

Open access · Journal Article · DOI:10.1111/J.1365-2486.2010.02351.X

Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments — Source link 🖸

Klaus Steenberg Larsen, Louise C. Andresen, Claus Beier, Sven Jonasson ...+18 more authors

Institutions: Technical University of Denmark, University of Copenhagen, Aarhus University

Published on: 01 May 2011 - Global Change Biology (Wiley-Blackwell Publishing Ltd.)

Topics: Nitrogen cycle, Deschampsia flexuosa and Ecosystem

Related papers:

- A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming
- Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project
- · Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide
- The Response of Soil Processes to Climate Change: Results from Manipulation Studies of Shrublands Across an Environmental Gradient
- Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature.

Share this paper: 👎 💆 🛅 🖂

Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments

Klaus Steenberg Larsen, Louise C. Andresen, Claus Beier, Sven Jonasson, Kristian R. Albert, Per Ambus, Karen Stevnbak, Marie Frost Arndal, Mette S. Carter, Soren Christensen, et al.

▶ To cite this version:

Klaus Steenberg Larsen, Louise C. Andresen, Claus Beier, Sven Jonasson, Kristian R. Albert, et al.. Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology, Wiley, 2010, 17 (5), pp.1884. 10.1111/j.1365-2486.2010.02351.x . hal-00599531

HAL Id: hal-00599531 https://hal.archives-ouvertes.fr/hal-00599531

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **Global Change Biology**

Global Change Biology

Reduced N cycling in response to drought, warming, and elevated CO2 in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments

Journal:	Global Change Biology
Manuscript ID:	GCB-10-0587
Wiley - Manuscript type:	Primary Research Articles
Date Submitted by the Author:	16-Jul-2010
Complete List of Authors:	Larsen, Klaus; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Andresen, Louise; University of Copenhagen, Institute of Biology Beier, Claus; Technical University of Denmark; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Jonasson, Sven; University of Copenhagen, Institute of Biology Albert, Kristian; Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Biosystems Division; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Ambus, Per; Risø DTU, Biosystems; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Stevnbak, Karen; University of Copenhagen, Biology; University of Copenhagen, Institute of Biology Arndal, Marie; University of Copenhagen, Forest and Landscape Carter, Mette; Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Biosystems Division; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Christensen, Soren; University of Copenhagen, Institute of Biology Holmstrup, Martin; National Environmental Research Institute, Terrestrial Ecology Ibrom, Andreas; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division; Christensen, Soren; University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division; Risø National Laboratory for Sustainable Energy, Biosystems Department; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Kongstad, Jane; University of Copenhagen, Forest and Landscape van der Linden, Leon; RISØ-DTU National Laboratory for Sustainable Energy, Biosystems Division; Technical University of

1 2 3 4 5 6	
$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 & 7 \\ 8 & 9 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	
14 15 16 17 18 19 20	
21 22 23 24 25 26 27	
28 29 30 31 32 33 34	
35 36 37 38 39 40 41	
42 43 44 45 46 47	
48 49 50 51 52 53 54	
55 56 57 58 59 60	

	Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Maraldo, Kristine; National Environmental Research Institute, Department of Terrestrial Ecology; National Environmental Research Institute, Terrestrial Ecology Michelsen, Anders; Biology, Terrestrial Ecology; University of Copenhagen, Institute of Biology Mikkelsen, Teis; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division Pilegaard, Kim; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division; Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Biosystems Division Prieme, Ambers; Copenhagen University, Dep. of Biology; University of Copenhagen, Institute of Biology Ro-Poulsen, Helge; University of Copenhagen, Forest & Landscape; University of Copenhagen, Forest and Landscape Selsted, Merete; Risø National Laboratory for Sustainable Energy, Biosystems Division Laboratory for Sustainable Institute of Denmark, Risø National Laboratory for Sustainable Institute of Siology Schmidt, Inger K.; University of Copenhagen, Forest & Landscape; University of Copenhagen, Forest and Landscape Selsted, Merete; Risø National Laboratory for Sustainabel Energy, DTU, Biosystems; Technical University of Denmark, Risø National Laboratory for Sustainable Energy, Biosystems Division
Keywords:	Climate driver interactions, C/N ratio, multi-factor climate change experiment, nitrogen cycling, nitrogen mineralization, N2O, soil fauna
Abstract:	Field-scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a semi-natural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short-term responses of the nitrogen (N) cycle after two years of treatments. Elevated CO2 significantly affected above-ground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co-dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Below-ground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+-N consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced below-ground gross N mineralization and decreased fauna N mass and N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue, decreased litter N production, and decreased fauna N mineralization prevailed in the full treatment combination indicating reduced N turnover in the simulated future climate scenario, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration. In conclusion, effects observed in single-factor studies should be evaluated wit

Scholarone Manuscript Central

Global Change Biology

3 4	1	Title: Reduced N cycling in response to drought, warming, and elevated CO ₂ in a Danish
5 6	2	heathland: Synthesizing results of the CLIMAITE project after two years of treatments
7 8 9	3	
10 11	4	Running title: Effects of climate change on N cycling
12 13	5	
14 15 16	6	Authors: Klaus S. Larsen ¹ , Louise C. Andresen ² , Claus Beier ¹ , Sven Jonasson ² , Kristian R.
17 18 19 20	7	Albert ¹ , Per Ambus ¹ , Karen S. Andersen ² , Marie F. Arndal ³ , Mette S. Carter ¹ , Søren
	8	Christensen ² , Martin Holmstrup ⁴ , Andreas Ibrom ¹ , Jane Kongstad ³ , Leon van der Linden ¹ ,
21 22 23	9	Kristine Maraldo ⁴ , Anders Michelsen ² , Teis N. Mikkelsen ¹ , Kim Pilegaard ¹ , Anders Priemé ² ,
24 25	10	Helge Ro-Poulsen ² , Inger K. Schmidt ³ , Merete B. Selsted ¹
26 27	11	
28 29 30	12	¹ Technical University of Denmark, Risø DTU, Biosystems Division, Frederiksborgvej 399,
31 32	13	DK-4000 Roskilde, Denmark.
33 34 25	14	² University of Copenhagen, Institute of Biology, Øster Farimagsgade 2D, DK-1353
35 36 37	15	Copenhagen K, Denmark.
38 39	16	³ University of Copenhagen, Forest and Landscape, Hørsholm Kongevej 11, DK-2970
40 41 42	17	Hørsholm, Denmark.
43 44	18	⁴ National Environmental Research Institute, Department of Terrestrial Ecology, Aarhus
45 46	19	University, Vejlsøvej 25, DK-8600 Silkeborg, Denmark.
47 48 49	20	
50 51	21	Corresponding author: Klaus S. Larsen, <u>klas@risoe.dtu.dk</u> , phone: +45 4677 4157
52 53	22	
54 55 56	23	Keywords: Climate driver interactions, C/N ratio, multi-factor climate change experiment,
57 58	24	nitrogen cycling, nitrogen mineralization, N2O, soil fauna
59 60		

2	
3	
4	
5	
5	
6	
7	
8	
ġ	
10	
10	
11	
12	
13	
1/	
15	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
- _ ΩE	
25	
26	
27	
28	
20	
20	
30	
31	
32	
33	
34	
05	
35	
36	
36 37	
36 37 38	
36 37 38 39	
36 37 38 39	
23456789101234567890112345678901123222345678901333333333333333333333333333333333333	
40 41	
40 41 42	
40 41 42	
40 41 42 43	
40 41 42 43 44	
40 41 42 43 44 45	
40 41 42 43 44 45 46	
40 41 42 43 44 45	
40 41 42 43 44 45 46 47	
40 41 42 43 44 45 46 47 48	
40 41 42 43 44 45 46 47 48 49	
40 41 42 43 44 45 46 47 48 49 50	
40 41 42 43 44 45 46 47 48 50 51 52 53 54	
40 41 42 43 44 45 46 47 48 50 51 52 53 54	
40 41 42 43 44 45 47 49 51 53 55 55 55 55 55	
40 41 42 43 44 46 47 49 51 23 45 55 55 55 55 57	
40 41 42 43 44 46 47 49 51 23 45 55 55 55 55 57	
40 41 42 43 44 45 47 49 51 53 55 55 55 55 55	

1

26 Abstract

25

Field-scale experiments simulating realistic future climate scenarios are important tools for
investigating the effects of current and future climate changes on ecosystem functioning and
biogeochemical cycling. We exposed a semi-natural Danish heathland ecosystem to elevated
atmospheric carbon dioxide (CO₂), warming, and extended summer drought in all
combinations. Here, we report on the short-term responses of the nitrogen (N) cycle after two
years of treatments.

Elevated CO₂ significantly affected above-ground stoichiometry by increasing the 33 carbon to nitrogen (C/N) ratios in the leaves of both co-dominant species (*Calluna vulgaris* 34 and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the 35 N concentration of *Deschampsia* litter. Below-ground, elevated CO₂ had only minor effects, 36 whereas warming increased N turnover, as indicated by increased rates of microbial NH₄⁺-N 37 consumption, gross mineralization, potential nitrification, denitrification and N₂O emissions. 38 Drought reduced below-ground gross N mineralization and decreased fauna N mass and N 39 40 mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss 41 is highly sensitive to changes and variability in amount and timing of precipitation. 42 Interactions between treatments were common and although some synergistic effects were 43 observed, antagonism dominated the interactive responses in treatment combinations, *i.e.* 44 45 responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue, decreased litter N production, and decreased fauna N 46 47 mineralization prevailed in the full treatment combination indicating reduced N turnover in

Global Change Biology

the simulated future climate scenario, which could act to reduce the potential growth response

of plants to elevated atmospheric CO₂ concentration.

combined ecosystem responses to future climate changes.

- In conclusion, effects observed in single-factor studies should be evaluated with caution. Multi-factor climate experiments are needed for improving realistic estimation of the
- <text>

Introduction Climate change with elevated atmospheric CO₂, increased temperature and altered precipitation will fundamentally affect key drivers for ecosystem functioning and lead to adverse effects in terrestrial ecosystems across the globe (IPCC, 2007). These climate-driven changes may affect ecosystem functioning directly, e.g. through CO₂-stimulated photosynthesis and growth (Luo et al. 2006; de Graaff et al. 2006), warming-induced increased nutrient mineralization (Emmett et al. 2004) or drought-induced growth limitation (Penuelas et al. 2007). They may also act indirectly e.g. through impacts on species composition (Penuelas et al. 2007). Growth in many natural and semi-natural terrestrial ecosystems is limited by nitrogen and characterized by strong competition for nitrogen between plants and the soil communities of fungi and bacteria (Marion et al. 1989; Jonasson et al. 1996). Consequently, ecosystem N availability is an important factor controlling the carbon uptake in terrestrial ecosystems and therefore also plays a dominant role in controlling the feedback between the biosphere and the atmosphere in a warmer and more CO₂ enriched world. The theory of nitrogen as a limiting factor constraining the carbon uptake in terrestrial ecosystems in response to elevated CO₂ is conceptualized in the PNL framework (Progressive Nitrogen Limitation) (Luo et al. 2004) describing how increased carbon sequestration driven by elevated CO₂ requires increased access to nitrogen in order to balance the carbon input. Accordingly, without additional inputs of plant-available N, nitrogen will progressively limit further carbon uptake. But increased N availability has also been shown as a consequence of increased availability of labile soil carbon substrate (Zak et al. 1993) and increased soil moisture content due to improved plant water use efficiency (WUE) (Zak et al. 1993; Hungate 1999), as well as increased N

