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ABSTRACT

In this paper, we examine the time-frequency representation
(TFR) and sparse reconstruction of non-stationary signals
in the presence of missing data samples. These samples
lend themselves to missing entries in the instantaneous auto-
correlation function (IAF) which, in turn, induce artifacts
in the time-frequency distribution and ambiguity function.
The artifacts are additive noise-like and, as such, can be mit-
igated by using proper time-frequency kernels. We show
that the sparse signal reconstruction methods applied to the
time-lag domain improve the TFR over the direct applica-
tion of Fourier transform to the IAF. Additionally, the paper
demonstrates that the use of signal-adaptive kernels provides
superior performance compared to data-independent kernels
when missing data are present.
Index Terms— Time-frequency analysis, missing data

sample, sparse signal reconstruction, compressive sensing,
non-stationary signals.

1. INTRODUCTION

Spectrum estimation and waveform reconstruction in the
presence of missing data samples have broad applications
in astronomy, seismology, paleoclimatology, and genetics
[1, 2]. Missing data may be a consequence of removal of
data samples contaminated by impulsive noise, or a result of
intentional undersampling to enable digital signal processing
of wideband signals and to reduce hardware complexity. A
large class of non-stationary signals, particularly those with
instantaneous narrowband waveforms, such as frequency-
modulated (FM) signals with time-varying instantaneous
frequencies (IFs), are widely used in the area of communica-
tions, radar systems, and biomedical applications [3]. For this
type of signals, it is advantageous to use time-frequency rep-
resentations (TFRs) to characterize the local signal behavior
and determine the signal instantaneous frequency laws, even
when many of the data samples are missing.
In this paper, we examine the effect of missing data on

time-frequency distribution (TFD) performance and joint-
variable representations. In particular, we consider the three
domains of time-frequency, time-lag, and lag-frequency,

The work of Y. D. Zhang and M. G. Amin was supported in part by a subcon-
tract with Dynetics, Inc. for research sponsored by the Air Force Research
Laboratory (AFRL) under Contract FA8650-08-D-1303.

which respectively define TFD, instantaneous auto-correlation
function (IAF), and ambiguity function (AF). We analytically
show that the missing data samples yields missing entries in
the IAF following certain patterns related to the time indices
of the missing data samples. On the other hand, missing data
produce artifacts in the TFD and AF domains which resemble
additive noise in the sense that they spread over the entire
respective domains of joint-variable representations. These
artifacts can be mitigated by applying time-frequency kernels.
In particular, the paper demonstrates that the use of signal-
adaptive kernels provides superior performance compared to
data-independent kernels when missing data are present.
Furthermore, we show that the sparse signal reconstruc-

tion methods applied to the IAF improve performance over
the direct application of Fourier transform to the IAF. Un-
like the sparsity-based TFD reconstructions which are based
on the two-dimensional (2-D) Fourier transform relationship
between the AF and the TFDs [4, 5], in this paper, the TFD
reconstruction is based on the one-dimensional (1-D) Fourier
transform that relates the IAF and the TFD domains. The lat-
ter method embeds significantly lower complexity.
Notations. A lower (upper) case bold letter denotes a vec-

tor (matrix). (·)∗ denotes complex conjugation. E[·] repre-
sents the statistical mean operation. Fx(·) and F−1

x (·) re-
spectively represent the discrete Fourier transform (DFT) and
inverse DFT (IDFT) with respect to x, whereasF2(·) denotes
a two-dimensional (2-D) DFT. || · ||1 and || · ||2 respectively
denote the L1 and L2 norm operations. In addition, δ(t) and
δ(t, τ) respectively denote 1-D and 2-DKronecker delta func-
tions, and var(·) denotes the variance.

2. SIGNAL MODEL

Consider a discrete-time signal, x(t), t = 1, ..., T , which
comprises a single or multiple components of FM signals.
Denote r(t) as its observation data with N missing samples,
where 0 ≤ N < T . The missing sample positions are as-
sumed to be randomly and uniformly distributed over time.
As such, r(t) is the product of x(t) and an “observation
mask”, R(t), i.e.,

r(t) = x(t) ·R(t), (1)

where
R(t) =

{
1, if t ∈ S,
0, if t /∈ S.

