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[1] Decreased methane emissions from paddy rice may
have contributed to the decline in the rate of increase of global
atmospheric methane (CH4) concentration over the last 20
years. In China, midseason paddy drainage, which reduces
growing season CH4 fluxes, was first implemented in the
early 1980s, and has gradually replaced continuous flooding
in much of the paddy area. We constructed a regional
prediction for China’s rice paddy methane emissions using
the DNDC biogeochemical model. Results of continuous
flooding and midseason drainage simulations for all paddy
fields in China were combined with regional scenarios for the
timing of the transition from continuous flooding to
predominantly mid-season drainage to generate estimates of
total methane flux for 1980–2000. CH4 emissions from
China’s paddy fields were reduced over that period by�5 Tg
CH4 yr
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1. Introduction

[2] The rate of growth of methane concentration in the
atmosphere slowed from 10–15 ppb yr�1 in the 1980s to
0–5 ppb yr�1 for most years in the 1990s, though the
annual increase in methane concentration was more variable
during the 1990s than the 1980s [Dlugokencky et al., 2001].
Large-scale temperature and precipitation anomalies have
been identified as possible causes of the interannual varia-
bility in the rate of increase of methane concentration
[Dlugokencky et al., 2001]. Changes in the oxidation
chemistry of the atmosphere could change the CH4 lifetime,
changing the atmospheric concentration growth rate [e.g.,
Karlsdottir and Isaksen, 2000]. Decreased gas industry CH4

emissions may have occurred in the early 1990s, particu-
larly following the economic slowdown in the Soviet Union
[e.g., Law and Nisbet, 1996]. Dlugokencky et al. [1998]
noted that the decline in the growth rate could be due to
atmospheric methane approaching a new steady state. In this
paper we propose an additional factor, diminishing methane
emissions from rice paddies.
[3] Seasonally flooded rice paddies are a significant

source of methane to the atmosphere, contributing �40
Tg CH4 yr

�1 [Sass et al., 1999]. Over the past two decades,
midseason drainage has been adopted throughout China
[Shen et al., 1998; MWRUC, 1996], commonly with 2-5
drainings during a growing season is a common manage-
ment practice (Qingmu Chen, Chinese Academy of Agri-
cultural Sciences, personal communication). While the
primary motivation for this draining has been water con-
servation and increased yields, a significant consequence
has been to reduce methane emissions. Field studies have
shown that midseason draining reduces total crop-season
methane emissions by 10–80% [Sass et al., 1992; Yagi et
al., 1996; Sigren et al., 1997; Cai et al., 1999; Wassmann et
al., 2000]. We combined a process biogeochemistry model
with spatial datasets of soil properties, paddy distribution,
crop rotations, daily weather, and additional agricultural
management factors to simulate annual methane emissions
from China’s rice paddies under scenarios of continuous
flooding and mid-season draining.

2. Methods

[4] Lack of reliable, detailed historical water manage-
ment data prohibited a fully realistic 20-year simulation.
Instead, we have adopted 1990 as a representative year, and
simulated two water management scenarios, continuous
flooding and 3 mid-season drainings. We constructed a
scenario of the transition in water management from con-
tinuous flooding to mid-season draining, 1980–2000, and
estimated CH4 emissions by averaging emissions by prov-
ince for the two water management scenarios, weighted by
estimated paddy area managed under each scenario.

2.1. Biogeochemical Model

[5] To predict soil Eh dynamics under both aerated and
submerged conditions, a simple kinetic scheme was
developed for DNDC [Li et al., 1992] to capture the soil
redox dynamics [Li et al., 2000]. Combining the Nernst
and Michaelis-Menten equations, DNDC simulates inter-
actions among substrates, soil Eh, and the activity of
microbial reducers. With a dynamic anaerobic fractional
volume, DNDC predicted a series of oxidation-reduction
processes in both wetland and upland soils [Li, 2000; Li
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et al., 2000]. A detailed rice growth sub-model was also
developed for DNDC [Zhang et al., 2002]. The model
was tested against methane flux data sets from wetland
rice sites in the U.S., Italy, China, Thailand, the Philip-
pines, and Japan, and was generally consistent with
observations, with reduced emissions for mid-season
drainage (Figures 1b, 1d, and 1f ) compared to continuous
flooding (Figures 1a, 1c, 1e, and 1g).

