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Abstract

Background: Asthenozoospermia is one of the most common findings present in infertile males

characterized by reduced or absent sperm motility, but its aetiology remains unknown in most

cases. In addition, calcium is one of the most important ions regulating sperm motility. In this study

we have investigated the progesterone-evoked intracellular calcium signal in ejaculated

spermatozoa from men with normospermia or asthenozoospermia.

Methods: Human ejaculates were obtained from healthy volunteers and asthenospermic men by

masturbation after 4–5 days of abstinence. For determination of cytosolic free calcium

concentration, spermatozoa were loaded with the fluorescent ratiometric calcium indicator Fura-2.

Results: Treatment of spermatozoa from normospermic men with 20 micromolar progesterone

plus 1 micromolar thapsigargin in a calcium free medium induced a typical transient increase in

cytosolic free calcium concentration due to calcium release from internal stores. Similar results

were obtained when spermatozoa were stimulated with progesterone alone. Subsequent addition

of calcium to the external medium evoked a sustained elevation in cytosolic free calcium

concentration indicative of capacitative calcium entry. However, when progesterone plus

thapsigargin were administered to spermatozoa from patients with asthenozoospermia, calcium

signal and subsequent calcium entry was much smaller compared to normospermic patients. As

expected, pretreatment of normospermic spermatozoa with both the anti-progesterone receptor

c262 antibody and with progesterone receptor antagonist RU-38486 decreased the calcium release

induced by progesterone. Treatment of spermatozoa with cytochalasin D or jasplakinolide

decreased the calcium entry evoked by depletion of internal calcium stores in normospermic

patients, whereas these treatments proved to be ineffective at modifying the calcium entry in

patients with asthenozoospermia.

Conclusion: Our results suggest that spermatozoa from asthenozoospermic patients present a

reduced responsiveness to progesterone.
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Background
It is well established that calcium signaling plays a pivotal
role in sperm physiology, being intimately involved in the
regulation of many aspects of mammalian sperm func-
tions [1,2]. Control of motility, including hyperactivation
and chemotaxis, is particularly dependent on intracellular
free calcium concentration ([Ca2+]i) signaling in the prin-
cipal piece of the flagellum and the midpiece [3-5]. In fact,
abnormal motility might be explained by abnormally low
cytoplasmic calcium [6,7]. Furthermore, it has been previ-
ously shown that capacitative calcium entry, via transient
receptor potential (TRP) channels, may influence human
sperm motility [8] and acrosome reaction [9].

Stimulation of human sperm with micromolar doses of
progesterone increases [Ca2+]i in a biphasic manner
[10,11], since the progesterone-activated signal comprises
a transient [Ca2+]i 'spike' (of 30–60 s duration at 37°C)
followed by a sustained ramp or plateau. The mechanism
by which progesterone elicits a response and subsequent
events probably involves its interaction with a cell surface
receptor on spermatozoa [12,13]. Therefore, the ability of
progesterone to generate a response of [Ca2+]i in human
spermatozoa has been directly correlated to fertilization
success in vitro [14], indicating that this response is bio-
logically important.

Progesterone is present in high (micromolar) concentra-
tions in the follicular fluid [15,16] and is synthesized,
both before and after ovulation, by the cells of the cumu-
lus oophorus that surround the egg. Although the ability
of progesterone to induce acrosome reaction in mamma-
lian sperm is well established [17,18], it appears that pro-
gesterone-induced [Ca2+]i signaling might be involved on
the regulation of flagellar activity, modulating motility
and/or chemotaxis [19,20]. The finding that progesterone
is a chemoattractant for human spermatozoa [21] indi-
cates that at least one of the membrane progesterone
receptors might act as a chemotaxis receptor [4].

