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Abstract  
  

We computed intrinsic neural timescales (INT) based on resting state functional magnetic 
resonance imaging (rsfMRI) data of healthy controls (HC) and patients with schizophrenia 
spectrum disorder (SZ) from three independently collected samples. Five clusters showed 
decreased INT in SZ compared to HC in all three samples: Right occipital fusiform gyrus 
(rOFG), Left superior occipital gyrus (lSOG), Right superior occipital gyrus (rSOG), Left 
lateral occipital cortex (lLOC), and Right postcentral gyrus (rPG). In other words, it appears 
that sensory information in visual and posterior parietal areas is stored for reduced lengths of 
time in SZ compared to HC. We also found some evidence that symptom severity modulates 
INT of these areas in SZ.   
 
Keywords: schizophrenia; intrinsic neural timescales; rsfMRI; posterior parietal; occipital 

  
Introduction  
  
 
Schizophrenia is a psychiatric disorder diagnosed in approximately 1% of the world’s 
population (Bhugra, 2005). It is characterized by negative (e.g. disorganized thoughts and 
language, attention and memory deficits) and positive (e.g. hallucinations and delusions) 
symptoms.  Of high relevance to SZ pathology are the visual, auditory and sensorimotor 
areas. The dysconnectivity and disintegration of primary sensory areas have been proposed to 
underlie higher cognitive dysfunctions in SZ (Bordier et al., 2018; Ferri et al., 2017; 
Kaufmann et al., 2015) and have been shown to be predictive of disease severity (Guo et al., 
2014; Javitt, 2015; Orliac et al., 2017; Zhang, Guo and Tian, 2019; Zhang et al., 2019). For 
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example, increased connectivity between early and late visual areas has been linked to mood 
induction in a compensatory manner in SZ (Dyck et al., 2014). Furthermore, cognitive 
control deficits in SZ patients have been linked to hyper-connectivity within the auditory, 
sensorimotor and posterior parietal cortex (Mayer et al., 2015). The thalamus, involved in 
sensory gating deficits in SZ, has also been shown to be hyper-connected to sensorimotor 
areas (Xi et al., 2020), and its increased connectivity to the middle temporal gyrus has been 
positively related to the presence of hallucinations and delusions (Ferri et al., 2018). Finally, 
connectivity alterations in somatosensory areas have also shown to be good predictors of 
patient classification (Skåtun et al., 2016). 
 
In later years, there has been a greater emphasis on characterising neuropsychiatric disorders 
in terms of trans-diagnostic, as opposed to categorical symptoms. One such symptom reflects 
sensory processing deficits (Hornix, Havekes and Kas, 2019; Harrison et al., 2019), which 
comprise responding to, processing and organizing sensory information (Miller et al., 2009). 
Sensory deficits have been found to characterize several neuropsychiatric disorders, such as 
SZ (Brown et al., 2002; Javitt and Freedman, 2015) and Autism Spectrum Disorders (ASD; 
Marco et al., 2011; Balasco, Provenzano and Bozzi, 2020). True to its trans-diagnostic 
potential, when comparing ASD and SZ directly, these deficits have been found to constitute 
a common feature of both disorders (Noel, Stevenson and Wallace, 2018; Zhou et al., 2018; 
Zhou et al., 2020). 
 
Most neuroimaging research deals with analysing static relationships between functional 
neural components. However, this can only offer limited insight into brain health and disease, 
since brain activity is essentially dynamic. Consequently, a range of time series analyses 
directed at characterizing the dynamic changes in brain activity have been developed in 
recent years. Vince Calhoun et al. (2014) proposed the umbrella-term “chronnectome” to 
describe these dynamic brain processes. “Chronnectomic” approaches are diverse, can be 
applied to both M/EEG and fMRI time series, and have proven useful for distinguishing 
neurotypicals from, e.g., SZ (e.g. Miller, Yaesoubi, and Calhoun, 2014).  One such 
chronnectomic approach is to assess how long information is stored in various neural areas. 
This duration is known as temporal receptive field, intrinsic neural timescales (INT), or 
temporal receptive window.  
 