2.2. Spatial Datasets

[6] County-scale paddy area for single rice and 10 differ-
ent multi-crop paddy rice rotations were from Frolking et al.
[2002]. Manure production was based on animal and human
populations using standard manure production rates [IPCC,
1997], and field application rates of 50% for animal manure
and 10% for human manure. Maximum and minimum
values of soil texture, pH, bulk density, and organic carbon
content were derived for each county from digitization of
national soil maps [Institute of Soil Science, 1986]. General
data on tillage, planting and harvest dates, crop residue
management, and crop varieties were taken from CRTSA
[1995], Huang et al. [1997a], Cui et al. [1994], Liu and Mu
[1993], and Beijing Agricultural University [1992], and
Shen [1998].
[7] Daily weather for 1990 from 610 weather stations

across China were acquired from the National Center for
Atmospheric Research (http://dss.ucar.edu/index.html). Sta-
tion data were assigned to each county on a nearest
neighbor basis. Earlier simulations with only 175 stations
yielded very similar results.
[8] Detailed data on water management at the county

scale were not available, so we developed a simple scenario
of the evolution of paddy water management in China from
1980–2000. In the early 1980s, midseason drying was first
successfully tested as a water conservation measure in
northern China [Shen et al., 1998]. Due to water savings
and increased yield, the new management regime was
widely adopted in northern China in the 1980s. In the
1990s, the technique was introduced to the major rice-
producing areas along the Yangtze River. In the late
1990s, midseason drainage became popular in the southern
provinces [Shen et al., 1998]. In 2000, 80% of paddies had
mid-season drying (Qingmu Chen, personal communica-
tion). We chose approximate values for the percent of
paddies with mid-season drainage for six regions in China
for 1980, 1985, 1990, 1995, and 2000 (Table 1). This is a
very rough estimate, with an aim of characterizing the
magnitude of change.

3. Results and Discussion

[9] Sensitivity tests conducted for typical rice fields in
China indicated that CH4 fluxes were most sensitive to soil

Figure 1. Measured (O) and simulated (lines) CH4 fluxes.
Single rice with (a) continuous flooding midseason drainage
and (b) midseason drainage at Jianning, Jiangsu Province,
China [Huang et al., 2001]; single rice with (c) continuous
flooding and (d) midseason drainage at Beaumont, Texas,
USA [Sigren et al., 1997; R. Sass, unpublished data]; (e)
double rice with continuous flooding at Prachin Buri,
Thailand [Charoensilp et al., 2000]; (f ) single rice with
midseason drainage at Wuxian, Jiangsu Province, China
[Zheng et al., 1999]; and (g) single rice with continuous
flooding at Ver, Italy [Butterbach-Bahl, 1997].

Table 1. Paddy Areas (103 km2), Fraction Drained, and Methane Flux (Tg CH4 yr
�1) by Region in China

Crop areab Fraction drained Methane fluxc (Tg CH4 yr
�1)

Regiona R-1 R-2 1980 1985 1990 1995 2000 1980 1985 1990 1995 2000

North 10 0.8 0.04 0.3 0.6 0.8 0.8 0.46 0.42 0.37 0.35 0.35
Northeast 26 0 0.05 0.3 0.6 0.8 0.8 0.68 0.62 0.57 0.54 0.54
Central 41 98 0 0 0.3 0.6 0.8 6.54 6.54 5.68 4.82 4.25
South 6 40 0 0 0.2 0.4 0.8 1.99 1.99 1.72 1.45 0.98
Southwest 40 24 0 0 0.3 0.6 0.8 2.41 2.41 2.00 1.59 1.32
Northwest 6 0.1 0 0.3 0.6 0.8 0.8 0.21 0.19 0.16 0.14 0.14
TOTAL 130 163 0.01 0.05 0.33 0.6 0.8 12.3 12.2 10.5 8.9 7.6

aNorth: Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan Provinces; Northeast: Liaoning, Jilin, and Heilongjiang Provinces; Central: Shanghai,
Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, and Hunan Provinces; South: Fujian, Guangdong, Guangxi, and Hainan Provinces; Southwest: Sichuan, Guizhou,
and Yunnan Provinces; Northwest: Inner Mongolia, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang Provinces.

bR-1: single rice and rice plus non-rice rotation; R-2: double rice and double rice plus non-rice rotation [Frolking et al., 2002]. Areas in 103 km2.
cRegional methane flux as mean of high and low emission estimates. Typical provincial flux ranges were ±10–35% of the mean for the continuous

