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Abstract

ADHD is a psychiatric disorder which is characterized by hyperactivity, impulsivity and atten-

tion problems. Due to recent findings of microbial involvement in other psychiatric disorders

like autism and depression, a role of the gut microbiota in ADHD pathogenesis is assumed

but has not yet been investigated. In this study, the gut microbiota of 14 male ADHD patients

(mean age: 11.9 yrs.) and 17 male controls (mean age: 13.1 yrs.) was examined via next

generation sequencing of 16S rDNA and analyzed for diversity and biomarkers. We found

that the microbial diversity (alpha diversity) was significantly decreased in ADHD patients

compared to controls (pShannon = 0.036) and that the composition (beta diversity) differed

significantly between patients and controls (pANOSIM = 0.033, pADONIS = 0.006, pbetadisper =

0.002). In detail, the bacterial family Prevotellacae was associated with controls, while

patients with ADHD showed elevated levels of Bacteroidaceae, and both Neisseriaceae and

Neisseria spec. were found as possible biomarkers for juvenile ADHD. Our results point to a

possible link of certain microbiota with ADHD, with Neisseria spec. being a very promising

ADHD-associated candidate. This finding provides the basis for a systematic, longitudinal

assessment of the role of the gut microbiome in ADHD, yielding promising potential for both

prevention and therapeutic intervention.

Introduction

With a worldwide prevalence of 3–5% [1, 2], ADHD is one of the most commonly diagnosed

psychiatric diseases in childhood and adolescence. ADHD is characterized by symptoms of

inattention, hyperactivity, and/or impulsivity [3]. The symptoms are caused by dysfunctions

in the dopaminergic neurotransmitter system [4–6] and fronto-striatal brain functions [7–11];

however, the definitive pathogenesis of ADHD remains elusive due to its complex, multifacto-

rial nature. Besides a significant genetic vulnerability [12, 13], external factors, such as perina-

tal conditions (e.g. low birth weight, prematurity, prenatal exposure to alcohol and/or toxins
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originating from smoking cigarettes) [14, 15] or socioemotional environment during postnatal

development [16, 17], and also food constituents and micronutrients have an impact on

ADHD symptom severity [18–22]. Food intolerances are often related to gastrointestinal

immune dysregulation which can result in chronic inflammations. In turn, food intolerances

and chronic inflammations are increasingly suspected in ADHD [23, 24], leading to the

assumption that gastrointestinal dysregulation may be involved in ADHD [25].

It is well known that gut microbiota and the central nervous system are interconnected in a

bidirectional fashion, termed the gut-brain axis. Recent studies underline the importance of

the human gut microbiome in human health. Not only are gut microbes involved in digestion,

metabolism and weight control [26–28], they are also potent stimulants for the human

immune system [29]. There is growing appreciation for the fact that the gut microbiome

might also be involved in human psychopathology [30–34]. As an interface with the environ-

ment, the gut microbiota is prone to environmental influences [35]. Disturbances in early

microbiome development have a severe impact on the development of a healthy immune sys-

tem, elevating, for example, the risk of atopic diseases [36]. Many of the risk factors associated

with ADHD, such as delivery method, gestational age, type of feeding, maternal health, and

early life stressors, have an effect on the microbiota [37, 38]. Regarding the gut-brain axis and

the influence of the microbiota on the CNS, it is conceivable that a disturbance in a child´s

early microbiota may change the gastrointestinal environment, making the organism prone to

psychiatric disorders.