Asthenospermia is a common cause in male infertility
characterized by reduced forward motility (WHO grade
a+b sperm motility <50% or a <25%) or absent sperm
motility in fresh ejaculate, but its aetiology remains
unknown in most cases. Any alteration in external and
internal factors regulating sperm motion and in cellular
structure and metabolisms involved in generating tail beat
may result in defects in sperm motility and infertility [22].
In the last years, a significant decrease in the percentage of
progesterone receptors has been found in men with asthe-
nospermia [23]. In fact, different reports have suggested a
relationship between male infertility and the inability of
spermatozoa to respond to progesterone in vitro [24,25].

In this paper, we investigated the progesterone-evoked
intracellular calcium signal and the role for the actin
cytoskeleton in the store-mediated calcium entry in ejacu-
lated spermatozoa from normospermic or asthenosper-
mic men.

Methods
Chemicals

Progesterone, bovine serum albumin (BSA), RPMI-1640
medium, dimethyl BAPTA, RU-38486 and ethylene gly-
col-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid
(EGTA) were from Sigma (Madrid, Spain). Fura-2 ace-
toxymethyl ester (fura-2/AM) and thapsigargin were from
Invitrogen (Barcelona, Spain). Cytochalasin D and jas-
plakinolide were from Calbiochem (Darmstadt, Ger-
many). Anti-progesterone receptor c262 mouse
monoclonal antibody (PR c262) was obtained from Santa
Cruz (Santa Cruz Biotechnology, Germany). All others
reagents were of analytical grade.

Spermatozoa preparation

Human semen was obtained from 37 healthy volunteers
and 33 asthenozoospermic men at the Extremadura
Center of Human Assisted Reproduction (Badajoz,
Spain), as approved by local committees and in accord-
ance with the Declaration of Helsinki. This study was
approved by the institutional review board of the Univer-
sity of Extremadura and by the ethics committee of the
Infantile Hospital (Badajoz, Spain). Each subject was
ascertained to be in good health by means of their medical
history and a clinical examination including routine labo-
ratory tests and screening. The subjects all were nonsmok-
ers, were not using any medication, and abstained from
alcohol. Informed consent was obtained from all patients.
Samples were collected by masturbation after 4 or 5 days
of sexual abstinence and were allowed to liquefy at 37°C
for 30 minutes. Semen was washed twice in RPMI
medium (250 × g, 10 min), the supernatant was dis-
carded, and the sperm pellet was resuspended in Na-
HEPES solution containing the following (in mM): NaCl,
140; KCl, 4.7; CaCl2, 1.2; MgCl2, 1.1; glucose, 10; and
HEPES, 10 (pH 7.4). The classical semen parameters of
spermatozoa concentration, motility, and morphology
were examined according to World Health Organization
criteria [26]. Sperm concentration and motility were
assessed by a computer assisted semen analysis (CASA)
system. Our CASA system was based upon analysis of 25
consecutive, digitalized photographic images obtained
from a single field at a 200 × magnification on dark field.
The percentages of progressive motility were measured.
The main criterion for classification of asthenozoosper-
mic men was low sperm motility [27]. Normozoospermia
was indicated by a sperm concentration of ≥ 20 × 106

cells/mL (mean ± SD = 62 ± 30 × 106 cells/mL), a progres-
sive motility (grade a + b sperm motility) ≥ 50% (mean ±
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SD = 54.2 ± 4.1%) and a normal sperm morphology ≥
14% (mean ± SD = 17 ± 3.6%). Asthenozoospermia was
characterised by a sperm concentration of ≥ 20 × 106 cells/
mL (mean ± SD = 42 ± 16 × 106 cells/mL) and a reduced
forward motility (grade a+b sperm motility) <50% (mean
± SD = 23.3 ± 12.2%) or absent sperm motility, irrespec-
tive of the morphology results.