(2)
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S ⊂ {1, ..., T } is the set of observed time instants and its
cardinality is |S| = T − N . The observed waveform with
missing samples can be expressed as the difference between
the original waveform and the “missing samples”, i.e.,

r(t) = x(t)−m(t), (3)

where the missing data is expressed as

m(t) = x(t) ·M(t), (4)

withM(t) = X(t)−R(t) denoting the “missing data mask”,
and

X(t) = 1, ∀t, (5)

is an “all-pass” mask.
To facilitate the analysis, we express the missing data

mask as

M(t) =

N∑
i=1

δ(t− ti), ti /∈ S. (6)

Accordingly, the missing signal is expressed as

m(t) = x(t) ·M(t) =
N∑
i=1

x(t)δ(t− ti) =
N∑
i=1

x(ti)δ(t− ti),

(7)
and the observed data with the missing samples is expressed
as

r(t) = x(t) −m(t) = x(t)−
N∑
i=1

x(ti)δ(t− ti). (8)

3. TIME-FREQUENCY REPRESENTATIONS WITH
MISSING DATA SAMPLES

3.1. Instantaneous Auto-correlation Function

The IAF of x(t) is defined as

Cxx(t, τ) = x (t+ τ) x∗ (t− τ) , (9)

where τ is the time lag.
From (1) and (9), the IAF of r(t) is expressed as

Crr(t, τ) = Cxx(t, τ)CRR(t, τ), (10)

where CRR(t, τ) is the IAF of the observation mask R(t). To
examine the effect of the missing data samples more clearly,
we use R(t) = X(t)−M(t) to obtain

CRR(t, τ)= CXX(t, τ)+CMM (t, τ)−CXM (t, τ)−CMX(t, τ),
(11)

where CXX(t, τ) and CMM (t, τ) are the IAF of X(t) and
M(t), respectively, and CXM (t, τ) and CMX(t, τ) are two
IAF cross-terms between M(t) and X(t). The difference in
the mask IAF due to the missing data samples can be ex-
pressed as

CD(t, τ) = CXX(t, τ)− CRR(t, τ)
= CXM (t, τ) + CMX(t, τ)− CMM (t, τ).

(12)

From the definitions, we obtain

CMM (t, τ) =

N∑
i=1

δ(t− ti + τ)

N∑
k=1

δ(t− tk − τ)

=
∑
ti /∈S

δ(t− ti, τ) +
∑

ti, tk /∈ S

ti−tk > 0, even

δ

(
t−

ti − tk
2

, τ ±
ti − tk

2

)
.

(13)
The first term in the right-hand side includes the entries in the
t-axis (i.e., τ = 0), whereas the last term represents entries off
the t-axis due to different missing data samples. The cross-
term IAF CXM (t, τ) is given by

CXM (t, τ) =

N∑
i=1

X(t+ τ)δ(t − ti − τ)

=

N∑
i=1

T∑
k=1

δ(t− tk, τ − tk + ti),

(14)

which is a straight line across all values of t ∈ [1, T ], where
τ satisfies τ = t − ti for all missing data sample positions
ti /∈ S. On the other hand, the cross-term IAF CMX(t, τ)
is symmetric to CXM (t, τ) with respect to the t-axis, and is
given by

CMX(t, τ) =
N∑
i=1

δ(t− ti + τ)X(t− τ)

=

N∑
i=1

T∑
k=1

δ(t− tk, τ + tk − ti),

(15)

which is a straight line that satisfies τ = −t+ti for all ti /∈ S.
Notice that the non-zero entries of CMM (t, τ) are located at
the positions where the two IAF cross-terms meet, thereby
maintaining the value of CM (t, τ) not to exceed 1.
In reality, the IAF is affected by the window effect due

to zero-padding. The length of the rectangular window along
the τ dimension depends on t and is expressed as

Qτ (t) = T − |T + 1− 2t|, t = 1, ...T. (16)

By taking this into account, a T -sample function 1(t) would
have T 2/2 non-zero entries if T is even, or (T 2+1)/2 entries
if T is odd. Without loss of generality, we consider an even
value of T hereafter. In this case, the number of unit-value en-
tries of CD(t, τ), in the presence of N missing data samples,
can be well approximated as

Ñ = NT −N2/2. (17)

This implies the same number of missing entries in Crr(t, τ).

