per cycle (CPI = 1) execution was the ultimate goal of
RISC machines. This goal can be theoretically achieved in the presence of infinite size
caches and no pipeline conflicts thus, which is not attainable in practice. Given the
frequent branches in the program and their interruption to the pipeline, Loads and Stores
that can not be scheduled and finally the effect of finite size caches, the number of “lost”
cycles adds up bringing the CPI further away from 1. In the real implementations the CPI

Program to calculate:
 a = b + 1
 if (c=0) d = 0

Sub-optimal: Optimal:

ld r2, b # r2=b
add r2, 1 # r2=b+1
st r2, a # a=b+1
ld r3, c # r3=c
bne r3,0, tg1 # skip
st 0, d # d=0
tg1: … ...

load stall

load stall

lost cycle

Total = 9 cycles

ld r2, b # r2=b
ld r3, c # r3=c
add r2, 1 # r2=b+1
 bne r3,0, tg1 # skip
st r2, a # a=b+1
st 0, d # d=0
tg1: … ...

Total = 6 cycles

V.G. Oklobdzija Reduced Instruction Set Computers 13

varies and a CPI = 1.3 is considered quite good while CPI between 1.4 to 1.5 is more
common in single-instruction issue implementations of the RISC architecture.

However, once the CPI was brought close to one, the next goal in implementing RISC
machines was to bring CPI bellow one in order for the architecture to deliver more
performance. This goal requires an implementation that can execute more than one
instruction in the pipeline cycle a so called Super-Scalar implementation [13,16]. A
substantial effort has been done on the part of the leading RISC machine designers to
build such machines. However, machines that execute up to four instructions in one cycle
are common today and a machine that executes up to six instructions in one cycle has
been introduced last year.

2.9. Pipelining

Finally, the single most important feature of RISC is pipelining. Degree of parallelism in
the RISC machine is determined by the depth of the pipeline. It could be stated that all
the features of RISC (that were listed in this article), could easily be derived from the
requirements for pipelining and maintaining an efficient execution model. The sole
purpose of many of those features is to support an efficient execution of RISC pipeline. It
is clear that without pipelining the goal of CPI = 1 is not possible. An example of the
instruction execution in the absence of pipelining is shown in Fig.8.

Fig. 8. Instruction execution in the absence of pipelining

We may be lead to think that by increasing the number of pipeline stages (the pipeline
depth), thus introducing more parallelism, we may increase the RISC machine
performance further. However, this idea does not lead to a simple and straight forward to
realization. The increase in the number of pipeline stages introduces an overhead not only
in hardware (needed to implement the additional pipeline registers), but also the overhead
in time due to the delay of the latches used to implement the pipeline stages as well as the
cycle time lost due to the clock skews and clock jitter. This could very soon bring us to
the point of diminishing returns where further increase in the pipeline depth would result
in less performance. An additional side effect of deeply pipelined systems is hardware
complexity necessary to resolve all the possible conflicts that can occur between the
increased number of instructions residing in the pipeline at one time. The number of the
pipeline stages is mainly determined by the type of the instruction core (the most

IF D EX MA WB IF D EX MA WB

I1 I2

Total of 10 cycles for two instructions

V.G. Oklobdzija Reduced Instruction Set Computers 14

frequent instructions) and the operations required by those instructions. The pipeline
depth depends, as well, on the technology used. If the machine is implemented in a very
high speed technology characterized by the very small number of gate levels (such as
GaAs or ECL), characterized with a very good control of the clock skews, it makes sense
to pipeline the machine deeper. The RISC machines that achieve performance through
the use of many pipeline stages are known as super-pipelined machines.

Today the most common number of the pipeline stages encountered is five (as in the
examples given in this text). However, twelve or more pipeline stages are encountered in
some machine implementations.

The features of RISC architecture that support pipelining are listed in Table 1.

Table 1. Features of RISC Architecture

 Feature Characteristic

Load / Store Architecture All of the operations are Register to
Register. In this way Operation is
decoupled from the access to memory

Carefully selected sub-set of
instructions

Control is implemented in hardware.
There is no microcoding in RISC. Also
this set of instructions is not necessarily
small*

Simple Addressing Modes Only the most frequently used addressing
modes are used. Also it is important that
they can fit into the existing pipeline.