Measurement of cytosolic free calcium concentration 

([Ca2+]c)

Cells were loaded with fura-2 by incubation with 4 μM
fura-2 acetoxymethyl ester (Fura-2 AM) for 30 minutes at
room temperature, according to a procedure published
elsewhere [28]. Once loaded, cells were washed and used
within the next 2–4 hours. Fluorescence was recorded
from 2 mL aliquots of magnetically stirred cellular sus-
pension (2 × 108 cells/mL) at 37°C by using a Shimadzu
spectrofluorophotometer with excitation wavelengths of
340 and 380 nm and emission at 505 nm. Changes in
[Ca2+]c were monitored by using the fura-2 340/380 nm
fluorescence ratio and were calibrated according to the
method of Grynkiewicz et al. [29]. In experiments where
calcium-free medium is indicated, calcium was omitted
and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-
tetraacetic acid (EGTA) was added.

Calcium entry and release were estimated using the inte-
gral of the rise in [Ca2+]c for 2.5 min after addition of
CaCl2 or progesterone + thapsigargin, respectively [30].
Both calcium entry and release are expressed as nanomo-
lar taking a sample every second (nM·s), as previously
described [31].

Statistical analysis

Data are expressed as means ± SD of the numbers of deter-
minations. Analysis of statistical significance was per-
formed by using the Student's t-test. P < 0.05 was
considered to indicate a statistically significant difference.

Results
Asthenozoospermia and intracellular calcium mobilisation

In the absence of extracellular calcium (calcium-free
medium), fura-2-loaded human spermatozoa were
treated with 20 μM progesterone plus 1 μM thapsigargin.
In spite of the fact that the presence of sarcoplasmic-endo-
plasmic reticulum calcium ATPase (SERCA) in sperm is
still debated, we have used thapsigargin, a well-known
SERCA inhibitor, to be sure that intracellular calcium
stores were not refilled. In this regard, we have previously
reported that human platelets possess two separate ago-
nist-releasable calcium stores differentiated by the distinct
sensitivity to thapsigargin [32,33]. As shown in Figure 1A,
treatment with progesterone and thapsigargin induced a
typical transient increase in [Ca2+]c due to calcium release
from internal stores in spermatozoa from normospermic

men. However, when progesterone plus thapsigargin were
administered to spermatozoa from patients with astheno-
zoospermia, calcium signal was much smaller compared
to calcium signal obtained in spermatozoa from normos-
permic men (Figure 1B). Similar results were obtained
when spermatozoa were treated with progesterone alone
(insets Fig. 1A and 1B) The integral of the rise in [Ca2+]c
above basal for 2.5 min after addition of progesterone
plus thapsigargin taking data every second were 13072.7
± 697.1 and 5926.5 ± 475.3 nM·s in normospermic and
asthenozoospermic men, respectively (Figure 1C; n = 7; P
< 0.05). In addition, spermatozoa were loaded with dime-
thyl BAPTA, an intracellular calcium chelator, by incubat-
ing the cells for 30 minutes at 37°C with 10 μM dimethyl
BAPTA-AM. As expected, dimethyl BAPTA loading pre-
vented progesterone-evoked [Ca2+]c elevations in both
normospermic (Figure 1A) and asthenozoospermic (Fig-
ure 1B) men.

Moreover, we evaluated the effect of 20 μM progesterone
on progressive sperm motility measured by CASA system
after 30 min of incubation. The treatment with progester-
one caused a significant increase in the percentage of pro-
gressive motility in human spermatozoa from
normospermic patients (54.2 ± 4.1 and 70.5 ± 2.3% in
untreated and progesterone-treated spermatozoa, respec-
tively), whereas progesterone was unable to modify the
motility in spermatozoa from asthenozoospermic
patients (23.3 ± 12.2 and 27.5 ± 10.3% in untreated and
progesterone-treated spermatozoa, respectively).