flooded scenarios and ±35–75% of the mean for the mid-season drained scenarios. Full range reported for national total in Table 2.
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texture values. Varying soil texture from coarsest to finest
texture value reported in the county-scale database pro-
duced a range of CH4 fluxes broad enough to cover >80%
of the CH4 variations caused by varying any or all other
input parameters between minimum and maximum values.
DNDC was run twice for each of the 11 rice crop rotation
that occurred in each county, with the county’s maximum
and minimum soil texture values. Final CH4 fluxes are then
expressed as ranges that likely bound the true CH4 flux.
While this cannot be fully evaluated because of very limited
field data, for five sites we compared our annual county-
level emission range (not site-specific simulations in Figure
1) to reported emissions. For the China sites, the three
scenarios of observed annual emissions were within the
simulated range, while for the Texas site, the continuous
flooding annual emission was below the simulated range
and the mid-season drainage annual emission was above the
simulated range.
[10] The predicted 1990 CH4 emission ranges from all

paddy rice fields in China were 2.3–10.5 Tg CH4 yr
�1 for

midseason drainage scenario and 8.6–16.0 Tg CH4 yr
�1 for

continuous flooding. Changing continuous flooding to mid-
season drainage reduced both the high and low estimates by
a similar amount, so we conclude that the change in national
emissions due to changing water management is not very
sensitive to soil texture variability. Water management
scenario area-weighted averages were estimated for each
province every five years from 1980 through 2000 (Table 1).
From 1980 to 2000 China’s annual rice paddy methane flux
dropped from 8.6–16.0 Tg CH4 yr

�1 to 3.5–11.6 Tg CH4

yr�1 (Table 2). China produces �33% of the world’s rice on
�20% of the world’s paddy land [FAOSTAT, 2002]. Multi-
plying the DNDC estimate of methane emissions for Chi-
na’s paddies, continuously flooded, by 3 (production) to 5
(area) gives a global rice paddy methane flux estimate of
25–80 Tg CH4 yr

�1, compared with recent global estimates
of �40 Tg CH4 yr

�1 [e.g., Sass et al., 1999; Neue and Sass,
1998].
[11] To quantify the atmospheric impact, we constructed

a simple, one-box, first order model of atmospheric methane
burden, with a constant global source of 595.7 Tg CH4/yr, a
methane lifetime of 8.4 years, and 1ppbv per 2.78 Tg CH4

[Prather and Ehhalt, 2001], which had a steady state
concentration of 1800 ppbv. If, over 20 years, emissions
drop by 4.7 Tg/yr (Table 1), the atmospheric concentration
drops to 1792 ppbv. If the source continues at this lower rate
(591 Tg CH4/yr) the atmosphere reaches a new steady state
of 1786 ppbv, after 20 more years. We conclude that
reduced emissions from China’s rice paddies probably
played an important but perhaps not dominant role in the
reduced growth rate in the 1990s, and will affect the
atmosphere for another few decades.

[12] Several additional factors could have influenced
methane emissions from China’s rice paddies from 1980
to 2000. First, weather patterns vary from one year to the
next, but are not likely to have caused a two-decade-long
trend in paddy methane emissions, particularly because
paddies have managed water regimes. Second, nitrogen
fertilizer use doubled [FAOSTAT, 2002]. Impacts of nitrogen
fertilizer use on methane emissions from rice paddies are
indirect and fertilizer-type dependent, and thus highly
variable. Increased fertilizer use could lead to an increase
in emissions due to an increase in rice plant productivity and
biomass, or to a decrease due to soil Eh elevation induced
by fertilizers such as ammonium sulfate [Dunfield et al.,
1995; Lindau et al., 1990; Denier van der Gon and Neue,
1994; Wassmann et al., 1994; Yao and Chen 1994]. Third,
the direct effects of rice cultivar type on methane emissions
are complex, due to differences in aerenchyma develop-
ment, biomass allocation to roots and grain, and total plant
height and biomass [Kludze et al., 1993; Huang et al.,
1997b; Ding et al., 1999], and no clear consensus has
emerged from field measurements to date. New cultivars
introduced in China between 1980 and 2000 generally have
had lower stature and more allocation to grain [Zhou et al.,
2001]. Finally, paddy area was fairly constant during the
1980s but declined by �10% during the 1990s (Table 2),
likely with a similar decline in methane emissions.

4. Conclusions

[13] Demand for rice in Asia is projected to increase by
70% over the next 30 years [IRRI, 2002]. At the same time,
population increase and intensification of economic devel-
opment will lead to significant land use conversion [e.g.,
Seto et al., 2000]. Paddy rice cropland distributions and
management intensity (fertilizer use, cultivars, water man-
agement, multi-cropping) will have to change. As water
resources become scarcer [Vörösmarty et al., 2000], rising
water costs will force all agriculture to improve its water-
use efficiency. As this occurs, midseason draining of rice
paddies, which requires less water than continual flooding,
is likely to increase throughout many parts of Asia. Con-
tinuing changes in the rice paddy contribution to the global
methane budget are likely over the coming decades.
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