Fixed size and fixed fields
instructions

This is necessary to be able to decode
instruction and access operands in one
cycle. Though there are architectures
using two sizes for the instruction format
(IBM PC-RT)

Delayed Branch Instruction
(known also as Branch and
Execute)

The most important performance
improvement through instruction
architecture. (no longer true in new
designs)

One Instruction Per Cycle
execution rate, CPI = 1.0

Possible only through the use of pipelining

Optimizing Compiler Close coupling between the architecture
and the compiler. Compiler "knows" about
the pipeline.

Harvard Architecture Separation of Instruction and Data Cache
resulting in increased memory bandwidth.

* IBM PC-RT Instruction architecture contains 118 instructions, while IBM RS/6000
(PowerPC) contains 184 instructions. This should be contrasted to the IBM System/360
containing 143 instructions and IBM System/370 containing 208. The first two are
representatives of RISC architecture while the later two are not.

V.G. Oklobdzija Reduced Instruction Set Computers 15

3. HISTORICAL PERSPECTIVE

The architecture of RISC did not come about as a planed or a sudden development. It was
rather a long and evolutionary process in the history of computer development in which
we learned how to build better and more efficient computer systems. From the first
definition of the architecture in 1964 [1], there are the three main branches of the
computer architecture that evolved during the years. They are shown in Fig.9.

Fig. 9. Main Branches in Development of Computer Architecture

The CISC development was characterized by the PDP-11 and VAX-11 machine
architecture that was developed by Digital Equipment Corporation (DEC) and all the
other architectures that were derived from that development. The middle branch is the
IBM 360/370 line of computers which is characterized with a balanced mix of CISC and
RISC features. The RISC line evolved from the development line characterized by
Control Data Corporation CDC 6600, Cyber and ultimately CRAY-I super-computer. All
of the computers belonging to this branch were originally designated as super-computers
at the time of their introduction. The ultimate quest for performance and excellent
engineering was a characteristic of that branch. Almost all of the computers in the line
preceding RISC carry the signature of one man: Seymour Cray who is by many given the
credit for the invention of RISC.

Historical Machines
IBM Stretch-7030, 7090 etc.

IBM S/360

IBM 370/XA

IBM 370/ESA

IBM S/3090

PDP-8 CDC 6600

Cyber

Cray -I

RISC

PDP-11

VAX-11

circa 1964

CISC

V.G. Oklobdzija Reduced Instruction Set Computers 16

3.1. History of RISC

The RISC project started in 1975 at the IBM T. J. Watson Research Center under the
name of the 801. The original intent of the 801 project was to develop an emulator for
System/360 code [5]. IBM 801 was built in ECL technology and was completed by the
early 1980s [5-6]. This project was not known to the world outside of IBM until early
1980s and the results of that work are mainly unpublished. The idea of simpler computer
especially the one that can be implemented on the single chip in the university
environment was appealing and two other projects with similar objectives started in the
early 1980s at the University of California Berkeley and Stanford University [9,10].
These two academic projects had much more influence on the industry than the IBM 801
project. Sun Microsystems developed its own architecture currently known as SPARC as
a result of the University of California Berkeley work. Similarly, the Stanford University
work was directly transferred to MIPS [20].
The chronology illustrating RISC development is illustrated in Fig. 10.

Fig. 10. History of RISC development

The features of some contemporary RISC processors are shown in Table 2.

CDC 6600: 1963

Cyber

Cray -I: 1976

HP-PA: 1986

IBM ASC: 1970

IBM 801: 1975

IBM PC/RT: 1986

IBM RS/6000: 1990

PowerPC: 1993

RISC-1
Berkeley 1981

SPARC v.8: 1987

SPARC v.9: 1994

MIPS
Stanford 1982

MIPS-1: 1986

MIPS-2: 1989

MIPS-3: 1992

MIPS-4: 1994

DEC - Alpha: 1992

V.G. Oklobdzija Reduced Instruction Set Computers 17

Table 2. Contemporary RISC processors features

Feature Digital
21164

MIPS
10000

PowerP
C

 620

HP 8000 Sun
UltraSparc

Frequency 500
MHz

200 MHz 200 MHz 180 MHz 250 MHz

Pipeline Stages 7 5-7 5 7-9 6-9

Issue Rate 4 4 4 4 4

Out-of-Order Exec. 6 loads 32 16 56 none

Register Renam.
(int/FP)

none/8 32/32 8/8 56 none

Transistors/
Logic transistors

9.3M/
1.8M

5.9M/
2.3M

6.9M/
2.2M

3.9M*/
3.9M

3.8M/
2.0M

SPEC95
(Intg/FlPt)