Several psychiatric disorders like stress responsivity, anxiety-like behaviors, sociability, and

cognition [39–41], as well as anxiety, depression, and autism [42, 43] have already been linked

to changes in microbial communities. In addition, experiments with germ-free mice have

yielded promising results, suggesting an influence of the microbiota on the activity level and

pointing to a possible link of the microbiome to hyperactivity disorders like ADHD [44]. One

study suggested that the composition of some gut microbiota at some points in time was

reduced in toddlers who later exhibited neurodevelopmental disorders (also including

ADHD) [45]. However, it is still unclear whether juvenile ADHD is accompanied by alter-

ations in the human microbiome, e.g. in the microbial diversity. The diversity of microbes

within a given body habitat can be described by the richness and evenness, i.e.by the number

of species in relation to the species’ abundance within a sample (alpha-diversity), with a high

diversity being linked to a healthy state [46, 47]. Therefore, we assume that young patients

with ADHD display reduced diversity and differ in microbial composition when compared to

healthy controls.

Material andmethods

Study participants

Fourteen male children and adolescents with ADHD (M = 11.9 yrs., SD = 2.5) and 17 controls

(M = 13.1 yrs., SD = 1.7) participated in this study. Patients and controls did not differ in age

(p = 0.138), BMI (p = 0.728), or IQ (p = 0.149; see also Table 1). All participants and their

parents were Caucasians. All family members were born and raised in Germany (exeept for

one father who was of Polish origin) and also currently live in North Germany. In the ADHD

families both biological parents of nine patients were present; in one family, only the biological

mother together with a stepfather (he was excluded from further analyses), in three families

only the biological mother, and in one family only the biological father were present. In control

families biological parents of 12 controls were present; in one family the biological mother

together with a stepfather (he was excluded from further analyses) and in four families only

the biological mothers were present. Chi-square test revealed no group differences regarding
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the distribution of family structure: χ = 1.29, p = 0.731. The net income per month in ADHD

families was less than 2000€ in 3 families and more than 2000€ in 10 families. In controls it

was less than 2000€ in 2 families and more than 2000€ in 13 families (three families did not

report their income). Fisher´s test showed that the net income reports did not differ between

groups: p = 0.639. All participants were asked to indicate on a 4-point scale (1 = never,

2 = once a week, 3 = several times a week, 4 = daily) how often they consumed fast-food, meat/

sausages/cold cuts, fruits/vegetables, or yoghurt and other milk products. The Mann-Whitney-

U test revealed that patients and controls did not differ with regards to their food habits

(p> 0.365, see Table 1).

All children and their parents were interviewed using a German translation of the Revised

Schedule for Affective Disorders and Schizophrenia for School-Age Children: Present and

Lifetime Version (K-SADS-PL) [48, 49]. Interviews were performed by experienced child and

adolescent psychiatrists and psychologists. Standardized questionnaires, the Child Behavior

Table 1. Characteristics of participants.