77 mineralization in response to warming (Schmidt *et al.* 2004; Emmett *et al.* 2004). The

Page 7 of 46

Global Change Biology

interaction between the carbon and nitrogen cycles clearly illustrates how sensitive ecosystems are to changes in nitrogen pools and turnover, current input of N, and other nutrients, and changes in the water regime. This is particularly important for N limited systems, such as natural and semi-natural ecosystems with relatively low nitrogen inputs and internal N turnover rates of the mineral N pool as fast as a few days (Davidson et al. 1990; Lipson & Näsholm 2001; Schimel & Bennett 2004; Vervaet et al. 2004). In systems with very high internal turnover rates of nitrogen, the N turnover has also been shown to be very sensitive to changes in natural climatic variations such as reduced water availability (Jamieson et al. 1999), potentially leading to a high sensitivity of these systems to climate-driven changes in the internal processes regulating the demand or supply of nitrogen. Most of the experimental evidence of PNL and the role of nitrogen in constraining carbon uptake is based on modeling studies (Rastetter *et al.* 1997) or on experiments involving elevated CO₂ alone or in combination with various levels of nitrogen addition to demonstrate the role of N in stimulating CO₂ sequestration responses (Lutze & Gifford 2000; Lutze et al. 2000; van Heerwaarden et al. 2005; de Graaff et al. 2006; Reich et al. 2006). However, in a future CO_2 enriched world, the nitrogen limitation and the CO_2 response in N limited systems will to a large extent be regulated by the climate change-associated responses of the internal nitrogen cycle, which are not well captured in a CO₂ alone experiment. For instance, it has been demonstrated that warming can stimulate internal nitrogen mineralization, leading to increased N availability (Emmett et al. 2004) and even increased N leaching (Lukewille & Wright 1997; Schmidt et al. 2004). Correspondingly, changes in water availability, such as water limitations by droughts, can reduce N mineralization and N availability (Emmett et al. 2004). On the other hand, increased water availability due to increased precipitation or to CO₂ stimulated increase in WUE can increase N mineralization and N availability under water limited conditions (Hungate 1999). Since the future climate

change will involve changes in all of these factors, it is important to understand the possible
interactions between different climate drivers on N availability and nitrogen limitation.

105 Therefore, studies involving all factors simultaneously are needed.

In the present study, we aim to synthesize the overall impacts of changes in the nitrogen cycle in response to warming, elevated atmospheric CO_2 concentration and increased summer drought events after two years of treatments. We compare the responses of the three-factor treatment with responses to treatments including only one, or pair wise combinations of the factors.

In response to elevated CO₂, we expected to observe increased plant tissue and litter C/N ratios (Paterson et al. 1999; Lutze & Gifford 2000; van Heerwaarden et al. 2005; Finzi et al. 2006; Chen et al. 2007; Hovenden et al. 2008). In the short term, we further expected that the increased water use efficiency under elevated CO₂ (Ainsworth & Long 2005; Leuzinger & Körner 2007; Ainsworth & Rogers 2007; Albert et al. 2010) would stimulate plant growth, and increase plant N demand and biomass, and that concomitant increased rhizodeposition would lead to increased microbial biomass activity and mineralization. Warming was expected to increase plant growth and increase mineralization (Rustad et al. 2001), whereas extended summer drought was expected to reduce plant N demand and decrease N mineralization and nitrification rates (Emmett et al. 2004; Schmidt et al. 2004; Sowerby et al. 2008) as a product of direct or indirect effects on microbial activity. Assuming simple addition of these single treatment effects, we expected that drought effects would be reduced in combination with both warming and elevated CO₂ and, consequently, that increased N mineralization and plant growth in response to both warming and elevated CO₂ would dominate over decreases caused by drought in the full combination of treatments.

Global Change Biology

1		
2 3 4	126	
5 6 7 8 9 10 11 12 13 14 15	127	Materials and methods
	128	Experimental site and climate change manipulations
	129	The CLIMAITE experimental site is a dry, temperate heathland situated approximately 50 km
	130	NW of Copenhagen, Denmark (55°53' N, 11°58'E). The vegetation is dominated by the
16 17	131	evergreen dwarf shrub Calluna vulgaris (L.), the perennial grass Deschampsia flexuosa (L.)
18 19	132	and various mosses and herbs. The soil is a well-drained, nutrient-poor sandy deposit with a
20 21 22	133	pH of 4-5 and an organic top layer ranging from 2 to 5 cm in depth. Long-term annual mean
23 24	134	air temperature is 8.0 °C, annual mean precipitation is 613 mm (Danish Meteorological
25 26	135	Institute 2009) and the total N bulk deposition at the site was 1.27 ± 0.07 and 1.35 ± 0.04 g N m ⁻
27 28 29 30 31 32 33 34 35 36	136	² y ⁻¹ in 2006 and 2007, respectively (Larsen KS, unpublished data). The experimental area
	137	covers approximately 2 ha and consists of twelve 7m diameter octagons laid out pair-wise in 6
	138	blocks (= 6 replicates). Each block consists of two octagons, one with ambient (A)
	139	atmospheric CO_2 and one receiving elevated atmospheric CO_2 concentration (CO_2) (510 ppm
37 38	140	in a free air CO ₂ enrichment setup (FACE)). Each octagon is separated into 4 subplots
39 40 41	141	receiving in addition to the ambient or elevated CO_2 1) one month summer drought (D) by
42 43	142	rain-out shelters, 2) passive warming (T) of air and soil by night time warming curtains 50 cm
44 45 46	143	above ground, 3) a combination of drought and warming (TD) or 4) no drought or
40 47 48	144	temperature treatment. In total, the experiment provides a full factorial design with all 7
49 50	145	combinations of D, T and CO ₂ and an untreated control for reference (A). Details on the
51 52 53	146	experimental setup are described by Mikkelsen et al. (2008).
54 55 56	147	The treatments were initiated in October 2005 and the first summer drought was
57 58	148	applied in July/August 2006. The warming treatment elevated temperature at 5 cm depth by
59 60	149	0.3 °C in the winter to 0.7 °C in the summer months, on average. The maximum mean daily

0.3 °C in the winter to 0.7 °C in the summer months, on average. The maximum mean daily 149 temperature elevation was 1.2, 2.1 and 2.8 °C in the 5 cm depth, soil surface and 20 cm height 150

sensors, respectively (4 October 2005 - 31 December 2007). The drought campaigns removed
52 mm and 94 mm of precipitation, resulting in peak reductions of soil water content of 11
and 13 % v/v over 0-20 cm soil depth in 2006 (3-20 July and 26 July-4 August) and 2007 (21
May-22 June), respectively. The drought campaigns were stopped when soil water content
reached about 5 % v/v over 0-20 cm soil depth.

157 N stocks in plants, litter, microbes and soil, C/N ratios, extractable N concentrations

Above-ground biomasses N of Calluna and Deschampsia were estimated from non-destructive point intercept measurements in two 50 x 50 cm subplots within each plot combined with a linear regression model linking point intercept measurements and biomass obtained from destructive harvesting of similar plots outside the treatment plots (Jonasson 1988; Kongstad et al. 2010; Riis-Nielsen & Schmidt 2010). To compensate for pre-treatment differences between the initial biomass values in individual sub-plots and the subsequent development during the experiment, treatment effects on above-ground plant biomasses were normalized and scaled to the average biomass development in the ambient plots while maintaining the observed relative variance. Briefly, a regression was fitted between the pretreatment plant biomass and the treatment biomass at a given time point, within each treatment. The slope of the regression in the ambient treatment defined the ambient or control response; the normalized treatment effect was determined as the difference between the predicted control response and the predicted treatment response for a given treatment. See van der Linden et al. (2010) for further description.

Calluna and Deschampsia plants as well as mosses from the experimental plots were
 harvested in August 2007. The C and N concentrations measured in green tissue, flowers,
 wood/stem and roots or whole plants (mosses) (Andresen *et al.* 2010a) were used to calculate

Global Change Biology

C/N ratios. The N concentrations were used in combination with the non-destructive above-ground biomass estimates to calculate the total N stock of these pools. Concurrent with plant harvest, soil samples from each plot (0-10 cm soil depth) were taken to measure plant root biomasses, microbial biomass N and, soil organic matter N (SOM-N) and soil extractable NO₃-N, NH₄-N and dissolved organic nitrogen (DON) (Andresen *et al.* 2010a). Litter production by Deschampsia was estimated from point intercept-based difference between seasonal minimum and maximum biomass of live and dead fractions of Deschampsia leaves multiplied with N concentrations in the litter (Kongstad et al. 2010; Riis-Nielsen & Schmidt 2010).

185 Soil fauna

Soil cores within each plot (0-10 cm soil depth) were sampled in October and November 2007 for biomass estimation of protozoa/nematodes and enchytraeids/microarthropodes, respectively. For estimation of protozoan biomass, a soil suspension was prepared by blending 5 g of soil with 100 ml of Amoeba Saline (AS, Page 1988) for 1 min. Three-fold dilution series of the soil suspension were prepared in microtiter plates being inspected for protozoa after one and three weeks of growth at 15°C with a modified version of the Most Probable Number method (Darbyshire et al. 1974; Rønn et al. 1995). Nematodes were extracted from between 10 and 11 g (fresh weight) of soil by a modified Baermann tray extraction method (Georgieva et al. 2005). Samples were extracted for 48 h, and nematodes were then counted at 40× magnification using a dissecting microscope. Biomass N of protozoa and bacterivorous nematodes were calculated according to Stout & Heal (1967) and Sohlenius & Sandor (1987), respectively. N mineralization (excretion and turnover) of microfauna was calculated assuming bacterivore turnover rate of 0.16 d⁻¹ (Zwart *et al.* 1994)

for both nematodes and protozoans and setting yield ratios of protozoans and nematodes on bacteria to 0.4 and 0.04 (Coleman et al. 1978). The total biomass of enchytraeids was determined as described by Maraldo et al. (2008). The density of microarthropods was determined as described by Holmstrup et al. (2007), and the biomass of dominating taxonomic groups was estimated using representative values from Petersen & Luxton (1982). The pool of N contained in the biomass was calculated assuming nitrogen concentrations of 11.5 % and 10 % of dry weight in enchytraeids and microarthropods, respectively (Persson 1983). The yearly turnover rate of biomass N was assumed to be 1.2 for enchytraeids (Standen 1973), and 1.8 for microarthropods (De Ruiter et al. 1993). The annual mineralization (excretion and turnover) of NH₄⁺-N by enchytraeids and microarthropods was estimated based on biomass as described by Persson (1983).

N_2O emissions and N_2O reductase

Fluxes of N₂O were measured with a static chamber method using white PVC chambers (height 15 or 45 cm depending on vegetation height) placed on metal collars (60×60 cm) permanently installed in the soil. Enclosure times were 2 to 2.5 h, during which headspace air was sampled four times and later analyzed for N₂O concentration by gas chromatography. The N₂O flux was calculated using linear regression. Nine N₂O measuring campaigns including all eight treatments were carried out from June 2006 to March 2007, and from April to June 2007 five campaigns were conducted in five of the treatments, viz. A, CO₂, D, DCO₂ and TDCO₂. Annual cumulative N₂O fluxes were derived by interpolation between measurement days and by extrapolating the emission from the treatments T, TD and TCO₂ for the period March-June 2007. Further methodological description is found in Carter et al. (2010).