Figure 2A demonstrates that the increase of [Ca2+]c
induced by progesterone plus thapsigargin was also
observed in the presence of extracellular calcium ([Ca2+]0
= 1.2 mM). In addition, we tested if progesterone receptor
antibodies or antagonists would reverse the stimulatory
effects of progesterone on calcium signal in normosper-
mic spermatozoa. Preincubation of fura-2 loaded sperma-
tozoa from normospermic patients with both the anti-
progesterone receptor c262 antibody (PR c262) (1:10,
final concentration 100 μg/ml) and the progesterone
receptor antagonist RU-38486 (50 μM) for 30 min signif-
icantly reduced the progesterone-induced calcium release
(Figure 2B). This clearly demonstrates that the blockade of
progesterone receptors reduces the calcium mobilization
induced by progesterone, and therefore normospermic
spermatozoa behave as asthenozoospermic-like sperma-
tozoa.

Interestingly, subsequent addition of calcium (300 μM) to
the suspension of progesterone plus thapsigargin-treated
spermatozoa resulted in a detectable increase in [Ca2+]c
indicative of calcium entry (Figure 3A). Similarly, subse-
quent calcium entry was significantly reduced (P < 0.05)
in comparison to normospermic patients (Figure 3A). The
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Mobilization of calcium in response to progesterone in human spermatozoa from normospermic or asthenozoospermic patientsFigure 1
Mobilization of calcium in response to progesterone in human spermatozoa from normospermic or astheno-
zoospermic patients. Fura-2-loaded human spermatozoa from normospermic (A) or asthenozoospermic (B) patients were 
stimulated with 20 μM progesterone alone (PROG) (insets) or plus 1 μM thapsigargin (TG) in calcium-free solution (+ 1 mM 
EGTA), in the absence (control) or presence of dimethyl BAPTA (10 μM for 30 min). Traces are representative of five inde-
pendent experiments. (C) Histogram represents the integral for 2.5 min of the calcium release, in normospermic and astheno-
zoospermic patients, calculated as described in Methods section. Values are means ± SD of five independent experiments. *P < 
0.05.

�

�



Reproductive Biology and Endocrinology 2009, 7:11 http://www.rbej.com/content/7/1/11

Page 5 of 11

(page number not for citation purposes)

Effect of the blockade of progesterone receptor on calcium mobilization evoked by progesterone in human spermatozoaFigure 2
Effect of the blockade of progesterone receptor on calcium mobilization evoked by progesterone in human 
spermatozoa. (A) Fura-2-loaded human spermatozoa from normospermic and asthenozoospermic patients were stimulated 
with 20 μM progesterone (PROG) plus 1 μM thapsigargin (TG) in a calcium-normal solution (1.2 mM [Ca2+]0). (B) Fura-2-
loaded human spermatozoa from normospermic patients were pretreated with the anti-progesterone receptor c262 antibody 
(PR c262) (1:10, final concentration 100 μg/ml for 30 min) or the progesterone receptor antagonist RU-38486 (50 μM for 30 
min) and then stimulated with 20 μM progesterone (PROG) in a calcium-normal solution (1.2 mM [Ca2+]0). Traces are repre-
sentative of 3–4 independent experiments.
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Progesterone induced calcium entry in human spermatozoa from normospermic or asthenozoospermic patientsFigure 3
Progesterone induced calcium entry in human spermatozoa from normospermic or asthenozoospermic 
patients. (A) Fura-2-loaded human spermatozoa were treated with 20 μM progesterone (PROG) plus 1 μM thapsigargin (TG) 
for 6 min in a calcium-free medium (+ 100 μM EGTA) followed by addition of CaCl2 (300 μM) to initiate calcium entry. Traces 
are representative of seven independent experiments. (B) Histogram represents the integral for 2.5 min of the amount of cal-
cium entry, in normospermic and asthenozoospermic patients, calculated as described in Methods section. Values are means ± 
SD of seven independent experiments. *P < 0.05.
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integral of the rise in [Ca2+]c above basal for 2.5 min after
addition of calcium taking data every second were
52003.2 ± 3219.4 and 17770.3 ± 2084.1 nM·s in nor-
mospermic and asthenozoospermic patients, respectively
(Figure 3B; n = 7; P < 0.05).