ADHD Controls ADHD vs. Controls

Mean SD Mean SD U p

Age 11.9 2.5 13.1 1.7 81.5 0.138

IQ 103.8 13.9 110.4 10.9 82.0 0.149

BMI 19.0 3.9 18.0 2.5 103.5 0.728

Eating behavior Meat/sausages 2.9 0.73 3.2 0.7 95.5 0.356

Fruits/vegetables 3.5 0.65 3.3 0.6 95.5 0.356

Yoghurt 3.1 0.83 2.8 0.8 96.5 0.377

Other milk products 3.5 0.65 3.6 0.5 99.0 0.813

Fast-food 2.2 0.38 2.2 0.4 101.5 0.711

CBCL Anxious/depressed 59.1 8.6 52.9 5.2 53.5 0.008

Withdrawn/depressed 58.1 7.6 53.8 6.7 80.0 0.128

Somatic complaints 58.4 7.5 52.3 4.0 59.0 0.017

Social problems 64.1 11.5 50.7 2.1 31.0 < 0.001

Thought problems 55.2 8.4 51.1 3.0 88.5 0.230

Attention problems 65.8 8.2 52.0 4.4 10.0 < 0.001

Rule-breaking behavior 60.8 11.1 52.1 4.4 61.5 0.021

Aggressive behavior 62.7 10.0 51.2 3.0 36.0 0.001

Internalizing 59.0 8.1 47.9 9.2 45.0 0.003

Externalizing 60.9 12.4 44.8 7.3 34.5 < 0.001

Total problems 63.9 10.3 44.6 8.5 16.0 < 0.001

FBB-HKS Attention problems 7.3 1.1 3.8 1.9 15.0 < 0.001

Hyperactivity 7.2 1.4 4.5 0.9 12.0 < 0.001

Impulsivity 7.4 1.2 5.1 1.2 25.5 < 0.001

Total 7.4 1.0 3.7 1.6 7.0 < 0.001

WURS-K Fathers 21.2 4.3 16.5 2.2 49.5 0.488

Mothers 17.5 2.4 8.7 1.1 40.0 0.003

ADHD-SB Fathers 10.2 2.7 8.2 1.7 54.5 0.716

Mothers 10.8 2.2 4.9 0.8 53 0.016

Note: Bold values indicate a significant comparison; U, U-value according to Mann-Whitney-U- test; ADHD, attention-deficit hyperactivity disorder; CBCL, Child

Behavior Checklist; FBB-HKS, German ADHD rating scale for children (Fremdbeurteilungsbogen für hyperkinetische Störungen); WURSK, Wender-Utah-Rating

Scale; ADHS-SB, German ADHD rating scale for adults (ADHS-Selbstbeurteilung); eating behavior ranged from 1 (never) to 4 (daily).

https://doi.org/10.1371/journal.pone.0200728.t001
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Checklist (CBCL) [50] and the German ADHD rating scale (Fremdbeurteilungsbogen für

hyperkinetische Störungen, FBB-HKS) [51], were completed by parents to assess any psychiat-

ric symptoms in their children. According to the DSM-IV-TR, all patients met the criteria for

ADHD (12 patients with combined type, two patients with inattentive type; note that even

after an exclusion of both patients with the inattentive type, the results of the microbiome anal-

yses reported below remained significant). Six patients additionally fulfilled the criteria for

comorbid oppositional defiant disorder (ODD). Ten patients had been taking medicine for

more than one year to treat ADHD symptoms (9x Medikinet1, 1x Equasym1). Nine of them

followed the instruction to discontinue taking the medicine for at least 48h prior to sample

collection.

According to parental ratings, patients displayed more attention problems, hyperactivity,

and impulsivity than did controls (all p< 0.001, see Table 1). Controls did not suffer from any

psychiatric abnormalities. Parental reports revealed that all participants were free of any neu-

rological, immunological, or endocrinological diseases.

Since ADHD shows high heritability [12, 13], we explored the microbial composition in

participants´ parents as well. For this purpose, we screened for possible ADHD symptoms in

participants´ parents using self-rating questionnaires: Parents worked on the Wender-Utah-

Rating Scale—German short version (WURS-k) [52–54], a self-rating instrument focusing on

childhood ADHD psychopathology retrospectively. One mother and three fathers received a

sum score of over 30 indicating that childhood ADHD symptoms could have been present in

these parents [52, 55]. In addition, parents filled out a short self-rating behavioral question-

naire, the ADHS-SB [56], based on DSM-IV criteria for the assessment of ADHD symptoms.

Here, two mothers and three fathers of patients received a sum score above the conservative

cut-off of 19 [57].

Patient families were recruited via our out-patient department; families of healthy children

were recruited by newspaper announcement. All participating children and their parents gave

written, informed consent after the procedures had been fully explained. Families were reim-

bursed with a voucher for their participation. The study was approved by the ethics committee

of the medical faculty of the University of Kiel (Ref.-No. A125/14) and carried out in accor-

dance with the latest version of the Declaration of Helsinki.