12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15

Perform./ Log-trn
(Intg/FP)

7.0/10.2 3.9/7.5 4.1/4.1 2.77*/4.69 4.25/7.5

* no cache

V.G. Oklobdzija Reduced Instruction Set Computers 18

References
[1] G.M.Amdahl, G.A. Blaauw, F.P. Brooks, "Architecture of the IBM System/360, IBM Journal of

Research and Development, Vol.8, No.2, p.87-101, April 1964.

[2] G.A. Blaauw, F.P. Brooks, "The Structure of System/360", IBM Systems Journal, Vol.3, No.2, p.119-
135, 1964.

[3] R.P.Case, A.Padegs, "Architecture of the IBM System/370", Communications of ACM, Vol.21, No.1,
p. 73-96, January 1978.

[4] D.W.Anderson, F.J.Sparacio, and R.M.Tomasulo, “The IBM 360 Model 91: Machine philosophy and
instruction handling,” IBM Journal of Research and Development, Vol.11, No.1, January 1967, p.8-
24.

[5] G. Radin, "The 801 Minicomputer", IBM T.J.Watson Research Center, Report RC 9125, November
11, 1981, also in SIGARCH Computer Architecture News 10, No.2, p.39-47, March 1982.

[6] John Cocke andViky Markstein, “The Evolution of RISC Technology at IBM,” IBM Journal of
Research and Development, Vol.34, No.1, pp.37, January 1990.

[7] M. E. Hopkins, "A Perspective on the 801 / Reduced Instruction Set Computer", IBM Systems
Journal, Vol. 26, No.1, 1987.

[8] Henry S. Warren, Jr., “Instruction scheduling for the IBM RISC System/6000 processor,” IBM
Journal of Research and Development, Vol.34, No.1, pp.37, January 1990.

[9] D.A. Patterson, C.H.Sequin, "A VLSI RISC", IEEE Computer Magazine, September 1982.

[10] J. L. Hennessy, "VLSI Processor Architecture", IEEE Transactions on Computers, Vol. C-33, No.12,
December 1984.

[11] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Morgan & Kaufman
Publishers, San Mateo, California.

[12] L.J.Shustek, “Analysis and Performance of Computer Instruction Sets,” PhD. Thesis, Stanford
University, May 1978.

[13] Gregory F. Grohosky, “Machine Organization of the IBM RISC System/6000 processor,” IBM
Journal of Research and Development, Vol.34, No.1, pp.37, January 1990.

[14] V.G.Oklobdzija, “Issues in CPU-Coprocessor Communication and Synchronization,” EUROMICRO
’88, Fourteenth Symposium on Microprocessing and Microprogramming, pp. 695., Zurich,
Switzerland, August 1988.

[15] R.M.Tomasulo, “An Efficient Algorithm for Exploring Multiple Arithmetic Units,” IBM Journal of
Research and Development, Vol.11. No.1. p.25-33.

[16] John Cocke, Gregory Grohosky, and Vojin Oklobdzija, “Instruction Control Mechanism for a
Computing System with Register Renaming, MAP Table and Queues Indicating Available Registers,”
U.S. Patent No. 4,992,938, February 12, 1991.

[17] D.P. Siewiorek, C.G. Bell, A. Newell, "Computer Structures: Principles and Examples", McGraw-
Hill Advanced Computer Science Series, 1982.

[18] “Digital RISC Architecture Technical Handbook,” Digital Equipment Corporation 1991.

[19] D. Bhandarkar and D.W. Clark, “Performance from Architecture: Comparing a RISC and a CISC
with Similar Hardware Organization,” Proceedings of the 4th Int’l. Conference on ASPLOS, Santa
Clara, California, April 8-11, 1991.

[20] Gery Kane, MIPS RISC Architecture, Prentice-Hall, New Jersey, 1988.

[21] J.K.F.Lee and A.J.Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”
Computer, Vol.17,No.1.,1984, p.6-22.