Effect of cytochalasin D and jasplakinolide on capacitative 

calcium entry in spermatozoa

Cytochalasin D, a widely utilized membrane-permeant
inhibitor of actin polymerization which binds to the
barbed end of actin filaments [34], and jasplakinolide, a
cell-permeant peptide isolated from Jaspis johnstoni which
induces polymerization and stabilization of actin fila-
ments in vitro, but in vivo it can disrupt actin filaments
and induce polymerization of monomeric actin into
amorphous masses [35,36], are useful tools to further
study the role of the actin cytoskeleton in store-mediated
calcium entry. As shown in Figure 4A, pretreatment of
human spermatozoa with both 10 μM cytochalasin D for
40 min and 10 μM jasplakinolide for 30 min at room tem-
perature significantly diminished (p < 0.05) calcium entry
evoked by depletion of internal calcium stores induced by
progesterone plus thapsigargin in normospermic patients.
The integral of the rise in [Ca2+]c above basal for 2.5 min
after addition of calcium taking data every second were
28842.4 ± 2519.3 and 36256.1 ± 3129.7 nM·s in sperma-
tozoa treated with cytochalasin D or jasplakinolide,
respectively (Figure 4B; n = 7; P < 0.05).

However, these treatments proved to be ineffective at
modifying calcium entry in patients with asthenozoosper-
mia (Figure 5A). The integral of the rise in [Ca2+]c above
basal for 2.5 min after addition of calcium taking data
every second were 20556.1 ± 2521.6 and 17175.3 ±
1624.9 nM·s in spermatozoa treated with cytochalasin D
or jasplakinolide, respectively (Figure 5B; n = 7), which
closely suggest that cytochalasin D and jasplakinolide are
unable to affect the calcium entry evoked by depletion of
intracellular calcium pools induced by progesterone plus
thapsigargin in asthenozoospermic spermatozoa.

Discussion
Progesterone, the most-studied and best-characterized
calcium-mobilizing agonist of human sperm, caused a
biphasic increase in [Ca2+]c from healthy donors as
reported previously [18,28,37]. In addition, progesterone-
induced [Ca2+]c transient showed very little sensitivity to
the SERCA-inhibitor thapsigargin, since thapsigargin by
itself had a negligible effect on calcium release from intra-
cellular stores (Espino et al., unpublished observations).
These findings are consistent with previous reports in
human ejaculated spermatozoa [38,39] indicating that
SERCAs do not contribute significantly to refill the proges-
terone-mobilized calcium store [37]. In addition, we can-
not reject the involvement of secretory pathway calcium

ATPase (SPCA), which is expressed in spermatozoa and
mainly targeted to Golgi apparatus [40]. In fact, this non-
SERCA store calcium-ATPase has been reported to be
important in regulating [Ca2+]i [38].

Furthermore, our results have shown that capacitative cal-
cium-influx occurs in sperm from normospermic men,
which is consistent with a number of previous studies in
sperm [8,11,39,41]. In the last years, capacitative calcium
entry seems to be involved in the regulation of sperm
motility, indicating that extracellular calcium plays a piv-
otal role in sperm motility [7,37].

In asthenozoospermic men, we have found that progester-
one-induced calcium transient was undetectable and sub-
sequent calcium entry was much smaller compared to
normospermic patients. In addition, progesterone-
induced calcium release in normospermic spermatozoa
pretreated with both PR c262 and the progesterone recep-
tor antagonist RU-38486 was similar to that obtained in
spermatozoa from asthenozoospermic patients. This find-
ings could be explained either by failure to localise a cal-
cium signal to its site of action or by reduced or absent
expression of progesterone receptors [23,42,43]. The
reduced responsiveness to progesterone we found in
sperm from asthenozoospermic subjects can be mainly
due to decreased levels on membrane progesterone recep-
tors, which could be translated in abnormal calcium sign-
aling, and probably not to a direct effect on calcium
release process. In fact, previous studies have reported a
significant decrease in the percentage of progesterone
receptors in asthenozoospermic men [23], and distur-
bance in the expression of membrane progesterone recep-
tors might be involved in male infertility [44]. In addition,
our results are in agreement with previous reports and
suggest a strong relationship between calcium homeosta-
sis, sperm motility, and male infertility. In fact, both
reduced calcium/calmodulin (CaM) complex and intrac-
ellular calcium levels have been demonstrated in astheno-
zoospermic patients [45,46]. Moreover, different calcium
channelopaties have been described for sperm calcium-
permeable channels in asthenozoospermic patients
[47,48].