Global Change Biology

To determine N₂O reductase activity, nitrate was removed from sub samples of the soil cores taken in November 2007 for fauna biomass estimation by vortexing 10 g fresh soil and 30 ml of phosphate buffered saline (PBS) for 5 sec followed by centrifugation for 10 min at 3500 x G and 5 °C. The supernatant was discarded and the pellet resuspended in 30 ml PBS. After the third centrifugation the pellet was resuspended in 15 ml of 0.5 mM glucose, 0.5 mM sodium acetate, and 0.5 mM sodium succinate and transferred to a 100 ml incubation bottle. The bottle was sealed with a butyl rubber stopper, flushed with N₂ for 2 min, added 100 ppm N₂O (final concentration), placed horizontally on a shaker (200 rpm), and incubated at 22 °C. After 0, 1, 3, 6 and 24 h, 3 ml of headspace was transferred to a pre-evacuated 3 ml Venoject vial before analysis of N₂O by gas chromatography. The N₂O reductase activity was calculated from the consumption of N₂O during the incubation.

235 Nitrogen mineralization and immobilization

Gross rates of N mineralization and immobilization were determined by the isotope pool-dilution approach applied in laboratory incubations. Soil cores within each plot were sampled in September 2007 (0-5 and 5-10 cm soil depth, respectively), sieved and stored at 5 °C for about one week until incubations were initiated. Fresh samples (10 g) were weighed in 250 ml poly-ethylene bottles and mixed thoroughly with 400 μ l of a ¹⁵N-NH₄Cl solution (5 atm % ¹⁵N) to provide 5 µg N g⁻¹ soil. One set of samples was analyzed immediately upon substrate application, and a second set was analyzed after 7 days of incubation at 20 °C. Contents of mineral N and the ¹⁵N contents were determined upon extraction and micro-diffusion (Sørensen & Jensen 1991). Gross daily rates of mineralization and immobilization were calculated according to equations given by Kirkham & Bartholomew (1954). Upscaling to

annual rates was done using the mean annual soil temperatures in 5 cm depth (10 °C) at the experimental site and assuming a Q_{10} of 2.

249 Potential nitrification and denitrification

Subsamples from the soil cores taken in November 2007 were gently homogenized by hand and major roots were removed. Soil samples were stored at 4 °C until analysis (less than 24 h). Potential nitrification was determined in 3 g soil samples by a modification of the method described by Belser & Mays (1980) but without adding chlorate. Potential nitrification rates were estimated from the increase in nitrite+nitrate concentrations. Potential denitrification rates (Wolsing & Prieme 2004) in 10 g soil samples were estimated from linear regression of increase in headspace N₂O concentration during 180 min incubation.

258 Water percolation and nitrogen leaching

Leachate water was collected monthly from passive PVC soil water draining collectors below the organic soil layer (approximately 5 cm depth) and polytetrafluoroethylene (PTFE) suction cups with continuous sub-atmospheric pressure (Prenart Super Quarz, Frederikberg, DK) below the main rooting zone (60 cm depth). Concentrations of NH₄⁺-N, NO₃⁻-N, and total N (by UV-persulphate oxidation) were analyzed on an Autoanalyzer 3 (Bran+Luebbe Gmbh, Germany). DON was calculated as total N minus inorganic N. Precipitation was measured at the site and the volume of percolating water was estimated by simulation with the CoupModel model (Jansson & Moon 2001; Svensson et al. 2008) - a coupled ecosystem model with a balance of abiotic and biotic processes in the soil-plant-atmosphere system. The basic structure of the model is a depth profile of the soil, and calculations of water and heat flows

Global Change Biology

are based on common soil properties. The model was parameterised using measured soil layer properties and against time series of soil temperature and moisture content, using on site measurements of radiation, precipitation and wind speed as driving data and a generalised likelihood uncertainty evaluation approach. Percolation of water below 60 cm was calculated as an output of the simulations and leaching of nitrogen at that depth was calculated as the product of the sum of water percolation and the concentration measured in the soil water for each water collection period (Schmidt *et al.* 2004).

277 Statistical analyses

Statistical analyses were conducted using the multiple linear regression procedure PROC MIXED of SAS (SAS Institute 2003). The statistical model included a random statement that accounted for the experimental design (Random Block octagon octagon*D octagon*T). The same model was used for all tested variables and included the three main factor effects (CO₂, D, and T) as well as all possible interactions (D*CO₂, T*CO₂, T*D, and T*D*CO₂). P-values ≤ 0.05 were considered significant. Data were transformed when necessary to obtain normality and homogeneity of variance. Differences of Least Squares Means (DLSM) were used to interpret significant treatment interactions. During the DLSM evaluation, each significant interaction was categorized as either *antagonistic*, *i.e.* the combined effect led to a reduction of the observed individual effects or synergistic, i.e. the combined effect led to either a) an amplification of the observed individual effect(s) or b) to a significant effect only when treatments were combined. The DLSM evaluation also revealed if interactions were due to significant single treatment effects, *i.e.* effects observe in single treatment plots only, which disappear in combination with other treatments. Furthermore, DLSM evaluation of significant interactions revealed if significant main factor effects were effects observed only when in

4
5
6
156789101123145678900112322232256789001233333333333340142
<i>'</i>
8
9
10
11
10
12
13
14
15
16
17
17
18
19
20
21
22
~~
23
24
25
26
27
21
28
29
30
31
32
02
33
34
35
36
37
00
38
39
40
41
12
43
43
44
45
46
47
48
40
49
50
51
52
53
55
56
57
58
50
59

- 293 combination with other treatments or if it was significant also as a single treatment effect.
- Finally, we noted simple additive effects when two of the treatments both showed significant
- 295 main factor effects but with no interactions.

Results

Ecosystem N balance The N cycle at the site is dominated by higher internal N turnover in comparison to the inputs and losses by leaching and gaseous emission to the atmosphere (Fig. 1). Gross mineralization $(6.7 \pm 0.96 \text{ g N m}^{-2}\text{y}^{-1})$ is five times higher than bulk deposition $(1.35 \pm 0.04 \text{ g N m}^{-2}\text{y}^{-1})$, an order of magnitude higher than losses by leaching $(0.80 \pm 0.37 \text{ g N m}^{-2}\text{y}^{-1})$ and two orders of magnitude higher than gaseous losses in form of N₂O (0.031 \pm 0.006 g N m⁻²y⁻¹). Negligible N₂O reductase activity was observed in the soil samples with N₂O uptake rates less than 1 ng N g⁻¹ dw h⁻¹ in all samples and N₂ production is therefore assumed to be negligible (data not shown). Above ground, about 90 % of N is found in the two dominant species Calluna (~60 %) and *Deschampsia* (~30%). Below ground, most N is stored in the SOM pool (~90%) with Deschampsia roots (~4%), Calluna roots (~3%) and soil microbial (~1.5%) pools dominating the remaining fraction. Soil fauna biomass was ~10 % of microbial biomass but their mineralization of N is estimated to 5.0 ± 0.6 g NH₄⁺-N m⁻²y⁻¹, *i.e.* an amount of labile N much larger than the N input to the system by N bulk deposition. The system retained 0.53 g N m⁻²y⁻¹ of bulk deposition in the ambient, non-manipulated plots in 2007 as estimated by difference between bulk deposition and sum of total N leaching below 60 cm soil depth and N₂O emission. While bulk deposition in 2006 $(1.27 \pm 0.07 \text{ g N m}^{-2}\text{y}^{-1})$ was similar to the deposition in 2007 (1.35 \pm 0.04 g N m⁻²y⁻¹), total N leaching across all treatments was significantly lower (P < 0.0001) in 2006 (0.13 \pm 0.06 g N m⁻²y⁻¹) than in 2007 (0.56 \pm 0.20 g N m⁻²y⁻¹) with no significant treatment effects in either 2006 (data not shown) or in 2007 (Table 1). The major cause of this interannual difference was a wet summer in 2007 (202 mm

precipitation in July) with extensive leaching compared to a dry summer in 2006 (60 mm
precipitation in July) when summer leaching was absent.

322 Plant responses to climate manipulations

The above-ground biomass N of the dominant plant species Calluna and Deschampsia did not respond to the climate manipulations (Table 1). Root biomass N of Deschampsia was also unaffected by the treatments, whereas root biomass N of Calluna increased in response to drought (Table 1, P = 0.04) indicating a change in the root:shoot N allocation pattern. While N in above-ground biomasses were unaffected by treatments, the C/N ratios of Calluna flowers as well as leaves from both *Calluna* and *Deschampsia* increased in response to elevated CO₂ (Table 1, P = 0.02, 0.04, and 0.01, respectively). The evaluation by DLSM of the three-way interaction for the C/N ratio of mosses (Table 1, P = 0.003) showed that the interaction was due to significantly higher C/N ratios in the single treatments of drought and elevated CO₂, while ratios were unchanged when drought and elevated CO₂ were combined with each other as well as when they were combined with warming. The observed increases in C/N ratios in new plant tissue of leaves and flowers were not seen in whole-plant C/N ratios of *Deschampsia* or in the green tissue or wood fractions of *Calluna*. Yet, the N concentration of *Deschampsia* litter decreased under elevated CO_2 (Table 1, P = 0.05), indicating that the changes in C/N ratios starting in the leaves, are already beginning to cascade through the system, after only two years of treatments (Fig. 2a).

Deschampsia leaves and also mosses (single treatment only) responded to drought 340 with increased C/N ratios (Table 1, P = 0.002 and P \leq 0.05, respectively) whereas *Calluna* 341 leaves were unaffected (Table 1, Fig. 2b). Also, the pool of N in the annually produced 342 *Deschampsia* litter decreased in response to drought (Table 1, P = 0.01). The warming

Global Change Biology

3			
4 5			
6	0		
7			
9			
1	0		
1	1 2		
1	2 3		
1	2 3 4 5		
1	5 6		
1	7		
1	8		
1 ว	9		
2	1		
2	2		
22	3 ⊿		
2	5		
2	6		
22	7 8		
2	9		
3	012345678901234567890		
33	1 2		
3	3		
3	4		
3	5 6		
3	7		
3	8		
3 4	9 0		
4	1		
4 4	2 3		
	3 4		
4	5		
4 4			
	8		
	9		
55	0		
5	1 2 3 4		
5	3		
5 5	45		
5	6		
5	6 7 8 9		
55	8 9		
6	0		

treatment had fewer effects on above-ground processes than the other treatments, showing only an increase of N concentration in *Deschampsia* litter (Table 1, P = 0.03, Fig 2c).

When all treatments were combined (Fig. 2d), the lack of interactions between single 345 treatment effects for leaf level C/N ratios indicates that the effect is found also in treatment 346 combinations. Consequently, increased C/N ratios of leaves as well as decreased 347 Deschampsia litter N production are found in the full combination of treatments, *i.e.* in the 348 simulation of the projected future climate scenario. In contrast, the C/N ratio of mosses 349 increases in two of the three single treatments and N concentrations in Deschampsia litter 350 either increase or decrease depending on treatment but these effects disappear when all 351 treatments are combined. 352

353

354 *Responses of below-ground processes to climate manipulations*

The below-ground N turnover was significantly affected by the climate manipulations, primarily by the warming and drought treatments (Table 1, Fig. 3) showing changes cascading through pools and processes. Elevated CO_2 as a main factor had no effects below ground but the analysis of DLSM when evaluating the interactions revealed reductions in leachate concentrations in 5 cm soil depth of NO_3^- -N, NH_4^+ -N and DON (Table 1, Fig. 3a) in the single CO_2 treatment. These effects were reduced when elevated CO_2 was combined with other treatments causing the significant interactions for these three variables (Table 1).