3.2. Wigner-Ville Distribution

The DFT of the IAF Cxx(t, τ) with respect to τ is the well-
known Wigner-Ville distribution (WVD), which represents
the time-frequency (TF) characteristics of the signal,

Wxx(t, f) = Fτ [Cxx(t, τ)] =
∑
τ

Cxx(t, τ)e
−j4πfτ . (18)
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Note that 4π is used in the DFT instead of 2π because the
time-lag τ takes an integer value. Because Cxx(t, τ) is con-
jugate symmetric and CRR(t, τ) is symmetric with respect to
τ , Crr(t, τ) is conjugate symmetric with τ as well. As such,
the WVD of the observed data,Wrr(t, f) = Fτ [Crr(t, τ)], is
real-valued.
Because the missing data sample positions are randomly

and uniformly distributed, from the above discussion, the po-
sitions of the missing IAF entries can also be considered ran-
domly and uniformly distributed over t and τ . Then, for a
specific t, out of the Qτ (t) non-zero samples of Cxx(t, τ),
the number of missing entries in Crr(t, τ) is

Kτ (t) =
Ñ

T 2/2
Qτ (t) =

2NT −N2

T 2
Qτ (t). (19)

Therefore, the number of the observed non-zero IAF samples
for a specific t is obtained as

Lτ (t) = Qτ (t)−Kτ (t) =
(T −N)2

T 2
Qτ (t). (20)

We can expressWrr(t, f) as

Wrr(t, f) =
∑

τ∈Sτ(t)

Cxx(t, τ)e
−j4πfτ , (21)

where Sτ (t) is the set of non-zero τ entries for a specific t
with a cardinality of |Sτ (t)| = Lτ (t), and τ takes values be-
tween −[Qτ(t)− 1]/2 and [Qτ (t)− 1]/2.
Using the uniform distribution of the missing entries in

t and τ , it is straightforward to verify that E[Wrr(t, f)] =
[Lτ (t)/Qτ (t)]Wxx(t, f), i.e., Wrr(t, f) is an unbiased esti-
mator of Wxx(t, f) for every t and f , subject to a scaling
factor ξ = Lτ (t)/Qτ (t) = (T − N)2/T 2. Write Wrr(t, f)
as

Wrr(t, f) = Wxx(t, f)−Wd(t, f), (22)
where Wd(t, f) = Wmx(t, f) + Wxm(t, f) − Wmm(t, f)
denotes the artifacts in the WVD due to the missing data sam-
ples. Then, from the above discussion, we obtain

E[Wd(t, f)] =

(
1−

Lτ (t)

Qτ (t)

)
Wxx(t, f) =

Kτ (t)

Qτ (t)
Wxx(t, f).

(23)
Because Wxx(t, f) is deterministic, we can obtain the vari-
ance ofWrr(t, f) as

var[Wrr(t, f)] = var[Wd(t, f)]

= E

[
|Wd(t, f)|

2−

(
Kτ (t)

Qτ (t)

)2

|Wxx(t, f)|
2

]

=
∑

τ /∈Sτ (t)

|Cxx(t, τ)|
2 −

Kτ (t)

Q2
τ (t)

|Wxx(t, f)|
2.

(24)
Specifically, when x(t) is a mixture of P FM signals with
amplitudes ai, i = 1, ..., P , we can simplify the above ex-
pression as

var[Wxx(t, f)] = Kτ (t)

[
P∑
i=1

|ai|
2 −

1

Q2
τ (t)

|Wxx(t, f)|
2

]
.

(25)

As such, the missing data samples yield spreading artifacts
that are randomly distributed over the entire t-f domain, and
the overall variance increases as the number of missing data
samples increases. It is evident from the above expression
that, for (t, f) points whereWxx(t, f) is zero or insignificant,
the variance is uniformly distributed over f , whereas the vari-
ance depends on t because of the zero-padding effect.

3.3. Ambiguity Function

The IDFT of the IAF Cxx(t, τ) with respect to t yields the
AF, expressed as,

Axx(θ, τ) = F−1
t [Cxx(t, τ)] =

∑
t

Cxx(t, τ)e
j2πθt, (26)

where θ is the frequency shift or Doppler. As such, the AF
is mathematically very similar to the WVD. The exception is
that, as the IAF is conjugate symmetric only with τ but not
with t, the AF entries are in general complex. Rather, The AF
entries are conjugate symmetric with respect to the origin.
We similarly define the window length along the t dimen-

sion, which is expressed as a function of τ ,

Qt(τ) = T − |2τ |, τ = −(N/2)+1, ..., (N/2)− 1. (27)

Out of the Qt(τ) samples of Cxx(t, τ) for a specific value of
τ , the number of missing entries in Crr(t, τ) is