DNA and RNA extraction, sequencing, and processing

Fecal DNA was collected in Sarstedt fecal collection tubes (Nümbrecht, Germany) and stored

at 4˚C until preparation. Total DNA from fecal samples was extracted using FastDNATM SPIN

KIT FOR SOIL (Qbiogene, Carlsbad, CA, USA) as per the manufacturer protocol after incuba-

tion in 200 ml Tris Lysisbuffer and 25ml proteinase K for 2 hours at 56˚C. Extracted DNA was

stored at -80˚C. For sequencing, DNA was amplified using the primer pair 27F-338R for the

variable regions V1 and V2. Normalization of PCR products was done with the SequalPrep

Normalization Plate Kit (Thermo Fischer Scientific, Waltham, MA, USA), and products were

pooled equimolarly for sequencing on the Illumina MiSeq (Illumina Inc., San Diego, CA,

USA).

Sequences with a read length less than 200bp and a quality score lower than 25 were

rejected. Noise reduction was carried out using Mothur [58, 59]. Ambiguous sequences,

sequences with more than eight homopolymers, chimerical sequences, and sequences which

differed in the primer or barcode sequence were removed. The output was normalized to 7000

sequences per sample. The sequences were binned into operational taxonomic units (OTUs)

with 97% similarity. OTUs are groups of sequences which are clustered based on similarity,

allowing taxonomical assignment.
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Alpha/Beta diversity and taxonomic plots

Alpha diversity of the samples was measured by observed species, the Shannon diversity, and

the Chao1 index. The observed species index measures the number of different species per

sample which is defined as “richness”. The Chao1 index is also a qualitatively measure of alpha

diversity which, beside species richness, takes into account the ratio of singletons (n = 1) to

doubletons (n = 2) giving more weight to rare species. However, regarding diversity, not only

the qualitative amount of species, but also the abundance of the species must be taken into

account. The relative abundances of the different species making up the samples’ richness are

defined as “evenness”. The Shannon-diversity index relates both, OTU richness and evenness.

The association between microbial diversity and ADHD subtypes was tested via multiple linear

regression, with microbial alpha diversity as the dependent variable and attention deficits,

hyperactivity, and impulsivity as explanatory variables. For this purpose, we used the parental

ratings as assessed by the FBB-HKS, since this questionnaire is designed to determine the

severity of these three cardinal symptoms according to the DSM-VI [51]. Pairwise compari-

sons were done using the Wilcoxon rank-sum test for nonparametric data. T-tests were per-

formed after visual data inspection by histograms and when normal distribution of data was

given as tested by the Shapiro-Wilk test for normality.

Multivariate statistics were conducted via ANOSIM, ADONIS, and the function “betadisper”

from the R package vegan v2.4–1 to analyze microbial beta-diversity which describes the diversity

in a microbial community between different samples. ANOSIM is rank-based and tests for simi-

larities, whereas ADONIS tests the homogeneity of dispersion; betadisper tests the similarity of

composition among groups. Non-metric multidimensional scaling (NMDS), the most robust,

unconstrained and distance-based ordination method, was performed with Bray-Curtis dissimi-

larity as implemented in the R package vegan v2.4-1. Redundancy analysis is a constrained

method based on multiple linear regressions to extract and summarize the variation in a set of

response variables which can be explained by a set of explanatory variables. OTU count data were

Hellinger-transformed as implemented in the R package vegan v2.4–1. The community composi-

tion data matrix that results from deep-sequencing diversity counting is usually characterized by a

multitude of zero and single counts of OTUs. To generate data containing many zeros suitable for

analysis by linear methods, such as redundancy analysis (RDA), transformation of data like the

Hellinger transformation is recommended [60, 61]. Hellinger transformation gives low weights to

variables with low counts and many zeros. Contribution of highly correlating OTUs (POrd< 0.01)

with redundancy axes was identified using the envfit functions from the R package vegan [62].

To determine potential biomarker OTUs, which differ in abundance and occurrence between

sample groups, full linear discriminant analysis (LDA) effect size (LEfSe) [63] analysis was per-

formed via the Galaxy web application with the Huttenhower lab’s tool. LEfSe analysis finds

OTUs or other features which are most likely to explain differences between sample groups. As

threshold, a p-value of 0.05 was established [63]. The Kruskal-Wallis test was performed with log

normalized data to identify imbalances in abundance only. Significance level was p< 0.05.