The drought treatment reduced the N pools of enchytraeids and protozoans and their NH₄⁺-N mineralization (Table 1, P = 0.03 and 0.04, respectively), decreased gross mineralization (Table 1, P = 0.03), and reduced the pool of NH₄⁺-N (Table 1, P = 0.02), thus indicating an overall decrease in the N turnover in response to drought (Fig. 3b). In contrast, warming stimulated microbial ammonium consumption in the top 5 cm of soil (Table 1, P =

Global Change Biology

0.04) as well as the gross mineralization rate (single treatment only, Table 1, $P \le 0.05$) and nitrification rates (Table 1, P = 0.004), leading to both increased denitrification (Table 1, P =0.02) and N₂O emission (Table 1, P = 0.05). Overall, the below-ground response to the warming treatments was therefore an increase in N turnover (Fig. 3c). While no direct main effects of elevated CO₂ were observed, it influenced the responses to drought and warming primarily by reducing some of the significant individual effects in the three-factor combination. Still, the drought-induced decrease of fauna-N and

fauna N mineralization as well as the warming-induced increased denitrification did not

interact significantly with the other treatments and consequently remained in the full

treatment combination.

Interactions between climate manipulations

Across the 47 variables reported (Table 1) the drought treatment lead to the highest number of significant main effects (11) followed by warming and CO₂ treatments (6 and 4, respectively). Simultaneously there were a large number of interactions between the three treatments (14). Interestingly, the analysis of the interactions revealed a dominance of antagonistic effects (Fig. 4) with more than twice as many antagonistic effects as synergistic effects. Furthermore, simple additive effects were less frequent than both antagonistic and synergistic effects.

Discussion

Overall ecosystem N turnover

Global Change Biology

1	
2 3 4 5	385
6 7 8	386
9 10 11	387
12 13 14	388
15 16	389
17 18	390
19 20 21	391
22 23	392
24 25	393
26 27 28	394
29 30	395
31 32 33	396
34 35	397
36 37	398
38 39 40	399
41 42	400
43 44	401
45 46 47	402
48 49	403
50 51	404
52 53 54	405
55 56	406
57 58	407
59 60	

388	The N cycle at the experimental site is characterized by higher internal N turnover than bulk
389	N deposition and losses by leaching and N_2O production as generally seen in natural and
390	semi-natural ecosystems. In comparison to our estimated annual gross mineralization rate (6.7
391	\pm 0.96 g N m ⁻² y ⁻¹), Emmett <i>et al.</i> (2004) reported net mineralization rates of 3.8 to 6.6 g N m ⁻²
392	² y ⁻¹ from another Danish dry heathland and Aerts (1993) reported rates ranging from 4.4 to
393	12.6 g N m ⁻² y ⁻¹ under different plant species in wet and dry Dutch heathlands, where
394	atmospheric deposition is 2-3 times higher than in Denmark. Inter-annual variability in N
395	leaching was significant, while treatment differences after two years of treatments were not
396	significant. The observed difference in leaching between 2006 and 2007 shows that the
397	ecosystem N loss by leaching is highly dependent on the amount and timing of precipitation.
398	In a future climate with more precipitation distributed in fewer, but more severe rain events, N
399	leaching is likely to increase in this ecosystem. The inter-annual variability in leaching may
400	also indicate that the ecosystem is close to N saturation as also suggested from an adjacent
401	short-term experiment where N and phosphorus (P) addition resulted in only a modest
402	increase in fine root biomass of Deschampsia, and no effects on Calluna roots (Nielsen et al.
403	2009). Furthermore, Deschampsia responded more when both N and P were added indicating
404	that this species is currently more limited by P than N availability. If nitrogen availability
405	should decrease due to progressive nitrogen limitation as the treatment exposure continues,
406	this, in combination with the P limitation for Deschampsia, would be beneficial to the slower
407	growing Calluna. However, other climate factors, <i>i.e.</i> water availability and temperature

increase, are likely to influence the overall competitive relationship, potentially disturbing thebalance of the equilibrium, especially if the rates of mortality of *Calluna* are increased.

The mineralization of NH_4^+ -N by soil fauna is often neglected but contributes significantly to the pool of plant available N in the soil (Osler & Sommerkorn 2007). In the present study, we calculated fauna N mineralization from estimated biomasses and literature values of the turnover times and yields of microfauna and mesofauna. Obviously, upscaling of e.g. enumeration of bacterivorous protozoa and nematodes to gross nitrogen mineralization should be evaluated with caution. Values for bacterivore biomass, turnover, and growth yield on bacteria are all needed to perform the upscaling and very few references exist in the literature on such values. This said, the value for fauna-related N mineralization in the ambient treatment based on this calculation seems trustworthy based on the gross N mineralization from the pool dilution assay of 6.7 g N $m^{-2}y^{-1}$. The assumption that most bacterial mineralization is facilitated through predation and mineralization by the soil fauna implies that N mineralization by bacteria is responsible for approximately 75% of the total activity, the rest being due to fungi.

*Responses to elevated CO*₂, warming and drought

Elevated atmospheric CO₂ concentration is known to induce down-regulation of
photosynthetic capacity, *e.g.* via reduced content of Rubisco in the leaves (Ainsworth & Long
2005; Ainsworth & Rogers 2007) and reduction of leaf nitrogen content and increased C/N
ratios of leaves (Paterson *et al.* 1999; Lutze & Gifford 2000; van Heerwaarden *et al.* 2005;
Finzi *et al.* 2006; Chen *et al.* 2007; Hovenden *et al.* 2008). At our experimental site, we
observed reduced photosynthetic capacity (Albert *et al.* 2010) and leaf nitrogen under
elevated CO₂ for the dominant species, *Calluna* and *Deschampsia*, as well as increased leaf

Page 23 of 46

Global Change Biology

C/N ratios. However, the increased C/N ratios observed in leaves, and for Calluna also observed in flower biomass were after two years of treatments not large enough to affect whole plant biomass C/N ratios, which were not affected by the treatments. Previous studies have found increasing C/N ratios in other plant tissues than leaves (McGuire et al. 1995; Cotrufo et al. 1998), but the change often is much weaker than that observed for leaves (McGuire *et al.* 1995), indicating that the C/N effect of elevated CO_2 is closely linked to the processes involved in the carbon sequestration in the photosynthetic apparatus (Körner 2000). As hypothesized, however, N concentration in *Deschampsia* litter after two years of treatments was also reduced by elevated CO₂, possibly showing that the effect is beginning to cascade from leaf level to other ecosystem N pools, although the effect disappears in the full treatment combination. Together with the observed increased concentration of tannins (Schmidt et al. 2007) in plant tissues, we anticipate that the changes in C/N ratios will affect litter decomposition rates as the experimental treatments continue.

In contrast to our expectations, the above- and below-ground plant N pools were not increased by elevated CO₂. However, total root biomass N of *Calluna* increased unexpectedly in response to drought. It is inherently difficult to estimate total roots from small soil samples due to the large spatial heterogeneity in root distribution and, at the same time, collection of larger samples is problematic due to the destruction of the experimental plots. We are therefore reluctant to put too much emphasis on this result and conclude overall that total biomass N of both dominant species as well as mosses after two years of treatments were only marginally affected by the applied climate drivers.

Increased rhizodeposition is a common plant response to elevated CO_2 (Pendall *et al.* 2004; Allard *et al.* 2006), and strong effects on below-ground C cycling have been observed in response to elevated CO_2 in the current experiment, *e.g.* increased soil respiration rates (Selsted *et al.* 2010) and increased production of dissolved organic carbon (Andresen *et al.*

2010a). However, in contrast to our expectation, we observed very few direct effects of elevated CO₂ on below-ground N processes. Still, the decreased concentrations of organic and inorganic N leachate water at 5 cm soil depth imply that mineralization processes are affected or possibly that root N uptake has increased. In contrast to the lack of direct changes in response to elevated CO₂, soil processes were more sensitive to the drought and warming treatments. Our study supports previous observations of increased below-ground N turnover in response to warming (Rustad et al. 2001; Schmidt et al. 2004). We observed increased microbial NH₄⁺-N consumption, gross mineralization, potential nitrification, and denitrification from lab incubations of soils, as well as increased in situ N₂O emissions. Soil and litter incubations *in situ* also showed that warming promoted N cycling (Andresen *et al.* 2010b). Previous field studies with artificial warming also showed no warming effect on N₂O emission rates (Peterjohn et al. 1994; Mchale et al. 1998). However, we interpret our observation of five variables that all responded in the same direction to warming as a strong indicator that the warming effect on N turnover was real. The below-ground N turnover was reduced by drought as observed by reduced gross N mineralization and fauna N mineralization. Reduced N mineralization in response to drought has previously been observed (Emmett et al. 2004; Schmidt et al. 2004; Sowerby et al. 2008) but the negative effects of drought on N mineralization are often attributed directly to reduced microbial activity. The importance of soil fauna to the N mineralization shown in this study, together with the negative effects of drought on top soil layer populations of enchytraeids (Maraldo et al. 2010) and other fauna groups and their decreased N

478 mineralization rates, indicate that the fauna response plays a significant role in the observed
479 decrease in N turnover in drought-exposed plots. Furthermore, while the warming effects
480 were generally reduced in combination with drought and elevated CO₂, the negative effect of
481 drought on fauna N biomass and N mineralization was not reduced by interactions.

Global Change Biology

Consequently, the effect prevailed in the full combination of treatments, indicating that N mineralization will be reduced in the full future climate scenario. Therefore, despite the fact that this ecosystem currently show no clear sign of N limitation of plant growth, we cannot rule out the possibility that progressive nitrogen limitation will play a role in the longer term, as the impacts of increased CO_2 on C/N ratios of leaves combined with the drought induced reduction of mineralization and litter N production continues to reduce the availability of N in the ecosystem.

490 Importance of climate driver interactions

We thoroughly investigated the background for all significant interactions observed in the 47 variables reported in Table 1 by evaluating the DLSM from the mixed model statistical output. This analysis revealed a clear dominance of antagonistic effects over synergistic and simple additive effects when several treatments were combined (Table 1 and Fig. 4), *i.e.* the ecosystem is more robust when more than one factor is changed. For instance, the C/N ratio of mosses increased in both single treatments of drought and elevated CO₂ but was unaffected when treatments were combined. Similarly, the increased gross mineralization rate observed in the single warming treatment was reduced especially in combination with elevated CO₂. Furthermore, two of the three additive effects observed (Deschampsia litter N concentration and N₂O emissions) were additive responses with opposing directions, which therefore acts to reduce the observed effects in treatment combinations.

Previous studies have investigated interactions between elevated CO₂ and *e.g.* N
supply (Lutze & Gifford 2000; Lutze *et al.* 2000; van Heerwaarden *et al.* 2005; Reich *et al.*2006), warming (Peltola *et al.* 2002; Tingey *et al.* 2003; Hovenden *et al.* 2008; Dijkstra *et al.*2010), biodiversity (Reich *et al.* 2001; Niklaus *et al.* 2001) and water relations (Morgan *et al.*

2004; Nowak et al. 2004). A review by Barnard et al. (2005) of 25 multi-factor studies concluded that interactions were generally rare. These 25 studies were dominated by experimentally elevated CO₂ combined with increased N supply. The lack of interactions could be due to the common trend that most ecosystems respond strongly to increased N supply, which hides weaker interactive responses. Luo et al. (2008) analyzed and modeled interactions between elevated CO₂, warming and changes in precipitation in 7 multi-factor studies and found that three-way interactions were rare while two-way interactions were more common. Generally, interactions were positive between elevated CO₂ and warming and negative between elevated CO_2 and reduced precipitation with respect to net primary production (NPP).