Kt(τ) =
Ñ

T 2/2
Qt(τ) =

2NT −N2

T 2
Qt(τ). (28)

We can similarly verify that E[Arr(θ, τ)] = (Lt(τ)/Qt(τ))
Axx(θ, τ), where Lt(τ) = Qt(τ)−Kt(τ). That is, Arr(θ, τ)
is an unbiased estimator of Axx(θ, τ) for every θ and τ , sub-
ject to the same scaling factor ξ = Lt(τ)/Qt(τ) = (T −
N)2/T 2. The variance of Arr(θ, τ) is given as

var[Arr(θ, τ)] =
∑

t/∈St(τ)

|Cxx(t, τ)|
2 −

Kt(τ)

Q2
t (τ)

|Axx(θ, τ)|
2,

(29)
where St(τ) is the set of non-zero t entries for a specific τ
with a cardinality of |Sτ (t)| = Lt(τ), and t takes values be-
tween 1 and T . The variance becomes

var[Arr(θ, τ)] = Kt(τ)

[
P∑
i=1

|ai|
2 −

1

Q2
t (τ)

|Axx(θ, τ)|
2

]

(30)
when x(t) is the mixture of P FM signals with magnitude
ai, i = 1, ..., P , as described earlier.
As such, the missing data samples yield artifacts that ran-

domly spread over the entire θ-τ domain, and the overall vari-
ance increases as the number of missing data samples in-
creases. For (θ, τ) entries whereAxx(θ, τ) is zero or insignif-
icant, the variance is uniformly distributed over θ, whereas the
variance depends on τ because of the zero-padding effect.
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4. MITIGATION OF MISSING DATA ARTIFACTS
USING TIME-FREQUENCY KERNELS

The effect of the artifacts due to missing data samples resem-
bles that due to noise in the WVD and AF domains in the
sense that they respectively spread over the entire t-f as well
as the θ-τ regions. Therefore, such effect can be mitigated
through a proper mask, or time-frequency kernel. This is a
welcomed news because such kernels also mitigate undesired
time-frequency cross-terms. As such, a less cluttered TFD
can be expected with the suppression of both missing data ar-
tifacts and cross-terms. The best kernel in this case is one
that only keeps the signal signature whereas the other regions
are filtered out. One of the best choices for this purpose is
the adaptive optimal kernel (AOK) [6], which is known to
provide signal-adaptive filtering capability in the AF domain.
Furthermore, to understand the difference between noise and
the missing data samples, we also consider the Choi-Williams
distribution (CWD) [7] as an example of non-adaptive ker-
nels.

5. RECONSTRUCTION THROUGH L1-NORM
BASED SIGNAL RECOVERY

When the signals are sparsely presented in the time-frequency
domain, their TFDs can be reconstructed based on their spar-
sity. For notation convenience, we denote c[t]xx as a vector that
contains all IAF entries along the τ dimension corresponding
to time t, and d[t]

xx as a vector collecting all the TFD entries
for the same time t. Note that c[t]xx may denote the original
IAF, which corresponds to the WVD, or its smoothed version
as a result of applying a kernel. Then, these two vectors are
related by the IDFT with respect to f , expressed as

c
[t]
xx

= Gfd
[t]
xx
, ∀t, (31)

whereGf is a matrix performing the IDFT with respect to f .
Vector c[t]xx may have missing entries due to missing data

or because of the kernel. By removing the IAF entries with
zero or negligible values, we can construct a vector c̃[t]xx,
which becomes

c̃
[t]
xx

= G̃fd
[t]
xx
, (32)

where G̃f is the result after removing the corresponding rows
fromGf .
Because the signals are sparsely represented in the time-

frequency domain, the non-zero entries of d[t]
xx can be recon-

structed through sparse signal recovery techniques. The prob-
lem is formulated as

min ||d[t]
xx

||1 s.t. c̃
[t]
xx

− G̃fd
[t]
xx

= 0, ∀t. (33)

In this paper, we use the orthogonal matching pursuit
(OMP) [8] for each time instant. The reason of choosing the
OMP is that it allows us to specify the number of non-zero
entries (i.e., iterations) in each time instant.