General information on statistical analysis

All downstream computations were performed in R v3.2.2. P-values in multiple testing scenar-

ios were corrected by false discovery rate.

Results

After a rigorous quality check and preprocessing, which removed about 20% of the sequences,

all sequences were normalized to 7000 sequences per sample, resulting in a total of 187,807

OTUs with a median of 1970 OTUs per sample.
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ADHD status associated with decreased alpha diversity

Alpha diversity was quantified by Shannon diversity index, which relates both OTU richness

and evenness, and by the total number of observed species. Fig 1 shows the alpha diversity

measurements for ADHD children versus controls. Statistical testing showed no difference for

the observed species (pObserved = 0.25) and Chao1 richness estimator (pChao1 = 0.17), while

Shannon diversity was significantly decreased in ADHD compared to controls (pShannon =

0.036). Regarding the parents, mothers of ADHD patients also showed a reduction in alpha

diversity (pShannon = 0.029, pObserved = 0.017), while fathers of ADHD patients and controls did

not differ significantly (p> 0.05, see also S1 Fig and S1 Table). Four out of fourteen ADHD

children did not receive ADHDmedication. These patients showed a reduction in alpha diver-

sity comparable to patients who suffered from ADHD but were treated with MPH (med-

ianMPH = 5.53, medianno_MPH = 5.62, see S2 Fig).

ADHD children and controls differ in microbial composition

As rank-based approaches, NMDS and ANOSIM were applied in order to test for dissimilari-

ties in the microbial composition between ADHD patients and controls. NMDS results are dis-

played in Fig 2. Patients with ADHD (red dots) showed a shift to the left, which indicates

compositional differences, and is confirmed by a significant result in the ANOSIM (pANOSIM =

0.033). To get more precise information about the differences between the two sample groups,

tests for similarity of composition (ADONIS) and homogeneity (betadisper) were performed.

Both showed significant differences between ADHD children and controls (pADONIS = 0.006,

pbetdisper = 0.002). Inter-personal variation patterns of different phylogenetic levels can be

found in S3, S4, S5 and S6 Figs as well as a comparison of dominant taxa in S7, S8, S9 and S10

Figs. Mothers and fathers of ADHD patients and controls did not differ significantly in micro-

bia composition (p> 0.05), while ADHDmothers differed significantly from the ADHD

Fig 1. Alpha diversity of stool samples.Alpha-diversity, measured by observed species and Shannon diversity Index
is plotted for patients with ADHD (red) and controls (green). The line inside the box represents the median, while the
whiskers represent the lowest and highest values within the 1.5 interquartile range (IQR). Outliers as well as individual
sample values are shown as dots. Statistical testing showed no difference for observed species (pObserved = 0.25), while
Shannon diversity was significantly decreased in ADHD compared to controls (pShannon = 0.036).

https://doi.org/10.1371/journal.pone.0200728.g001
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patients (pADONIS = 0.037) and control children (pADONIS = 0.005). A RDA plot comparing the

family member can be found in S11 Fig.

Specific OTUs

The LEfSe test for biomarkers was used in order to find significantly imbalanced OTUs, which

showed the strongest effects for group differentiation. Analysis at the OTU level uncovered

two ADHD-associated species belonging to the genera Bacteroides (OTU_7, OTU_577, Fig 3).

At the genus level, Prevotella and Parabacteroides were detected as markers for the control

group and Neisseria for the ADHD group. Analysis at the family level showed elevated levels of

Prevotellaceae, Catabacteriaceae, and Porphyromonadaceae for healthy controls and Neisser-

iaceae for the ADHD children. At the phylum level no significant differences were observed.

LEfSe takes into account both differences in abundances and frequency. Comparison of abun-

dances by Kruskal-Wallis test revealed that, in contrast to the other Biomarker, the genus Neis-

seria did not differ in abundance, but only in frequency between the sample groups.