A general pattern of most published studies is the focus on a few important variables, *i.e.* overall changes in NPP or biomasses or specific studies focusing on processes, *e.g.* nitrification and denitrification. As interactions are only sometimes significant, investigating a small number of variables prevents a more general interpretation of the importance of interactions. Furthermore, assuming that three-way interactions are more uncommon than two-way interactions, important three-way interactions could be missed when fewer variables are analyzed. Out of 14 interactions observed across 47 N related variables in the present study, 5 were three-way interactions. This suggests that insufficient interactions between elevated CO₂, warming and changes in precipitation were included in the ecosystem models applied by Luo et al. (2008) and reinforces the need for further multi-factor ecosystem manipulation experiments focusing on interactive effects.

527 When analyzing the interactions, we found a predominance of antagonism in the 528 combined responses. The consequence of the dominance of antagonistic interactions in 529 combined climate driver responses is that ecosystem changes caused by climate change may 530 be less pronounced than judged from single factor experiments. Based on these results we

Global Change Biology

raise the hypothesis that combined effects of all future climate change are dampened compared to expected effects based on simple addition of single treatment responses. If this pattern prevails for ecosystem responses to future climate change in general it highlights 1) that single factor studies are likely to overestimate responses and should be evaluated with caution, and 2) that multi-factor field-scale ecosystem experiments are critical in order to be able to predict realistic response strengths as well as for developing a conceptual framework for understanding interactions among climate drivers. Our multi-variable approach may aid the latter point if tested in other multi-factor studies and by including variables not only constraint to the nitrogen cycle.

540	
541	Conclusions
542	The drought treatment effects dominated over effects of warming and elevated CO_2 in
543	observed responses of the nitrogen cycle after two years of treatments. In contrast to our
544	expectations, we did not observe increased growth of the N pools of the dominant plant
545	species, Calluna and Deschampsia in response to elevated CO ₂ . While previous studies have
546	usually found interactions to be rare, interactions were commonly observed and antagonism
547	dominated over synergism in combined responses, <i>i.e.</i> the ecosystem response to the
548	combination of several climate drivers is dampened compared to single treatment responses.
549	Still, the observed negative response to drought of soil fauna biomass and N mineralization
550	and Deschampsia litter N production prevailed in the full treatment combination and so did
551	the increased leaf C/N ratios of the dominant species Calluna and Deschampsia. If persistent,
552	these changes are likely to lead to reduced N availability and possibly to progressive nitrogen
553	limitation as the experimental treatments continue.

1 2 3 4 5	554	
4 5 6 7 8	555	Acknowledgements
8 9 10 11	556	We wish to thank Preben Jørgensen and Poul Sørensen for their great efforts in maintaining
12 13	557	the CLIMAITE field site. We gratefully acknowledge Claus Thorn Ekstrøm and Anders
14 15	558	Tolver Jensen for their help with the statistical model setup and statistical output
16 17	559	interpretation. The CLIMAITE experiment is sponsored by the Villum Kann Rasmussen
18 19 20	560	foundation with substantial co-funding from Air Liquide, DONG Energy and SMC Pneumatic
21 22	561	A/S. Measurements of N_2O emissions were part of NitroEurope IP funded by the European
23 24 25	562	Commission.
26 27 29 30 31 32 33 45 36 37 38 90 41 42 43 44 50 51 52 53 45 56 78 90		A/S. Measurements of N ₂ O emussions were part of NitroEurope IP funded by the European Commission.

563	
564	Reference List
565	Aerts R (1993) Biomass and nutrient dynamics of dominant plant species from heathlands. In:
566	Heathlands: Patterns and Processes in a Changing Environment (eds Aerts R, Heil GW), pp.
567	51-84. Kluwer Academic Publishers, Dordrecht, The Netherlands.
568	Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO_2
569	enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New
570	Phytologist, 165, 351-371.
571	Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to
572	rising [CO ₂]: mechanisms and environmental interactions. <i>Plant Cell and Environment</i> , 30 ,
573	258-270.
574	Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Beier C (2010) Water status interacts
575	strongly with the effect of elevated CO ₂ , warming and drought episodes on plant carbon
576	uptake in a temperate heath ecosystem. Submitted July 2010 to Plant Cell Environment.
577	Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term
578	effects of elevated CO ₂ on Lolium perenne rhizodeposition and its consequences on soil
579	organic matter turnover and plant N yield. Soil Biology & Biochemistry, 38, 1178-1187.
580	Andresen, L. C., Michelsen, A., Ambus, P., and Beier, C. (2010a) Belowground heathland
581	responses after 2 years of combined warming, elevated CO ₂ and summer drought.
582	Biogeochemistry, in press.

Global Change Biology

-	
1	
2	
3	
1	
4	
5	
6	
7	
1	
8	
9	
10	
10	
11	
12	
10	
13	
14	
15	
10	
10	
17	
18	
10	
19	
20	
21	
22	
~~	
$2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 1011231415167181922122324252672829331323334556782$	
24	
25	
20	
26	
27	
28	
20	
29	
30	
31	
32	
20	
33	
34	
35	
26	
00	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

583	Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C
584	(2010b) Plant nutrient mobilization in temperate heathland responds to elevated CO ₂ ,
585	temperature and drought. Plant and Soil, 328, 381-396.
586	Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification:
587	A review. <i>Global Biogeochemical Cycles</i> , 19 , 1-13, DOI: 10.1029/2004GB002282.
588	Belser LW, Mays EL (1980) Specific-Inhibition of Nitrite Oxidation by Chlorate and Its Use
589	in Assessing Nitrification in Soils and Sediments. Applied and Environmental Microbiology,
590	39 , 505-510.
591	Carter MS, Ambus P, Albert K, et al (2010) Effects of elevated atmospheric CO ₂ , prolonged
592	summer drought and temperature increase on N ₂ O and CH ₄ fluxes in a temperate heathland.
593	Submitted July 2010 to <i>Biogeochemistry</i> .
594	Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu SJ (2007) Plant nitrogen acquisition
595	and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae.
596	Global Change Biology, 13, 1238-1249.
597	Coleman DC, Anderson RV, Cole CV, Elliott ET, Woods L, Campion MK (1978) Trophic
598	Interactions in Soils As They Affect Energy and Nutrient Dynamics .4. Flows of Metabolic
599	and Biomass Carbon. <i>Microbial Ecology</i> , 4 , 373-380.
600	Cotrufo MF, Ineson P, Scott A (1998) Elevated CO ₂ reduces the nitrogen concentration of
601	plant tissues. Global Change Biology, 4, 43-54.
602	Danish Meteorological Institute (2009) www.dmi.dk.

2 3
3
4
5
6
0
1
8
9
10
10
12
13
14
15
10
16
17
18
19
20
20
21
2 3 4 5 6 7 8 9 10 11 21 31 4 5 16 7 8 9 10 11 21 31 4 5 16 7 8 9 10 11 21 31 4 5 16 7 8 9 21 22 32 4 5 26 7 8 9 30 1 32 33 34 5 36 37 38 9 01 10 10 10 10 10 10 10 10 10 10 10 10
23
24
05
25
26
27
28
20
20
30
31
32
33
24
04
35
36
37
38
20
39
40
41
42 43
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1

Darbyshire JF, Wheatley RE, Greaves MP, Inkson RHE (1974) Rapid micromethod for
estimating bacterial and protozoan populations in soil. *Revue D Ecologie et de Biologie du Sol*, 11, 465-475.

Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of
nitrate in an annual grassland. *Ecology*, **71**, 1968-1975.

de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions
between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis. *Global Change Biology*, 12, 2077-2091.

611 De Ruiter PC, Moore JC, Zwart KB, *et al.* (1993) Simulation of nitrogen mineralization in the
612 belowground food webs of 2 winter-wheat fields. *Journal of Applied Ecology*, **30**, 95-106.

Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting
effects of elevated CO₂ and warming on nitrogen cycling in a semiarid grassland. *New Phytologist*, 187, 426-437.

Emmett BA, Beier C, Estiarte M, *et al.* (2004) The response of soil processes to climate
change: Results from manipulation studies of shrublands across an environmental gradient. *Ecosystems*, 7, 625-637.

619 Finzi AC, Moore DJP, DeLucia EH, *et al.* (2006) Progressive nitrogen limitation of

620 ecosystem processes under elevated CO_2 in a warm-temperate forest. *Ecology*, **87**, 15-25.

621 Georgieva S, Christensen S, Petersen H, Gjelstrup P, Thorup-Kristensen K (2005) Early

622 decomposer assemblages of soil organisms in litterbags with vetch and rye roots. *Soil Biology*

623 *& Biochemistry*, **37**, 1145-1155.

Page 33 of 46

Global Change Biology

1	
2	
3	
4	
т Б	
5	
6	
1	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
$2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 21 \\ 22 \\ 24 \\ 25 \\ 27 \\ 28 \\ 9 \\ 31 \\ 32 \\ 33 \\ 34 \\ 56 \\ 7 \\ 8 \\ 37 \\ 32 \\ 33 \\ 34 \\ 56 \\ 7 \\ 8 \\ 9 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 $	
20	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
00 04	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

624	Holmstrup M, Maraldo K, Krogh PH (2007) Combined effect of copper and prolonged
625	summer drought on soil Microarthropods in the field. <i>Environmental Pollution</i> , 146 , 525-533.
626	Hovenden MJ, Newton PCD, Carran RA, et al. (2008) Warming prevents the elevated CO ₂ -
627	induced reduction in available soil nitrogen in a temperate, perennial grassland. Global
628	<i>Change Biology</i> , 14 , 1018-1024.
629	Hungate BA (1999) Ecosystem responses to rising atmospheric CO ₂ : Feed backs through the
630	nitrogen cycle. In: Carbon dioxide and environmental stress (eds Luo YQ, Mooney HA), pp.
631	265-285. Academic Press, San Diego, USA.
632	IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working
633	Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
634	(eds Solomon S, Qin D, Manning M et al.), pp. 1-996. Cambridge University Press,
635	Cambridge, UK and New York, NY, USA.
636	Jamieson N, Monaghan R, Barraclough D (1999) Seasonal trends of gross N mineralization in
637	a natural calcareous grassland. Global Change Biology, 5, 423-431.
638	Jansson PE, Moon DS (2001) A coupled model of water, heat and mass transfer using object
639	orientation to improve flexibility and functionality. Environmental Modelling & Software, 16,
640	37-46.
641	Jonasson S (1988) Evaluation of the Point Intercept Method for the Estimation of Plant
642	Biomass. Oikos, 52 , 101-106.
643	Jonasson S, Michelsen A, Schmidt IK, Nielsen EV, Callaghan TV (1996) Microbial biomass
644	C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar:
645	implications for plant nutrient uptake. Oecologia, 106, 507-515.