On the other hand, both cytochalasin D, a widely used
membrane-permeant inhibitor of actin polymerization,
and jasplakinolide, a cell-permeant peptide which reor-
ganizes actin filaments into a tight cortical layer adjacent
to the plasma membrane [35,36], significantly reduced
activation of store-mediated calcium entry in spermato-
zoa from normospermic men. These results suggest that
vesicular trafficking might play an important role in store-
operated calcium entry. Similar results have been previ-
ously obtained in both pancreatic acinar cells [49] and
human platelets [50] when cells were stimulated with
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Effects of cytochalasin D and jasplakinolide on progesterone induced calcium entry in human spermatozoa from normospermic patientsFigure 4
Effects of cytochalasin D and jasplakinolide on progesterone induced calcium entry in human spermatozoa 
from normospermic patients. (A) Fura-2-loaded human spermatozoa were preincubated at room temperature in the pres-
ence of 10 μM cytochalasin (Cyt D) for 40 min or 10 μM jasplakinolide (JP) for 30 min. Cells were then stimulated with 20 μM 
progesterone (PROG) plus 1 μM thapsigargin (TG) in calcium-free medium (+ 100 μM EGTA), and 6 min later CaCl2 (300 μM) 
was added to the medium to initiate calcium entry. Traces are representative of seven independent experiments. (B) Histo-
gram represents the integral for 2.5 min of the amount of calcium entry, calculated as described in Methods section. Values are 
means ± SD of seven independent experiments. *P < 0.05.
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Effects of cytochalasin D and jasplakinolide on progesterone induced calcium entry in human spermatozoa from astheno-zoospermic patientsFigure 5
Effects of cytochalasin D and jasplakinolide on progesterone induced calcium entry in human spermatozoa 
from asthenozoospermic patients. (A) Fura-2-loaded human spermatozoa were preincubated at room temperature in the 
presence of 10 μM cytochalasin D (Cyt D) for 40 min or 10 μM jasplakinolide (JP) for 30 min. Cells were then stimulated with 
20 μM progesterone (PROG) plus 1 μM thapsigargin (TG) in calcium-free medium (+ 100 μM EGTA), and 6 min later CaCl2 

(300 μM) was added to the medium to initiate calcium entry. Traces are representative of seven independent experiments. (B) 
Histogram represents the integral for 2.5 min of the amount of calcium entry, in control, Cyt D-treated and JP-treated sperma-
tozoa, calculated as described in Methods section. Values are means ± SD of seven independent experiments.
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cholecystokinin or thrombin, respectively. These authors
showed that disruption of actin cytoskeleton by cytocha-
lasin D or stabilization of cortical actin barrier by jasplaki-
nolide prevented the activation of store-mediated calcium
entry, suggesting that actin cytoskeleton plays an impor-
tant role in store-mediated calcium entry [49,50].

Conclusion
Our results show that spermatozoa from asthenozoosper-
mic patients present a reduced responsiveness to proges-
terone. We presume that disrupted calcium mobilization
in spermatozoa from this group of patients might be asso-
ciated with lower sperm motility and reduction of repro-
ductive ability of these donors. Further studies are
required to determine molecular mechanisms responsible
for decreased progesterone-evoked intracellular calcium
signal in spermatozoa from asthenozoospermic men.
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