Furthermore, the ADHD patients showed higher abundances in the family Bacteroidaceae (see

also S8 Fig). Evaluation of the influence of the parental microbiome showed that the ADHD

patients share slightly more OTUs with the father than with the mother (sharedfather = 7,7%,

sharedmother = 6,8%), while controls share equal amounts with fathers and mothers (share-

dfather = 5,9%, sharedmother = 5,8%). Abundances of possible biomarkers found by LEfSe analy-

sis between patients and controls can be found for all family members in S12, S13 and S14

Figs.

Associations between parental ratings and alpha diversity/beta diversity

A linear model was used to determine associations in levels of attentional deficits, hyperactiv-

ity, and impulsivity (parental ratings as assessed by the FBB-HKS questionnaire) with

Fig 2. Non-metric multidimensional scaling (NMDS) of ADHD samples and healthy controls.NMDS is an
unconstrained, distance-based ordination method which was performed with Bray-Curtis dissimilarity. Points
represent samples. Samples that are more similar to one another are ordinated closer together. ADHD patients are
plotted as red triangles, and controls are represented as green dots. The groups show significant differences in
similarity tested by ANOSIM (pANOSIM = 0.033).

https://doi.org/10.1371/journal.pone.0200728.g002
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mircobial alpha diversity. Levels of hyperactivity were significantly correlated with a change in

alpha diversity (hyperactivity: r = -0.35, p = 0.03, impulsivity: r = -0.22, p = 0.13, attention

problems: r = -0.15, p = 0.28). There were no significant correlations between the microbiome

and clinical symptoms assessed by the CBCL questionnaire (for all CBCL scales r> 0.2,

p> 0.2). Beta diversity and correlated species were examined by RDA on Hellinger trans-

formed data (tb-RDA). An RDA analysis at the species level revealed that OTU_7 (Bacteroides

spec.) correlated with levels of hyperactivity and impulsivity (Fig 4).

Discussion

In this study, we observed that boys with ADHD have significantly reduced gut microbial

diversity and show differences in microbial composition compared to healthy controls. We

found that these differences are mainly caused by the family Prevotellaceae and Neisseriaceae.

At the genus level, Prevotella, Neisseria, and two specific OTUs found as a potential biomarker

for the ADHD. Furthermore, we found a negative correlation between symptoms of hyperac-

tivity and alpha diversity.

These data are in line with the growing body of evidence for a bidirectional relationship

between the gut microbiome and mental health [64–67]. Similarly, human studies lead to the

conclusion that the microbiome is involved in psychopathology, such as in autism, depression,

anxiety, obesity, or anorexia nervosa [30–34, 42, 43]. We found Neisseria and Bacteroides spec.

as possible ADHD-associated biomarkers. Both genera contain commensal species which are

part of the healthy human microflora [68, 69]. Although our method did not allow the deter-

mination of the particular species within Neisseria and Bacteroides, there are well-known path-

ogens in these genera that might be involved in ADHD pathogenesis. Assuming a causal role

in ADHD, especially the brain-invading capability of N.meningitides might be of interest. Berg

and colleagues found that post-meningitic children showed significantly more symptoms in

the areas of inattention, hyperactivity and impulsiveness than their siblings [70]. N. gonor-

rhoeae, on the other hand, uses host-derived sialic acid for its lipopolysaccharides as a

Fig 3. Results of LDA effect size (LefSe) analysis of male ADHD patients compared to healthy controls. The LEfSe analysis finds taxa which are significantly more
abundant in one group, while the bar size represents the effect size of the taxa in the particular group. (A) family level, (B) genus level, (C) OTU level (97% similarity).
There were no taxa differences at the order and phylum level. The threshold p-value was 0.05.

https://doi.org/10.1371/journal.pone.0200728.g003
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mechanism to evade immune defense [71]. This is linked to ADHD by a genome-wide analysis

that found an lncRNA gene ENST00000427806 associated with aggressiveness in ADHD [72].