A hierarchical organization of INT across the primate cortex has been initially noted based on 
spike count (Murray et al., 2014), with sensory areas displaying shorter INT compared to 
frontal ones.  Human neuroimaging studies on healthy populations have confirmed a similar 
hierarchical organization, with longer INT in frontal and parietal compared to sensory areas 
(Hasson et al., 2008; Honey et al., 2012). This has been argued to form the basis of a 
functional hierarchy in the brain (Kiebel, Daunizeau and Friston, 2008; Lerner et al., 2011) 
that enables sensory areas to register fast environmental changes (Salinas et al., 2000) and 
cognitive areas to integrate and analyse sensory input (Wang, 2002). This functional 
hierarchy has a practical relevance for both localized and distributed neural activity, as shown 
by Ito, Hearne and Cole (2020). These authors showed that regions with faster INT during 
resting state displayed strong activations and decreased functional connectivity during task 
states. Additionally, Fallon et al. (2020) further showed that increased INT correlated with 
increased structural connectivity, thus expanding on the practical implications of assessing 
cortical temporal dynamics. This intrinsic hierarchical functional organization of brain 
activity and its alterations can improve the state of our current knowledge on how and where 
information processing breaks down in the healthy, but mostly in the dysfunctional brain. 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.22.21257646doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.22.21257646
http://creativecommons.org/licenses/by-nd/4.0/


This functional hierarchy has been shown to be altered in SZ. For example, Wengler et al. 
(2020) found reduced INT at the whole brain level in SZ compared to HC, and showed that 
INT reduction in auditory areas was modulated by hallucination and delusion severity. We 
were therefore interested to see how well this pattern is replicable across independent SZ 
samples and whether symptom severity plays a modulatory role. For this purpose, rsfMRI 
data has been analysed along the lines of Watanabe, Rees and Masuda (2019). Replicability 
can be however dramatically compromised if false positives are not controlled for. One 
source of spurious results in resting-state fMRI analyses are head motion artefacts, which are 
particularly frequent in clinical populations (e.g. Power et al., 2012; Van Dijk, Sabuncu and 
Buckner, 2012). Since we analysed data collected from SZ patients, this was a concern which 
we sought to address, therefore we analysed the INT group-differences both before and after 
eliminating framewise displacement outliers in all three SZ samples.  
  
  
Methods  
 

Participants  
Three independently collected, age and sex-balanced samples were used in the present study; 
(1) an in-house all-male dataset collected at the Centre for Cognitive Neurosciences in 
Salzburg, Austria; (2) an open-source data-set from the Center for Biomedical Research 
Excellence (COBRE; Calhoun et al., 2011; Hanlon et al., 2011; Mayer et al., 2013; Stephen 
et al., 2013; available at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html); (3) an 
open-source data-set from the UCLA Consortium for Neuropsychiatric Phenomics LA5c 
Study (UCLANP; available at https://www.openfmri.org/dataset/ds000030/). Sample 
demographics and phenotypic information for all three samples are provided in Table 1.  
 

The in-house sample consisted of 25 all-male patients (Age mean and sd: 26.26 
(4.83)) recruited at the Department of Psychiatry, Psychotherapy and Psychosomatics at the 
Christian-Doppler Medical Centre in Salzburg, Austria who had received a formal ICD-10 
diagnosis in the schizophrenia spectrum group (F20) or the schizoaffective disorders 
spectrum group (F25). At the time of scanning, patients were medicated and clinically stable, 
with mild symptom severity, as assessed with PANSS (Kay, Fiszbein and Opler, 1987). Two 
of the patients did not complete the PANSS assessment but did complete the resting state 
scanning session. Thirty-one age and education matched control participants (Age mean and 
sd: 25.10 (4.33)) were recruited and screened for mental and physical health (via a 
standardized anamnesis procedure) and were excluded if they reported a history of mental or 
neurological disorder or a family history of psychiatric disorders. More details about the 
recruitment and assessment of the participants included in the present study can be found in 
Kronbichler et al. (2018). Functional imaging data were acquired on a Siemens Magnetom 
Trio 3T scanner (Siemens AG, Erlangen, Germany) using a 32-channel head coil. Functional 
images were acquired with a T2*-weighted gradient echo EPI sequence (TR 2,250 ms, TE 30 
ms, matrix 64 mm × 64 mm, FOV 192 mm, flip angle 70°). Thirty-six slices with a slice 
thickness of 3 mm and a slice gap of 0.3 mm were acquired within the TR. Scanning was 
completed over two sessions with 321 scans per session. Finally, a gradient echo field map 
(TR 488 ms, TE 1 = 4.49 ms, TE 2 = 6.95 ms) and a high-resolution (1 mm × 1 mm × 1 mm) 
structural scan with a T1-weighted MPRAGE sequence were also acquired. 