Global Change Biology

Kirkham D, Bartholomew WV (1954) Equations for following nutrient transformations in soil, utilizing tracer data. Soil Science Society of America Proceedings, 18, 33-34. Kongstad J, Schmidt IK, Riis-Nielsen T, Beier C, Arndal MF, Mikkelsen TN (2010) Species specific responses in plant growth to changes in temperature, drought and CO_2 in combination: results from the CLIMAITE experiment. Submitted May 2010 to Global Change Biology. Körner C (2000) Biosphere responses to CO₂ enrichment. *Ecological Applications*, **10**, 1590-1619. Leuzinger S, Körner C (2007) Water savings in mature deciduous forest trees under elevated CO₂. *Global Change Biology*, **13**, 2498-2508. Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128, 305-316. Lukewille A, Wright RF (1997) Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. *Global Change Biology*, **3**, 13-21. Luo Y, Su B, Currie WS, et al. (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 54, 731-739. Luo YQ, Gerten D, Le Maire G, et al. (2008) Modeled interactive effects of precipitation, temperature, and [CO₂] on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 14, 1986-1999. Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO₂ stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology, 87, 53-63.

Global Change Biology

3	
4	
5	
5 6	
0	
1	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
9 10 11 12 13 14 15 16 7 18 19 20 22 22 22 22 22 22 23 33 23 34 35 36 37 89 0 1	
23	
24	
24	
25	
26	
27	
28	
29	
20	
30	
31	
32	
33	
34	
35	
20	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

Lutze JL, Gifford RM (2000) Nitrogen accumulation and distribution in Danthonia 667 668 richardsonii swards in response to CO₂ and nitrogen supply over four years of growth. Global Change Biology, 6, 1-12. 669 670 Lutze JL, Gifford RM, Adams HN (2000) Litter quality and decomposition in Danthonia richardsonii swards in response to CO₂ and nitrogen supply over four years of growth. Global 671 Change Biology, 6, 13-24. 672 Maraldo K, Schmidt IK, Beier C, Holmstrup M (2008) Can field populations of the 673 enchytraeid, Cognettia sphagnetorum, adapt to increased drought stress? Soil Biology & 674 Biochemistry, 40, 1765-1771. 675 676 Maraldo K, van der Linden L, Christensen B, Mikkelsen TN, Beier C, Krogh PH, Holmstrup M (2010) The counteracting effects of elevated atmospheric CO₂ concentrations and drought 677 episodes: studies of enchytraeid communities in dry heathland. Soil Biology and 678 Biochemistry, in press. 679 680 Marion GM, Hastings SJ, Oberbauer SF, Oechel WC (1989) Soil-plant element relationships in a tundra ecosystem. Holarctic Ecology, 12, 296-303. 681 McGuire AD, Melillo JM, Joyce LA (1995) The role of nitrogen in the response of forest net 682 primary production to elevated atmospheric carbon-dioxide. Annual Review of Ecology and 683 Systematics, 26, 473-503. 684 Mchale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a northern hardwood forest: trace 685 gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research-Revue 686 687 Canadienne de Recherche Forestiere, 28, 1365-1372.

2
2 3
4
5
6
7
<i>'</i>
8
9
10
11
12
13
1/
14
10
16
17
18
19
20
21
-3456789101123145167189221223425267893031233455678910112334567891011233455678910112334556789011222324252677893033334556778990112223455677890112223455677899011222345567789901122333455677899011222234556778990112222345567789901122223455677899011222234556778990112222222222222222222222222222222222
22
23
24
25
26
27
21
28
29
30
31
32
33
24
04
35
36
37
38
39
40
40 41
42
43
44
45
46
47
47
49
50
51
52
53
54
55
56
57
58
59

Mikkelsen TN, Beier C, Jonasson S, et al. (2008) Experimental design of multifactor climate
change experiments with elevated CO₂, warming and drought: the CLIMAITE project. *Functional Ecology*, 22, 185-195.

691 Morgan JA, Pataki DE, Körner C, *et al.* (2004) Water relations in grassland and desert

692 ecosystems exposed to elevated atmospheric CO₂. *Oecologia*, **140**, 11-25.

693 Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J (2009) Seasonal variations

and effects of nutrient applications on N and P and microbial biomass under two temperate

695 heathland plants. *Applied Soil Ecology*, **42**, 279-287.

696 Niklaus PA, Leadley PW, Schmid B, Körner C (2001) A long-term field study on biodiversity

697 x elevated CO_2 interactions in grassland. *Ecological Monographs*, **71**, 341-356.

698 Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated

699 atmospheric CO_2 – do photosynthetic and productivity data from FACE experiments support

roo early predictions? *New Phytologist*, **162**, 253-280.

Osler GHR, Sommerkorn M (2007) Toward a complete soil C and N cycle: Incorporating the
soil fauna. *Ecology*, 88, 1611-1621.

Page FC (1988) A New Key to Freshwater and Soil Gymnamoebae. Freshwater Biological
Association, Cumbria, England.

705 Paterson E, Hodge A, Thornton B, Millard P, Killham K (1999) Carbon partitioning and

rhizosphere C-flow in Lolium perenne as affected by CO_2 concentration, irradiance and

below-ground conditions. *Global Change Biology*, **5**, 669-678.

Page 37 of 46

1 2

Global Change Biology

3
4
5
6
7
0
ð
9
10
11
12
13
1/
14
15
16
17
18
19
20
21
22
22 00
23
3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 3 3 4 3 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
25
26
27
28
29
20
00
31
32
33
34
35
36
37
20
00
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
54
55
56
57
58
59

708	Peltola H, Kilpelainen A, Kellomaki S (2002) Diameter growth of Scots pine (Pinus
709	sylvestris) trees grown at elevated temperature and carbon dioxide concentration under boreal
710	conditions. Tree Physiology, 22, 963-972.
711	Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO ₂ in a
712	semiarid grassland. New Phytologist, 162, 447-458.
713	Penuelas J, Prieto P, Beier C, et al. (2007) Response of plant species richness and primary
714	productivity in shrublands along a north-south gradient in Europe to seven years of
715	experimental warming and drought: reductions in primary productivity in the heat and
716	drought year of 2003. Global Change Biology, 13, 2563-2581.
717	Persson T (1983) Influence of soil animals on nitrogen mineralisation in a northern Scots pine
718	forest. In: New Trends in Soil Biology (eds Lebrun P, André H, De Medts A, Grégoire-Wibo
719	C, Wauthy G), pp. 117-126. Dieu Brichart, Louvain-la-Neuve, Belgium.
720	Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994)
721	Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures.
722	Ecological Applications, 4, 617-625.
723	Petersen H, Luxton M (1982) A comparative-analysis of soil fauna populations and their role
724	in decomposition processes. Oikos, 39 , 287-388.
725	Rastetter EB, Agren GI, Shaver GR (1997) Responses of N-limited ecosystems to increased
726	CO ₂ : A balanced-nutrition, coupled-element-cycles model. <i>Ecological Applications</i> , 7, 444-
727	460.
728	Reich PB, Hobbie SE, Lee T, et al. (2006) Nitrogen limitation constrains sustainability of
729	ecosystem response to CO ₂ . <i>Nature</i> , 440 , 922-925.

2
3
4
т Б
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
10
19
20
21
22
23
2345678910123456789001123456789001222222222222222233333333333333333333
25
26
20
27
28
29
30
31
32
22
00
34
35
36
37
38
30
40
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
54
55
56
57
58
59
60

Reich PB, Knops J, Tilman D, et al. (2001) Plant diversity enhances ecosystem responses to
elevated CO₂ and nitrogen deposition. *Nature*, **410**, 809-812.

- 732 Riis-Nielsen T, Schmidt IK (2010) Non-destructive plant biomass and cover estimates from
- 733 point intercept analysis a case study of *Calluna vulgaris* and *Deschampsia flexuosa*.

734 Submitted May 2010 to *Functional Ecology*.

Rønn R, Ekelund F, Christensen S (1995) Optimizing soil extract and broth media for mpn-

enumeration of naked amoebas and heterotrophic flagellates in soil. *Pedobiologia*, **39**, 10-19.

Rustad LE, Campbell JL, Marion GM, et al. (2001) A meta-analysis of the response of soil
respiration, net nitrogen mineralization, and aboveground plant growth to experimental
ecosystem warming. *Oecologia*, 126, 543-562.

740 SAS Institute (2003) SAS/STAT User's Guide. Statistical Analysis System Institute, Cary,
741 NC, USA.

Schimel JP, Bennett J (2004) Nitrogen mineralization: Challenges of a changing paradigm. *Ecology*, **85**, 591-602.

Schmidt IK, Beier C, Kongstad J, et al. (2007) Klimaændringer og processer og funktion i
terrestriske økosystemer. *Flora og Fauna*, **113**, 121-132.

746 Schmidt IK, Tietema A, Williams D, Gundersen P, Beier C, Emmett BA, Estiarte M (2004)

747Soil solution chemistry and element fluxes in three European heathlands and their responses

- to warming and drought. *Ecosystems*, 7, 638-649.
- 5 749 Selsted MB, Ibrom A, Ambus P, *et al.* (2010) Soil respiration in a temperate heathland
- $\frac{7}{2}$ 750 responds strongly to elevated temperature, extended summer drought and elevated CO₂.

50 751 Submitted July 2010 to *Global Change Biology*.

Global Change Biology

1	
2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 0	
10	
19	
20	
21	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
04	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

752	Sohlenius B, Sandor A (1987) Vertical distribution of nematodes in arable soil under grass
753	(Festuca pratensis) and Barley (Hordeum vulgare). Biology and Fertility of Soils, 3, 19-25.
754	Sørensen P, Jensen ES (1991) Sequential diffusion of ammonium and nitrate from soil
755	extracts to a polytetrafluoroethylene trap for N-15 determination. Analytica Chimica Acta,
756	252 , 201-203.
757	Sowerby A, Emmett BA, Tietema A, Beier C (2008) Contrasting effects of repeated summer
758	drought on soil carbon efflux in hydric and mesic heathland soils. Global Change Biology, 14,
759	2388-2404.
760	Standen V (1973) Production and respiration of an enchytraeid population in blanket bog.
761	Journal of Animal Ecology, 42 , 219-245.
762	Stout JD, Heal OW (1967) Protozoa. In: Soil Biology (eds Burges A, Raw F), pp. 149-195.
763	Academic Press, New York, USA.
764	Svensson M, Jansson PE, Gustafsson D, Kleja DB, Langvall O, Lindroth A (2008) Bayesian
765	calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest
766	stand. <i>Ecological Modelling</i> , 213 , 331-344.
767	Tingey DT, McKane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Lee EH (2003) Elevated
768	CO_2 and temperature alter nitrogen allocation in Douglas-fir. <i>Global Change Biology</i> , 9 ,
769	1038-1050.
770	van der Linden L, Beier C, Mikkelsen TN, et al (2010) The effects of warming, drought and
771	elevated CO ₂ on the Carbon balance of a Danish heathland: the Climaite project carbon
772	synthesis. Expected submitted September 2010 to Global Change Biology.

1	
2	
3	
1	
4	
5	
6	
2	
1	
8	
õ	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
10	
17	
18	
10	
19	
2 3 4 5 6 7 8 9 101 12 3 14 5 16 7 18 9 20 12 22 24 25 26 7 28 9 33 33 33 33 33 33 33 33 33 33 33 33 3	
21	
<u>د</u> ۱	
22	
23	
04	
24	
25	
20	
20	
27	
28	
20	
29	
30	
01	
31	
32	
33	
00	
34	
35	
00	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
50	
58	
59	
60	
υU	

773	van Heerwaarden LM, Toet S, van Logtestijn RSP, Aerts R (2005) Internal nitrogen dynamics
774	in the graminoid Molinia caerulea under higher N supply and elevated CO ₂ concentrations.
775	<i>Plant and Soil</i> , 277 , 255-264.
776	Vervaet H, Boeckx P, Boko AMC, Van Cleemput O, Hofman G (2004) The role of gross and
777	net N transformation processes and NH_4^+ and NO_3^- immobilization in controlling the mineral
778	N pool of a temperate mixed deciduous forest soil. Plant and Soil, 264, 349-357.
779	Wolsing M, Prieme A (2004) Observation of high seasonal variation in community structure
780	of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by
781	determining T-RFLP of nir gene fragments. Fems Microbiology Ecology, 48, 261-271.
782	Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated
783	atmospheric CO ₂ and feedback between carbon and nitrogen cycles. <i>Plant and Soil</i> , 151 , 105-
784	117.
785	Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere Protozoa: their significance in
786	nutrient dynamics. In: Soil Protozoa (ed Darbyshire JF), CAB International, Wallingford, UK.