6. SIMULATION RESULTS

For illustration purposes, we use a two-component FM signal,
where the instantaneous phase laws of the two components
are respectively expressed as,

φ1(t) = 0.05t+ 0.05t2/T + 0.1t3/T 2,
φ2(t) = 0.15t+ 0.05t2/T + 0.1t3/T 2,

(34)

for t = 1, ..., T , where T is chosen to be 128. The two FM
components have the same power, and no noise is considered.
The real-part waveform, WVD, AF, and IAF are depicted in
Fig. 1. TheWVD, AF, and IAF are shown in terms their mag-
nitudes for better demonstration of the artifacts due to missing
data samples. It is observed that the WVD shows clear cross-
terms between the two components, as well as those between
the same components due to the non-linear IF signatures. In
addition, the total number of 8192 non-zero entries of the IAF
has a diamond shape because of zero-padding.
Now, we consider the same waveform, but with a 50% (or

64) missing data samples that are randomly distributed over
the 128 data samples. The waveform is shown in Fig. 2, where
the missing data positions are marked with red dots. Per the
analysis presented in Section 3, the IAF is a product of the
original IAF and a mask function that nullifies its presence in
a significant amount of entries. For this specific realization,
the missing IAF entries due to the missing data samples is
6144 (which is 75% of the total entries of the original IAF),
whereas the approximated value obtained from (17) is 6143.5.
The average number of missing entries obtained from 100 in-
dependent trials is 6128.1.
It is evident in Fig. 2 that the missing IAF entries induce

WVD and AF artifacts. The artifacts in the WVD are spread
evenly over the frequency axis but has stronger presence in the
central portion of the time axis due to the diamond shape of
the IAF. They show certain periodicity because of the two sig-
nal components with parallel IF laws. These artifacts signifi-
cantly obscure the proper identification of the time-frequency
signatures in the WVD. Likewise, they are evenly distributed
in the AF over the Doppler frequency, and shows higher pres-
ence when the time lag is close to zero.
The TFD obtained from the AOK is shown in Fig. 3(a)

for 50% of missing data samples. It is evident that the AOK
substantially mitigates the missing data artifacts. Because the
AOK is originally designed for cross-term suppression, the
resulting TFD shows a TFR with clear auto-term character-
istics, even with 50% of missing data samples. The TFD
obtained from the CWD is shown in Fig. 3(b) for the same
50% of missing data samples. A 7-sample Hamming window
(approximately 1/20 of the entire data samples) is applied to
θ, and a 43-sample Hamming window (approximately 1/3 of
the entire data samples) is applied to τ . Because the CWD is
not data-adaptive, it emphasizes the locality of the observed
data when rejecting the artifacts due to missing data samples,
yielding missing or weak TFD entries around missing data
positions. This distinguishes the effect of the artifacts from
that of additive noise.
Finally, we depict the TFDs results obtained from the ob-

served data with missing samples by exploiting sparse signal
reconstructions. It is clear that the signal is locally sparse
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when considered through a window. The reconstructed TFDs
using the OMP algorithm with few iterations are shown in
Fig. 4. The result presented in Fig. 4(a) is obtained from the
original IAF. Three iterations were allowed for each time in-
stant to account for the cross-terms. The artifacts due to the
missing data samples are still noticeable. On the other hand,
Fig. 4(b) shows the results obtained from the IAF after apply-
ing the AOK, with two iterations used for each time instant.
In this case, the reconstructed TFD shows a TFD with very
little clutter.

7. CONCLUSIONS

We have examined the effect of missing data samples of non-
stationary signals on the time-frequency representations and
their sparse reconstructions. The Wigner-Ville distribution
(WVD) of such observed signals is shown to be an unbiased
estimator of the full-data WVD, and the estimated variance
is analyzed. The artifacts due to the missing data samples
are spread over the entire time-frequency domain and can be
effectively suppressed by using proper time-frequency ker-
nels. Waveform-adaptive kernels, such as the adaptive op-
timal kernel, demonstrated superior artifact suppression ca-
pability. Sparsity-based reconstruction techniques applied to
interference-reduced distributions results in excellent time-
frequency representations.
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Fig. 1 Real-part waveform, WVD, AF, and IAF of the two-
component signals without missing samples.
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Fig. 2 Real-part waveform, WVD, AF, and IAF of the two-
component signals with 50% of missing samples. The red dots in
the waveform show the missing data positions.
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Fig. 3 TFDs obtained from AOK and CWD using data with 50%
of missing samples.
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Fig. 4 TFDs reconstructed through OMP from the original and
kerneled IAF using data with 50% of missing samples.
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