Seventy-two SZ (58 males; Age mean and sd: 38.17 (13.98)) and seventy-four HC (51 males; 
Age mean and sd: 35.82 (11.58)) from the COBRE open source dataset were included in this 
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study. All participants were screened for a history of neurological disorders, mental 
retardation, and severe head trauma with more than 5 minutes loss of consciousness, 
substance abuse or dependence within the last 12 months. Clinical diagnosis was established 
using the Structured Clinical Interview used for DSM Disorders (SCID). A multi-echo 
MPRAGE (MEMPR) sequence was ran with the following parameters: TR/TE/TI = 
2530/[1.64, 3.5, 5.36, 7.22, 9.08]/900 ms, flip angle = 7°, FOV = 256x256 mm, Slab 
thickness = 176 mm, Matrix = 256x256x176, Voxel size =1x1x1 mm, Number of echos = 5, 
Pixel bandwidth =650 Hz, Total scan time = 6 min. Resting state data was collected with 
single-shot full k-space echo-planar imaging (EPI) with ramp sampling correction using the 
anterior-to-posterior commissural line as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64, 
32 slices, voxel size: 3x3x4 mm3).  

Fifty SZ (38 males; Age mean and sd: 36.46 (8.88)) and sixty-three (44 males; Age mean and 
sd: 33.73 (9.1)) HC were included from the UCLA Consortium for Neuropsychiatric 
Phenomics LA5c Study. Participants were screened for neurological disease and major 
mental illness, history of head injury with loss of consciousness, use of psychoactive 
medications, and substance dependence within 6 months prior to testing. Self-reported history 
of psychopathology was assessed with the SCID-IV (First, Spitzer, Gibbon, & Williams, 
1995). Urinalysis was used to screen for drugs of abuse (cannabis, amphetamine, opioids, 
cocaine, benzodiazepines) on the day of testing and participants were excluded if their results 
were positive. Neuroimaging data were acquired on a 3T Siemens Trio scanner. Functional 
MRI data were collected with a T2*-weighted echo planar imaging (EPI) sequence with the 
following parameters: slice thickness = 4mm, 34 slices, TR=2s, TE=30ms, flip angle=90°, 
matrix=64 × 64, FOV=192mm. A T1-weighted high-resolution anatomical scan (MPRAGE) 
was collected with the following parameter: slice thickness = 1mm, 176 slices, TR=1.9s, 
TE=2.26ms, matrix=256 x 256, FOV=250mm.  The eyes open resting state fMRI session 
lasted for 304 seconds. 
 
Symptom severity was assessed using The Scale for the Assessment of Negative Symptoms 
(SANS; Andreasen, 1984) and the Scale for the Assessment of Positive Symptoms (SAPS; 
Andreasen, 1984) for the UCLANP sample, and the Positive and negative symptom scale 
(PANSS; Kay et al., 1987) for the COBRE and the inhouse samples. Means and standard 
deviations of symptom severity measures for all three patient samples are given in Table 1. 
  
Table 1. Mean and standard deviations of symptom severity in all three patient samples. 
 

 COBRE                                 INHOUSE                         UCLANP 

PANSS 

- positive 

- negative 

 

14.96 (4.83)   

14.53 (4.83)   

 

                                                     

14.00 (5.72)                                        

15.48 (7.02)                                       

SANS 

- affective 

blunting 

- alogia 

- avolition 

 

                          

 

                       

                    

 

                                          1.26 (1.31)     

                                                       

                                          0.98 (1.51)     

                                          2.72 (1.51)     
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- anhedonia 

- attention 

 

 

                   

                                              

                                          2.28 (1.50)     

                                          2.16 (1.36)     

SAPS 

- hallucinations 

- delusions 

- bizarre 

behaviour 

- positive 

formal thought 

behaviour 

 

                           

                      

                     

       

                                              

 

                                          2.30 (1.75)    

                                          2.54 (1.47)    

                                          0.96 (1.36) 

                          

                                          1.60 (1.51)       

                                    

 
 

 