1		
2 3 4 5	787	
4 5 6 7 8	788	Figure captions
9 10 11	789	Figure 1
12 13 14	790	Measured N pools in August 2007 (bold , g N m ⁻²) and annual fluxes (<i>italic</i> , g N m ⁻² y ⁻¹) in
15 16	791	ambient plots down to 10 cm soil depth (leaching below 60 cm depth) in 2007. Abbreviations:
17 18	792	Calluna vulgaris (Cal), Deschampsia flexuosa (Des), dissolved organic nitrogen (DON),
19 20 21	793	microbial biomass nitrogen (Mic-N), soil organic matter nitrogen (SOM-N), Gross
22 23	794	mineralization (Gross min). Data of litter N mass and litter N production was only available
24 25	795	for Deschampsia. Estimates of fauna biomass and mineralization includes enchytraeids,
26 27 28	796	microarthropods, nematodes, and protozoans. Dashed line indicates the major components
29 30 31	797	involved in N mineralization. The annual N balance was $+0.53$ g N m ⁻² y ⁻¹ .
32 33 34	798	Figure 2
35 36 37	799	Figure 2
38 39 40	800	Observed above-ground changes in N pools, C/N ratios, litter N production of Deschampsia
41 42	801	and percentage N in litter of <i>Deschampsia</i> caused by single treatments factors $(a - c)$ and
43 44	802	when all treatments are combined (d). Calluna vulgaris (Cal), Deschampsia flexuosa (Des).
45 46 47 48	803	See Table 1 for statistical significance of observed changes.
49 50	804	
51 52 53 54	805	Figure 3
55 56 57	806	Observed below-ground changes in N pools, N fluxes/processes and N concentrations caused
57 58 59	807	by single treatments factors $(a - c)$ and when all treatments are combined (d). Dissolved
60	808	organic nitrogen (DON), microbial biomass nitrogen (Mic-N), mineralization (min). See

809 Table 1 for statistical significance of observed changes.

811

Figure 4

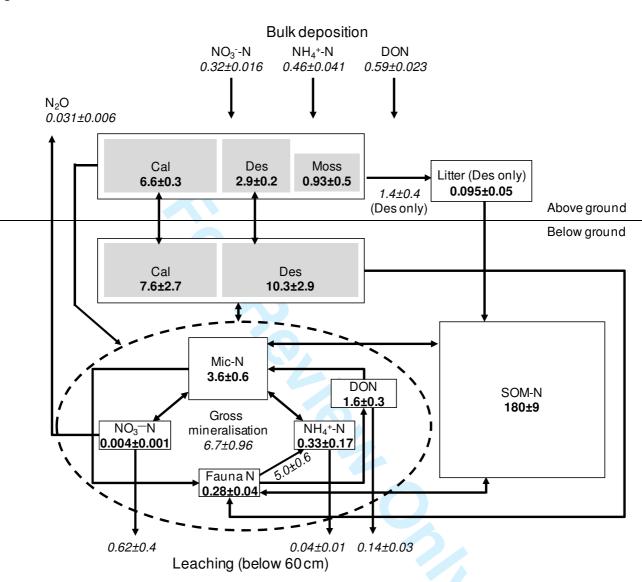
1

Global Change Biology

2
3
4
5
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 12 10 12 10 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10
7
8
0
9
10
11
12
13
14
12 13 14 15 16 17 18
16
17
17
18
19
20
21
22
23
24
25
20
26
27
28
29
30
31
32
33
24
34
35
36
37
38
39
18 19 20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 38 9 40
41
42
42 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
57 58
59

60

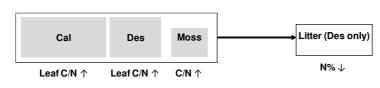
Observed significant interactions (P≤0.05) from the PROC MIXED analysis of 47 812 813 individually tested variables (see Table 1) followed by analysis of Differences of Least Squares Means (DLSM) were categorized as antagonistic, *i.e.* combination leads to reduction 814 815 of effects, or as synergistic, *i.e.* combination leads to amplification of single effects or significant effect is only observed in combination. Number of observed simple additive 816 817 effects is also shown, *i.e.* cases where two significant individual effects were observed without significant interaction. Note that the sum of antagonistic and synergistic effects are 15 818 819 because one three-way interaction (potential nitrification – see Table 1) was caused by both antagonistic and synergistic effects. 820


Itia .

Global Change Biology

Table 1. Pools and fluxes of N (g N m²), C/N ratios and N concentrations (mg L¹) in 2007. Data are means with SE for ambient (A) and means with SE normalized to the mean of the ambient treatment (all other treatments than A).¹Significant P values (P ≤ 0.05) from statistical analysis. Direction of main treatment effects is indicated with arrows. Significant interactions are indicated as antagonistic (§), or synergistic (‡). Additive effects of multiple significant main effects are also indicated (+²). Significant single treatment effects as indicated by evaluation of main effects plus interaction(s) by analysis of DLSM (see text for further details). Direction of effects is indicated with arrows. n.s. = not significant.