The target gene for this lncRNA is a protein-coding a sialyltransferase gene (ST6GALNAC5).

Thus, changes in sialic acid metabolism in ADHD could be used by Neisseria to escape the

host immune defense, which might explain the observed overrepresentation of this genus in

our ADHD samples.

The LEfSe analysis results showed that the family Prevotellaceae was significantly more

abundant in controls, while the ADHD patients showed elevated levels of Bacteroidaceae. Bac-

teroidetes generate essential vitamins and cofactors, and processing constituents such as fiber,

making them beneficial in support of human immunity, physiology, biochemistry, and neuro-

chemistry [73, 74]. The LEfSe analysis revealed two Bacteroides species (OTU_7 and

OTU_577) as potential biomarkers for the ADHD group. Members of the genus Bacteroides

are usually beneficial for the gut microbiota, but they are also capable of producing extraordi-

narly complex mixtures of amyloids, lipopolysaccharides, enterotoxins and neurotoxins,

which can affect the blood brain barrier´s structure as well as the central nervous system [75].

Assuming a causal relationship, the reduced alpha diversity that we found in ADHD

patients might reflect a bacterial community involved in deviant neural transmission. Many

bacterial species are able to produce GABA [76], which is the main inhibitory neurotransmit-

ter in the human cerebral cortex. GABA is antiproportionally correlated with impulsivity, and

GABA levels are reduced in young patients with ADHD [77]. Other studies have shown that

the gut microbiota affects levels of excitatory and inhibitory neurotransmitters (i.e. serotonin,

Fig 4. Differentiation of participants´ microbiomes. RDA biplot at OTU level with Hellinger-transformed data. Redundancy analysis is
a constrained method based on multiple linear regression which enables correlation of explanatory variables with the RDA axes. The black
dots represent individuals without ADHD; the green dots, individuals with ADHD diagnosis. Species and factors correlated with the RDA
axes were determined by the envfit function of the R package vegan, the cut-off for plotted results was p = 0.01.

https://doi.org/10.1371/journal.pone.0200728.g004
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GABA, and dopamine), while germ-free mice tend to have lower levels of neurotransmitter

precursors like tryptophan, tyrosine, and glutamine in the brain compared to re-colonized

mice [78, 79]. Possibly in line with this, we found a negative correlation between the hyperac-

tivity score and the alpha diversity. This confirms findings from a mouse model of germ-free

mice that not only displayed an altered stress response but also an increased level of motor

activity compared to conspecifics with a normal, functional microbiota [44]. A reconstitution

of the microbiota reversed alterations in both stress response and motor activity. In the light of

these facts, our results lead to the assumption that the impact of the microbiome on hyperac-

tivity is more pronounced than the impact on attention deficits. This dissociation would also

explain the lack of a correlation between the alpha diversity and ratings of global ADHD symp-

tomatology as assessed by the CBCL.

By including parents in the analyses, we also observed that mothers of ADHD patients com-

pared to mothers of healthy controls showed a reduced alpha diversity. Accordingly, ADHD

self-ratings revealed that mothers of patients displayed more ADHD symptoms in the past and

present than mothers of healthy controls did. There were no differences in alpha diversity and

self-ratings between the fathers of patients and controls. With a heritability of about 76%,

ADHD is a familial disorder, and its relative risk is about 5–9 in first-degree relatives [12, 13,

80]. Although males are more often affected than females (estimated ratio 3–4:1) [80], our

alpha-diversity data suggest that alterations in the microbiome composition might be passed

on maternally. Actually, patients share more OTUs with the father than with the mother, while

mothers and patients differ significantly in microbial composition (beta-diversity). This would

argue against maternally heredity of ADHDmicrobiota. However, a comparison of adult

mothers’ microbiota with juvenile ADHD patients might be inadequate, considering that adult

and juvenile, as well as female and male [81, 82], microbiota differ per se. Nevertheless, an

influence of maternal microbiota during a critical developmental window or influence by

inherited genotypes cannot be excluded. However, we have no comprehensive information

about parents´ mental health (no diagnostic interview was made, no clinical confirmation of

ADHD in the past or present, and no information about possible comorbidities or medication

was obtained). Therefore, we had to refrain from interpreting these results here. However, we

suggest that parents should be included in the diagnostic process in future studies. In addition,

longitudinal studies would be needed to elucidate the critical time window of the maternal

influence on the patients’ microbiota.