Neuroimaging data pre-processing 

The fMRI data was pre-processed and analysed using SPM12 (Wellcome Trust Centre for 
Neuroimaging, London, UK; code available at: https://github.com/spm/spm12), while all the 
other statistical analyses were performed in R 5.2 (R Core Team, 2018). Functional scans 
were realigned, de-spiked, unwarped, corrected for geometric distortions, and slice time 
corrected. They were also normalized to MNI space and co-registered to the corresponding 
skull-stripped structural images, and afterwards resampled to 3 mm × 3 mm × 3 mm voxels 
and smoothed with a 6 mm FWHM Gaussian kernel. Motion correction was performed using 
ICA-AROMA (Pruim et al., 2015; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/OtherSoftware), and 
the resulting non-aggressively corrected resting state time series were used for computing the 

INT. 

Analysis 

Following the INT analysis of Watanabe et al. (2019), the autocorrelation function was 
calculated for each voxel at incremental time lags until the autocorrelation function value 
became negative for the first time. The positive autocorrelation values were then summed up. 
The resulting sum was then multiplied by the repetition time (TR) to account for temporal 
resolution differences between the three samples. An index of the INT was thus obtained. 

Next, using the COBRE dataset, we identified group differences in INT duration between HC 
and SZ via voxel-wise analysis. We isolated five clusters which we then used as masks to 
extract INT duration from those specific locations in HC and SZ from the in-house and the 
UCLANP datasets. This extraction was performed using the REX toolbox. Individual INT 

values were then exported and subsequently analysed using the R software. 
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As previous concerns have been raised regarding the possibility that head motion artefacts 
can cause false positive results, we re-analysed INT duration group differences after 
eliminating motion artefacts outliers. These artefacts (i.e. framewise displacement 
parameters; FD) were identified using the FSL library (Jenkinson et al., 2012). Group 
differences in FD between HC and SZ were minimized in two steps. First, the SZ with the 
largest FD values were gradually eliminated until the FD group difference was no longer 
significant (i.e. p > .05). Then, the HC with the smallest FD values were gradually eliminated 
until the mean FD values of the two groups were as similar as possible (p ≈ 1). 

 

Results 

First, we ensured that sex and age did not differ significantly between SZ and HC in either of 
the three samples. For the in-house data set, as it was all-male, we only checked that the two 
groups were age-balanced (Mean (SD) of SZ = 26.26 (4.83); Mean (SD) of HC = 25.1 (4.33); 
t (44.494) = -0.91523, p = .365). The COBRE sample was equally balanced for both sex 
(χ2(1) = 2.033, p = .134) and age (Mean (SD) of SZ = 38.2 (13.9); Mean (SD) of HC = 35.8 
(11.6); t (138.07) =-1.105, p = .271). The UCLANP sample was equally sex (χ2(1) = 0.267, p 
= .61) and age (Mean (SD) of SZ = 36.46 (8.88); Mean (SD) of HC = 33.73 (9.1); t (106.31) 
= -1.606, p = .111) balanced. 

 

Voxel-wise exploratory results 

Exploratory mass-univariate t tests were first performed in COBRE, to compare the INT 
index between HC and SZ. First, the expected pattern of increased INT (Lerner et al., 2011) 
in frontal and parietal areas, and decreased INT in sensory areas was also confirmed in both 
HC and SZ (see Figure 1 below, top left and right panels). A pattern of increased INT in HC 
compared to SZ was observed in bilateral postcentral gyrus and occipital areas (see Figure 1 
bottom left panel and table 1 below). Very few areas displayed increased INT in SZ 
compared to HC, in the supramarginal and inferior frontal gyrus (see Figure 1 below, bottom 
right panel). 
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Region of interest (ROI) identification  

 

Based on the mass univariate results from the COBRE dataset, prior to FD outlier 
elimination, we selected the significant clusters and thus extracted the five ROIs (see table 2 
below) which were used in the subsequent cluster-level analyses. In order to avoid double-
dipping, we excluded the COBRE dataset from the first set of ROI level group comparisons 
(i.e, prior to FD outlier elimination). We included it again when we re-ran our analyses post 
FD outlier elimination. 