										reatment e	ffects		Interact				treatment	effect
	A	CO ₂	D	т	DCO ₂	TCO ₂	TD	TDCO ₂	CO ₂	D	Т	D*CO ₂	T*CO ₂	T*D	T*D*CO ₂	CO2	D	
bove-ground biomass N																		
Calluna	6.74 ± 25%	1.01 ± 0.09	0.88 ± 0.09	0.96 ± 0.21	0.80 ± 0.19	0.97 ± 0.20	0.84 ± 0.13	0.67 ± 0.14										
C/N ratio of Calluna leaves	26.4 ± 7%	1.17 ± 0.05	1.07 ± 0.04	1.03 ± 0.09	1.14 ± 0.08	1.15 ± 0.12	0.97 ± 0.03	1.15 ± 0.09	0.02个							0.02个		
C/N ratio of Calluna flowers	29.5 ± 4%	1.17 ± 0.09	1.09 ± 0.05	1.04 ± 0.07	1.16 ± 0.06	1.15 ± 0.05	1.09 ± 0.04	1.21 ± 0.04	0.04个							0.04个		
C/N ratio of Calluna green tissue	28.1 ± 5%	0.94 ± 0.08	0.94 ± 0.08	0.90 ± 0.07	1.09 ± 0.04	0.88 ± 0.06	0.97 ± 0.05	0.98 ± 0.06										
C/N ratio of Calluna wood	56.7 ± 9%	0.97 ± 0.08	1.00 ± 0.10	0.94 ± 0.07	1.03 ± 0.06	0.95 ± 0.08	1.06 ± 0.08	1.16 ± 0.02										
Deschampsia	2.99 ± 20%	0.89 ± 0.07	1.20 ± 0.27	0.97 ± 0.27	0.94 ± 0.21	1.05 ± 0.18	0.73 ± 0.17	0.78 ± 0.06										
C/N ratio of Deschampsia green leaves	22.2 ± 6%	1.16 ± 0.02	1.16 ± 0.12	1.05 ± 0.07	1.39 ± 0.07	1.27 ± 0.11	1.18 ± 0.05	1.40 ± 0.07	0.01个	0.002个		+				0.01个	0.002个	
C/N ratio of Deschampsia whole plant	23.3 ± 8%	1.08 ± 0.06	0.92 ± 0.09	1.07 ± 0.14	1.25 ± 0.15	0.90 ± 0.04	1.07 ± 0.10	1.12 ± 0.06										
Mosses	0.930 ± 53%	3.20 ± 1.10	3.95 ± 1.65	2.57 ± 0.89	1.54 ± 0.73	1.95 ± 0.67	2.48 ± 1.20	1.77 ± 1.22										
C/N ratio of mosses	19.4 ± 5%	1.44 ± 0.15	1.31 ± 0.15	1.24 ± 0.09	1.12 ± 0.18	0.97 ± 0.13	1.16 ± 0.15	1.02 ± 0.11							0.003§	0.05个	0.05个	
itter N Deschampsia	0.095 ± 52%	0.56 ± 0.19	0.19 ± 0.04	0.15 ± 0.04	0.64 ± 0.32	0.46 ± 0.17	0.21 ± 0.15	0.58 ± 0.17										
		0.76 ± 0.11	1.05 ± 0.08	1.07 ± 0.12	0.84 ± 0.32 0.75 ± 0.12	0.48 ± 0.17	1.15 ± 0.15	1.06 ± 0.08	0.05↓		0.024		+			0.05↓		0
Deschampsia litter N conc.	0.936 ± 12%								0.054	0.01.1	0.03个		+			0.054	0.01.1	U
Deschampsia litter N production	1.42 ± 28%	0.92 ± 0.22	0.69 ± 0.28	1.05 ± 0.51	0.64 ± 0.18	1.17 ± 0.20	0.73 ± 0.25	0.77 ± 0.14		0.01↓							0.01↓	
Plant root biomass N (0-10 cm)																		
Calluna	7.56 ± 35%	0.98 ± 0.24	1.73 ± 0.34	1.47 ± 0.35	1.90 ± 0.42	0.86 ± 0.29	1.71 ± 0.31	1.23 ± 0.38		0.04个							0.04个	
Deschampsia	10.3 ± 29%	0.67 ± 0.22	0.60 ± 0.14	0.56 ± 0.10	0.67 ± 0.18	0.65 ± 0.22	0.45 ± 0.10	0.59 ± 0.15									0.011	
Sestimpsia	10.5 1 25%	0.07 1 0.22	0.00 1 0.14	0.50 1 0.10	0.07 1 0.10	0.05 ± 0.22	0.45 1 0.10	0.55 1 0.15				-						
oil microbial biomass N and soil fauna N (0-10 cm)																		
Aicrobes	3.55 ± 16%	1.46 ± 0.39	1.32 ± 0.20	1.46 ± 0.20	1.27 ± 0.36	1.16 ± 0.28	1.03 ± 0.15	1.02 ± 0.22										
nchytraeids	0.197 ± 10%	1.62 ± 0.50	0.71 ± 0.15	1.19 ± 0.38	1.00 ± 0.26	1.02 ± 0.15	0.53 ± 0.10	1.14 ± 0.39		0.03↓							0.03↓	
Vicroarthropods	0.064 ± 28%	2.18 ± 0.82	1.53 ± 0.38	1.84 ± 0.53	1.36 ± 0.49	1.61 ± 0.33	1.92 ± 0.27	1.82 ± 0.47										
Vematodes	0.007 ± 12%	1.46 ± 0.32	0.84 ± 0.18	1.21 ± 0.27	1.31 ± 0.48	0.95 ± 0.11	1.05 ± 0.19	0.97 ± 0.16										
Protozoans	0.011 ± 44%	0.55 ± 0.13	0.82 ± 0.19	1.47 ± 0.47	0.36 ± 0.11	1.29 ± 0.82	0.61 ± 0.15	0.37 ± 0.09		0.04↓							0.04↓	
Annual enchytraeid mineralization	0.592 ± 10%	1.62 ± 0.50	0.71 ± 0.15	1.19 ± 0.38	1.00 ± 0.26	1.02 ± 0.15	0.53 ± 0.10	1.14 ± 0.39		0.03↓							0.03↓	
Annual microarthropod mineralization	0.191 ± 28%	2.18 ± 0.82	1.53 ± 0.38	1.84 ± 0.53	1.36 ± 0.49	1.61 ± 0.33	1.92 ± 0.27	1.82 ± 0.47										
Annual nematode mineralization	2.63 ± 12%	1.46 ± 0.32	0.84 ± 0.18	1.21 ± 0.27	1.31 ± 0.48	0.95 ± 0.11	1.05 ± 0.19	0.97 ± 0.16										
Annual protozoan mineralization	1.58 ± 44%	0.55 ± 0.13	0.82 ± 0.19	1.47 ± 0.47	0.36 ± 0.11	1.29 ± 0.82	0.61 ± 0.15	0.37 ± 0.09		0.04↓							0.04↓	
,																		
Soil organic and inorganic N pools and concentrations																		
SOM-N (0-10 cm)	180.2 ± 5%	1.19 ± 0.14	1.08 ± 0.11	0.81 ± 0.04	1.30 ± 0.36	0.85 ± 0.07	0.86 ± 0.09	1.11 ± 0.16										
Extractable soil NO ₃ -N (0-10 cm)	0.004 ± 15%	1.37 ± 0.26	1.15 ± 0.19	1.06 ± 0.16	1.42 ± 0.47	1.02 ± 0.08	0.85 ± 0.09	1.13 ± 0.27										
Extractable soil NH4 ⁺ -N (0-10 cm)	0.330 ± 52%	0.76 ± 0.47	0.58 ± 0.50	0.87 ± 0.33	0.72 ± 0.37	3.29 ± 0.99	0.19 ± 0.06	0.19 ± 0.05		0.02↓							0.02↓	
Extractable soil DON (0-10 cm)	1.59 ± 16%	1.07 ± 0.19	0.90 ± 0.10	1.25 ± 0.17	1.20 ± 0.23	0.71 ± 0.15	0.92 ± 0.12	0.85 ± 0.17		0.024			0.04‡				0.02.	
	7.39 ± 22%		0.56 ± 0.07			0.93 ± 0.23	0.92 ± 0.12	0.85 ± 0.17 0.71 ± 0.11			0.01个	0.002§	0.04+		0.03§	0.05↓	0.05↓	
Mean annual leachate NO ₃ -N conc. (-5 cm)		0.24 ± 0.01		1.01 ± 0.10	0.68 ± 0.08						0.017				0.039	0.054		
Mean annual leachate NH4 ⁺ -N conc. (-5 cm)	6.87 ± 18%	1.10 ± 0.09	1.76 ± 0.48	1.21 ± 0.13	1.05 ± 0.19	2.13 ± 0.51	1.35 ± 0.16	1.06 ± 0.09				0.004§					0.05个	
Mean annual leachate DON conc. (-5 cm)	21.4 ± 16%	0.70 ± 0.05	1.25 ± 0.25	1.09 ± 0.08	0.89 ± 0.11	1.43 ± 0.28	1.06 ± 0.05	1.07 ± 0.09		0.01个			0.02§			0.05↓	0.01个	
Mean annual leachate total N conc. (-5 cm)	7.23 ± 10%	0.80 ± 0.04	1.45 ± 0.25	1.04 ± 0.05	0.96 ± 0.11	1.28 ± 0.13	1.03 ± 0.04	1.42 ± 0.15					0.05§			0.05↓		
Mean annual leachate NO ₃ ⁻ N conc. (-60 cm)	2.04 ± 68%	0.27 ± 0.12	0.72 ± 0.30	0.57 ± 0.39	0.45 ± 0.23	0.58 ± 0.29	1.22 ± 0.51	0.30 ± 0.10										
Mean annual leachate NH4 ⁺ -N conc. (-60 cm)	0.140 ± 20%	0.66 ± 0.05	1.46 ± 0.33	1.66 ± 0.67	1.81 ± 0.88	2.63 ± 1.56	0.81 ± 0.15	1.05 ± 0.39										
Mean annual leachate DON conc. (-60 cm)	2.60 ± 59%	0.37 ± 0.10	0.80 ± 0.25	0.63 ± 0.36	0.60 ± 0.24	0.74 ± 0.23	1.13 ± 0.45	0.42 ± 0.09										
Mean annual leachate total N conc. (-60 cm)	0.444 ± 30%	0.73 ± 0.17	0.94 ± 0.19	0.78 ± 0.32	0.95 ± 0.33	0.93 ± 0.20	0.97 ± 0.41	0.69 ± 0.11										
Gaseous fluxes																		
Annual N ₂ O emission	0.031 ± 18%	0.78 ± 0.35	0.89 ± 0.25	0.95 ± 0.21	0.52 ± 0.16	1.66 ± 0.23	1.07 ± 0.18	1.06 ± 0.21		0.05↓	0.05个	0.04‡		+			n.s.	0
Mineralisation, immobilisation and nitrification																		
Annual NH ₄ ⁺ consumption (0-5 cm)	3.21 ± 19%	1.16 ± 0.17	1.18 ± 0.16	2.50 ± 0.54	1.76 ± 0.19	2.06 ± 0.39	1.87 ± 0.15	0.90 ± 0.06			0.04个		0.04§	0.01§				0
Annual gross mineralisation (0-5 cm)	4.27 ± 9%	0.97 ± 0.09	0.93 ± 0.11	1.45 ± 0.22	1.41 ± 0.20	1.45 ± 0.15	1.25 ± 0.08	0.80 ± 0.03		0.03↓			0.02§		0.03‡		0.03↓	0
Annual NH ₄ ⁺ consumption (5-10 cm)	5.6 ± 70%	0.79 ± 0.13	1.89 ± 0.73	1.01 ± 0.32	0.45 ± 0.29	0.16 ± 0.04	0.17 ± 0.04	0.56 ± 0.11							0.03§		0.05个	
Annual gross mineralisation (5-10 cm)	2.40 ± 24%	2.16 ± 0.61	2.75 ± 1.70	1.54 ± 0.29	1.74 ± 0.49	0.93 ± 0.36	0.87 ± 0.21	1.40 ± 0.36										
Potential nitrification (0-10 cm)	0.159 ± 44%	0.22 ± 0.20	1.01 ± 0.53	1.69 ± 0.61	1.23 ± 0.80	1.53 ± 0.63	3.15 ± 1.03	1.16 ± 0.54			0.004个				0.03§‡			0
Potential denitrification (0-10 cm)	33.9 ± 29%	1.03 ± 0.26	1.24 ± 0.35	1.61 ± 0.58	0.99 ± 0.38	1.08 ± 0.36	1.95 ± 0.40	1.49 ± 0.36			0.02个							(
N Leaching																		
Annual NO ₃ ⁻ -N leaching (-60 cm)	0.619 ± 62%	0.31 ± 0.16	0.73 ± 0.32	0.32 ± 0.18	0.39 ± 0.20	0.65 ± 0.28	1.00 ± 0.38	0.28 ± 0.09										
Annual NH4 ⁺ -N leaching (-60 cm)	0.045 ± 27%	0.68 ± 0.06	1.48 ± 0.37	1.98 ± 0.46	2.01 ± 1.14	2.76 ± 1.40	0.74 ± 0.12	1.24 ± 0.49										
Annual DON leaching (-60 cm)	0.144 ± 24%	0.94 ± 0.24	1.02 ± 0.23	0.86 ± 0.29	1.35 ± 0.72	1.46 ± 0.39	0.90 ± 0.38	0.64 ± 0.11										


Figure 1

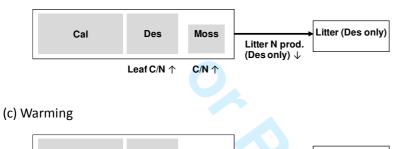
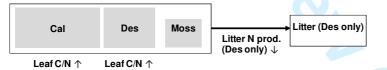
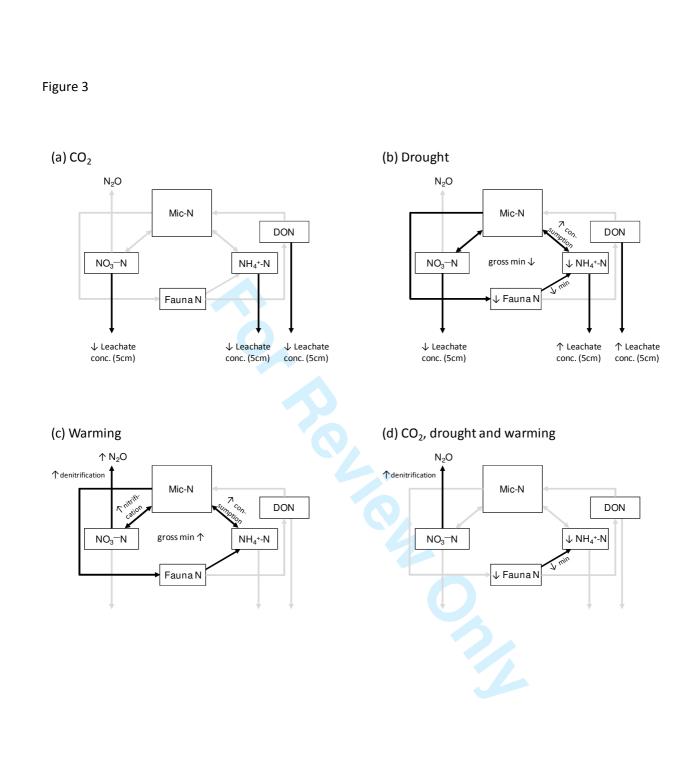
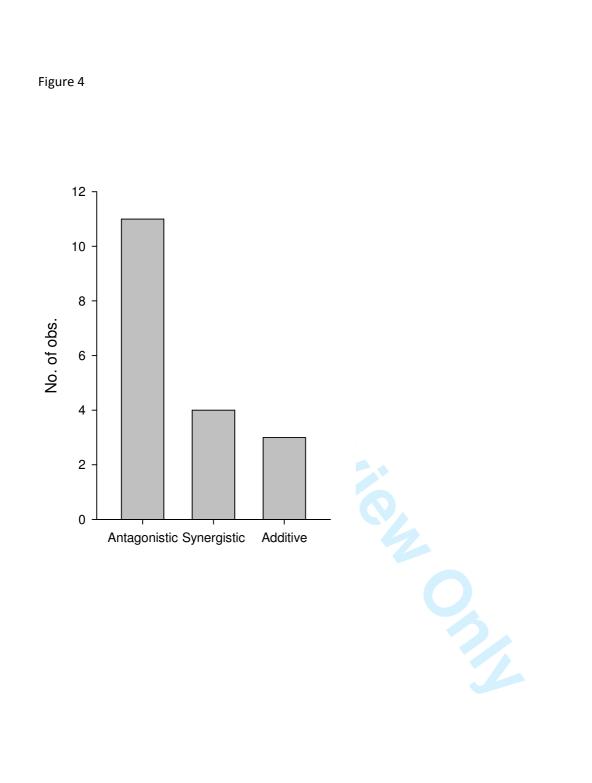

N% ↑

Figure 2

(a) CO_2


(b) Drought





(d) CO_2 , drought and warming

Cal