Patients and controls did not differ with respect to BMI and the reported intake of meat,

fruits/vegetables, yoghurt, other milk products, or fast food during the month prior to stool

donation. All these foods are well-known to influence the intestinal microbiota [83–85].

Therefore, group differences in alpha diversity may be an indication of a biomarker for

ADHD and not the result of group-specific nutrition. However, our study may also provide

the basis for a supportive treatment strategy in ADHD, since the microbiome is influenced by

nutrition [26, 86]: it has already been shown that food constituents significantly interact with

the ADHD symptom burden [7, 10, 11, 14, 15, 17–22], while supplementation of free fatty

acids, as well as the exclusion of artificial food colors or other additives can attenuate ADHD

symptom load [87, 88]. Moreover, one study suggested that the supplementation of probiotics

in younger ages reduces the risk for neurodevelopmental disorders (including ADHD) [45].

Although the underlying mechanisms of a diet-associated severity of ADHD symptoms are

not understood, the microbiome has been suspected as being the missing link [37, 89].

A limitation of the study is the concomitant medication: Ten of 14 patients had taken meth-

ylphenidate (MPH), the first-line treatment of ADHD, for more than one year. Nine of them

discontinued taking the medication at least 48h (approximately twelve half-lives) prior to sam-

ple collection. MPH increases the availability of dopamine by blocking the dopamine
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transporter in the CNS [90–92], reducing symptoms of inattention and hyperactivity [93–95].

To date, no information is available as to whether or not MPH affects the bacterial composi-

tion in the gut. Therefore, we cannot exclude that MPH (at all or even after more than 48h of

washout time) had an impact on gut bacteria. MPH has chemical similarities to cocaine [96]

with comparable effects on the dopamine transporter [97–99]. One animal study suggested

that the experimental reduction of gut microbiome, as induced by antibiotics, predicts the host

´s response to stimulants such as cocaine: the lower the bacteria level, the higher the behavioral

abuse response [100]. One human study revealed that the acute intake of cocaine leads to a

higher relative abundance of Bacteroidetes compared to non-users, but there were no differ-

ences in alpha diversity between groups [101]. If MPH had an influence on microbial alpha

diversity in ADHD after more than 48h of washout time, then the results of the abovemen-

tioned study indicate that this would more likely have resulted in an underestimation of the

reduction in alpha diversity caused by MPH. Our limited data on this issue (n = 4 with ADHD

but no medication) indicate that the alpha diversity in young ADHD patients is at least not

substantially affected by medication intake. Thus, further studies are required to unravel a pos-

sible yet unknown effect of MPH on the microbiome in ADHD.

Another limitation is the small sample size of 14 patients and 17 controls. Studies with

larger cohorts are required not only to replicate our findings in a medication-controlled sam-

ple but also to investigate possible differences in alpha diversity between subtypes of ADHD.

Moreover, including females is mandatory to investigate possible gender effects as indicated

by the parental microbiome. In addition, future studies can be designed to develop effective

dietary guidelines or treatment strategies with beneficial bacterial species (probiotics) [45] or

specific nutritional components for the prevention and treatment of ADHD [37, 87, 102, 103].

Finally, longitudinal studies are needed to further unravel the precise differences between

healthy and ADHD-affected children with regards to the gut microbiome over the course of

disease development.

Taking the small sample size and the concomitant medication into account, our findings

support the hypothesis of an ADHD-specific microbiota. We suggest that the genus Neisseria

and elevated levels of Bacteroides spec. are associated with juvenile ADHD.
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