 

Figure 1. Mass-univariate exploratory analysis (p uncorr. < .001) of INT within and between SZ and HC of the 
COBRE dataset. In the top left and right, we observe the expected pattern of increased INT in frontal and 
parietal areas in both groups. The lower left panel depicts the areas that show longer INT in HC compared to 
SZ, namely: the right postcentral gyrus, the right occipital fusiform gyrus and right cuneal cortex, the left 
occipital pole and the left lateral occipital cortex. The lower right panel depicts the areas that show longer INT 
in SZ compared to HC, namely the left supramarginal and middle frontal gyrus. 
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Table 2. Voxel-wise INT group differences. 

Anatomical label Abbreviation MNI coordinates Cluster 

size 

T value 
(FDR 
corr.) 

HC > SZ  X          Y          Z   

Right occipital fusiform gyrus rOFG 27         -88       -14 122 4.34 

Left superior occipital gyrus lSOG -15        -91        19 136 5.39 

Right superior occipital gyrus rSOG 18         -79         25 452 5.04 

Left lateral occipital cortex lLOC -42        -70        1 87 4.19 

Right postcentral gyrus rPG 42         -31        64 61 4.61 

 
 
 

Group differences in INT duration between HC and SZ 

 
Following ROI identification, we proceeded to analyse group differences in INT duration 
between HC and SZ within each of the five ROIs, for both the in-house and the UCLANP 
samples. Welch two-samples t tests were used for this purpose, as implemented in the R 
software. A consistent pattern of reduced INT in SZ compared to HC was found in all ROIs, 
and replicated in both samples. Within the in-house dataset, significantly increased INT 
durations in HC compared to SZ were found in the rSOG (Mean (SD) of INT in HC = 2.66 
(0.61), Mean (SD) of INT in SZ = 2.22 (0.55), t (54.19) = 2.86, p Bonf. = .03, Hedge’s g = 
0.74) and the rPG (Mean (SD) of INT in HC = 2.42 (0.67), Mean (SD) of INT in SZ = 2 
(0.43), t (54.74) = 2.87, p Bonf. = .03, Hedge’s g = 0.71). In UCLANP, significantly longer 
INT were found in HC compared to SZ in the rOFG (Mean (SD) of INT in HC = 0.84 (0.42), 
Mean (SD) of INT in SZ = 0.67 (0.34), t (110.92) = 2.37, p Bonf. = .05, Hedge’s g = 0.44), 
the rSOG (Mean (SD) of INT in HC = 0. 7(0.39), Mean (SD) of INT in SZ = 0.52 (0.27), t 
(108.46) = 2.95, p Bonf. = .05, Hedge’s g = 0.53) and the rPG (Mean (SD) of INT in HC = 
0.99 (0.59), Mean (SD) of INT in SZ = 0.76 (0.36), t (105.34) = 2.54, p Bonf. = .03, Hedge’s 
g = 0.46). These results are illustrated in Figure 2 below and summarized in Table 3 in the 
Supplement. 
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Figure 2. Group differences in intrinsic neural time scales (INT) per sample and cluster, prior to FD outlier 

elimination. Bonferroni-corrected significant differences are marked. Red colour represents HC, while blue 
represents SZ.  

 

 

Relationship between symptom severity and INT  

 

We also explored the relationship between symptom severity and INT of the five clusters, in 
the three patient samples. We found no significant relationship between INT duration in any 
of the five clusters and symptom severity in our inhouse sample (r < 0.21, p > .31) and in 
COBRE (r < 0.24, p > .22). In the UCLANP samples, we found a significant negative 
correlation between the INT duration of the Right occipital fusiform gyrus and positive 
formal thought disorder (r = -0.3, p = .03). 
 
 
Elimination of outliers with extreme head motion artefacts 

 
Due to concerns regarding the false positive rate which might be driven upwards by motion 
artefacts, we re-analysed the INT group differences after FD outlier elimination. The 
previously observed pattern of increased INT in HC compared to SZ is preserved across all 
clusters and samples.  In COBRE, significantly longer INT in HC compared to SZ were 
found in all five clusters: rOFG (Mean (SD) of INT in HC = 1.56 (0.57), Mean (SD) of INT 
in SZ = 1.16 (0.49), t (111.6) = 4.1, p Bonf. < .001, Hedge’s g = 0.74), lSOG (Mean (SD) of 
INT in HC = 1.53 (0.64), Mean (SD) of INT in SZ = 1.17 (0.55), t (111.6) = 3.33, p Bonf. = 
.005, Hedge’s g = 0.61), rSOG (Mean (SD) of INT in HC = 1.41 (0.54), Mean (SD) of INT in 
SZ = 1.01 (0.46), t (111.27) = 4.32, p Bonf. < .001, Hedge’s g = 0.8), lLOC (Mean (SD) of 
INT in HC = 1.62 (0.68), Mean (SD) of INT in SZ = 1.19 (0.54), t (108.79) = 3.81, p Bonf. < 
.001, Hedge’s g = 0.71) and rPG (Mean (SD) of INT in HC = 1.63 (0.69), Mean (SD) of INT 
in SZ = 1.14 (0.53), t (107.5) = 4.31, p Bonf. < .001, Hedge’s g = 0.8).  In the inhouse 
sample, significantly longer INT in HC compared to SZ were found in rSOG (Mean (SD) of 
INT in HC = 2.59 (0.43), Mean (SD) of INT in SZ = 2.1 (0.44), t (26.29) = 2.14, p Bonf. = 
.005, Hedge’s g = 1.15) and rPG (Mean (SD) of INT in HC = 2.45 (0.65), Mean (SD) of INT 
in SZ = 1.9 (0.45), t (28.23) = 2.89, p Bonf. = .04, Hedge’s g = 0.96). In UCLANP, 
significantly longer INT in HC compared to SZ were found in rOFG (Mean (SD) of INT in 
HC = 0.84 (0.42), Mean (SD) of INT in SZ = 0.67 (0.34), t (107) = 2.32, p Bonf. = .05, 
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Hedge’s g = 0.44), rSOG (Mean (SD) of INT in HC = 0.7 (0.4), Mean (SD) of INT in SZ = 
0.51 (0.27), t (103.21) = 2.88, p Bonf. = .01, Hedge’s g = 0.53) and rPG (Mean (SD) of INT 
in HC = 0.97 (0.58), Mean (SD) of INT in SZ = 0.75 (0.37), t (101.34) = 2.39, p Bonf. = .05, 
Hedge’s g = 0.44). These results are illustrated in Figure 3 below and summarized in Table 4 
in the Supplement. 
 
 

 
 
Figure 3. Group differences in intrinsic neural time scales (INT) per sample and cluster, after FD outlier 

elimination. Bonferroni-corrected significant differences are marked. Red colour represents HC, while blue 
represents SZ.  

 
 
Finally, to ensure that INT group differences are not due to motion artefacts, we further 
explored the relationship between FD and INT. In COBRE and UCLANP there were no 
significant correlations between INT duration and FD, neither before nor after FD outlier 
elimination (see Figure 4 below). In the in-house SZ sample, there were three significant 
positive correlations between FD and INT duration in the rOFG (r = 0.43, p = .03), rSOG (r = 
0.56, p = .004) and lLOC (r = 0.42, p = .04). However, this relationship became non-
significant after FD outlier elimination. Thus, even if motion artefacts might have had an 
initial influence on group differences, we believe that this was removed in the second step, by 
eliminating extreme FD values. 
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Figure 4. Correlations between framewise displacement (FD) and intrinsic neural timescales (INT), before and 
after FD outlier elimination, per sample and cluster; COBRE in panel A, INHOUSE in panel B, and UCLANP 
in panel C. Red star symbols represent correlations between FD and INT in HC, while blue triangle symbols 
represent correlations between FD and INT in SZ. Correlation coefficients are written in red for HC and blue for 
SZ. Significant correlations are marked by asterisks. 

 
Relationship between symptom severity and INT after FD outlier elimination 

 

We analysed the relationship between symptom severity and INT of the five clusters, in the 
three patient samples, following FD outlier elimination. No significant correlations were 
found in the in-house sample (r < -0.41, p > .1). In the UCLANP sample, we found a 
significant negative correlation between the INT duration of the rOFG and positive formal 
thought disorder (r = -0.3, p = .03). 
 

 
Discussion  
  
In this paper, we present a replication of intrinsic neural timescales (INT) patterns in three 
independent samples of patients with schizophrenia (SZ) and matched healthy controls (HC). 
Our main goal was to assess to which extent INT findings can be reliably replicated across 
independent samples. We believe this to be a crucial step, as it has been shown that different 
data acquisition settings constitute a major obstacle in achieving replicability (King et al. 
2019). We pre-processed and analysed all three samples identically and we were able to show 

C
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that the pattern of reduced INT in SZ compared to HC also generalizes well across 
independently acquired samples, thus being robust to differences in acquisition protocols.  
 
Motion artefacts were another concern which we sought to address, as they tend to occur 
frequently in clinical samples and often lead to spurious results (e.g. Power et al., 2012; Van 
Dijk et al., 2012). We therefore assessed the INT patterns before and after FD outlier 
elimination, and our results were significant in both instances. Additionally, we also checked 
whether a relationship between FD and INT might have led to false positives.  In most cases, 
this relationship was not significant, even before eliminating FD outliers. In the few cases 
where there was a positive and significant relationship between FD and INT, this effect 
disappeared once we eliminated FD outliers. The pattern of reduced INT in SZ compared to 
HC was however invariably preserved. We were therefore satisfied that the results we 
observed reflected real and replicable group differences and not spurious results driven by 
motion artefacts. 
 
We also assessed the relationship between INT and symptom severity and found a negative 
significant correlation between INT in the rOFG and positive formal thought disorder in the 
UCLANP sample. In other words, it appears that increased severity of this symptom is 
associated with increased excitation/inhibition (EI) ratio (hence decreased INT) in the rOFG. 
Previously, Wengler et al. (2020) looked at the relationship between hallucination and 
delusion severity in SZ and INT of auditory and visual areas. While they found such an 
association for the auditory system, they did not find any for the visual system. This may be 
explained by the different approaches in parcellation and ROI identification between our 
study and that of Wengler et al. While Wengler et al. opted for anatomically-defined parcels, 
we opted for a data-driven functional ROI identification based on group differences in the 
COBRE dataset. We believe that the difference in acquisition parameters of the different 
datasets (i.e., the Human Connectome Project in Wengler et al., and the COBRE, UCLANP 
and inhouse datasets of our study) had little influence over our result differences, since we 
already showed that INT patterns generalize well across different datasets. 
 
One mechanistic interpretation with respect to the reduced INT in SZ was previously offered 
by Wengler et al. (2020). Following a series of simulations, these authors suggest that a 
reduction in the excitation-inhibition (E/I) ratio could account for the global, brain-level INT 
reduction in SZ compared to HC. Computational studies have also previously linked long-
range autocorrelation fluctuations to the E/I ratio (e.g. Deco et al., 2014). This mechanism 
appears to be supported by clinical findings as well, as similar E/I ratio imbalances have been 
found, e.g., in both ASD and SZ (Ford, Abu-Akel and Crewther, 2019). Given the overlap in 
sensory impairments between these two disorders, it is reasonable to propose that the INT 
patterns can be used as a trans-diagnostic biomarker bridging ASD and SZ (Foss-feig et al., 
2017), and capturing underlying E/I imbalances in sensory areas.  
 
An alternative explanatory mechanism that we propose for the reduced INT similarities 
between the two disorders could be sensory gating impairments, frequently documented in 
SZ and linked to thalamus and hypothalamus impairments (e.g. Edgar et al., 2005; Tregellas 
et al., 2007; 2009; Hazlett et al., 2008; Mayer et al., 2013; Çetin et all., 2014). Furthermore, 
Raut, Snyder and Raichle (2020) showed that the hierarchical cortical INT patterns are 
reflected within the thalamus, with INT increasing along a ventrolateral to dorsomedial axis, 
essentially from lower- to higher-order nuclei. Based on the evidence listed here, it appears 
that thalamic mediated sensory gating could lead to the observed INT group differences. 
However, further analyses linking the connectivity between the thalamus, hippocampus, 
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frontal and sensory areas (Grunwald et al., 2003; Mayer et al., 2009) to the INT of sensory 
areas could provide the necessary evidence in favour of this proposed mechanism. As sensory 
integration alterations have been proposed to be a promising trans-diagnostic biomarker 
(Hornix et al., 2019), we argue that chronnectomic analyses offer the best approach, as these 
can reveal the dynamic fluctuations of thalamo-cortical and cortico-cortical connections, 
arguably capturing a more accurate representation of neural activity. 
  
 
Data availability 
 
The COBRE and UCLANP datasets are freely available online. The COBRE can be 
downloaded from http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html. The UCLANP can 
be downloaded from https://exhibits.stanford.edu/data/catalog/mg599hw5271. The inhouse 
dataset can be obtained upon request.   
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Supplement 
 
Table 3. INT group differences per sample and cluster, before FD outlier elimination. Both uncorrected and 
Bonferroni corrected p values are given. Due to the HC and SZ sample sizes not being identical, Hedge’s g was 
preferred as an effect size estimator. The HC > SZ comparison was assessed using one-sided Welch two-
samples t tests. 

 
 

 Mean (SD) INT           HC > SZ 

       HC           SZ  t df P 

(uncorr)   

p  

(Bonf. Corr) 

Hedge’s g 

        

INHOUSE        

Cluster 1 

Cluster 2 

    2.64 (0.61)      2.24 (0.54) 

    2.51 (0.84)      1.98 (0.73) 

 2.63 

2.55 

54.43 

54.8 

   .011 

   .014 

   .055 

   .07 

0.68 

0.66 

Cluster 3     2.66 (0.61)      2.22 (0.55)  2.86 54.19    .006    .03 0.74 

Cluster 4 

Cluster 5 

    2.61 (0.77)      2.34 (0.52) 

    2.42 (0.67)      2.0 (0.43) 

 2.23 

2.87 

55.37 

54.74 

   .03 

   .006 

   .15 

   .03 

0.55 

0.71 

 

UCLANP 

       

Cluster 1     0.84 (0.42)      0.67 (0.34)  2.37 110.92    .01    .05 0.44 

Cluster 2     0.86 (0.44)      0.75 (0.39)  1.42 110.08    .08    .4 0.26 

Cluster 3     0.7 (0.39)        0.52 (0.27)  2.95 108.46    .01    .05 0.53 

Cluster 4     0.81 (0.47)      0.77 (0.44)  0.51 107.85    .31    1 0.1 

Cluster 5     0.99 (0.59)      0.76 (0.36)  2.54 105.34    .006    .03 0.46 

        

 
 
 
Table 4. INT group differences per sample and cluster, after FD outlier elimination. Both uncorrected and 
Bonferroni corrected p values are given. Due to the HC and SZ sample sizes not being identical, Hedge’s g was 
preferred as an effect size estimator. The HC > SZ comparison was assessed using one-sided Welch two-
samples t tests. 

 
 

 Mean (SD) INT           HC > SZ 

       HC           SZ  t df P 

(uncorr)   

p  

(Bonf. Corr) 

Hedge’s g 

        

COBRE        

Cluster1 

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 5 

 

INHOUSE 

     1.56 (0.57)      1.16 (0.49) 

     1.53 (0.64)      1.17 (0.55) 

     1.41 (0.54)      1.01 (0.46) 

     1.62 (0.68)      1.19 (0.54) 

     1.63 (0.69)      1.14 (0.53) 

 4.1 

3.33 

4.32 

3.81 

4.31 

111.6 

111.6 

111.27 

108.79 

107.5 

< .001 

   .001 

< .001 

< .001 

< .001 

< .001 

   .005 

< .001 

< .001 

< .001 

0.74 

0.61 

0.8 

0.71 

0.8 

Cluster 1 

Cluster 2 

    2.65 (0.66)      2.12 (0.5) 

    2.6 (0.77)        1.89 (0.77) 

 2.66 

2.71 

29.55 

32.87 

   .012 

   .011 

   .06 

   .06 

0.89 

0.9 
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Cluster 3 

Cluster 4 

Cluster 5 

 

    2.59 (0.43)      2.1 (0.44) 

    2.66 (0.84)      2.15 (0.52) 

    2.45 (0.65)      1.9 (0.45) 

3.48 

2.14 

2.89 

32.98 

26.29 

28.23 

   .001 

   .04 

   .007 

   .005 

   .2 

   .04 

1.15 

0.72 

0.96 

 

UCLANP        

Cluster 1 

Cluster 2 

Cluster 3 

Cluster 4 

Cluster 5 

    0.84 (0.42)      0.67 (0.34) 

    0.85 (0.44)      0.85 (0.39) 

    0.7 (0.4)           0.51 (0.27) 

    0.8 (0.47)         0.77 (0.45) 

    0.97 (0.58)       0.75 (0.37) 

 2.32 

1.23 

2.88 

.35 

2.39 

107 

106.14 

103.21 

104.61 

101.34 

   .01 

   .11 

   .002 

   .36 

   .01 

   .05 

   .6 

   .01 

   1 

   .05 

0.44 

0.23 

0.53 

0.1 

0.44 
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