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In this paper we provide algorithms based on Linear Matrix Inequalities for the design of full-
authority and external linear anti-windup compensators of reduced order guaranteeing finite
global £, gain. Previous results showed that the reduced order anti-windup design problem is
non-convex. We propose here a convex approximation of the non-convex constraints leading
to constructive design algorithms. The proposed algorithms are successfully tested on two

simulation examples taken from the literature.
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1. Introduction

1.1. Saturation and anti-windup

Anti-windup constructions arose more than fifty years
ago, when analog control circuits were often leading to
undesirable behaviour upon reach of the maximum
allowable output voltages and consequent controller
saturation. In the analog controllers setting, this
phenomenon was typically caused by overly large
charges accumulating in capacitors, or other energy
storing elements of the analog control devices. The
term “windup,” and the consequent ‘anti-windup”
terminology for solutions to these problems, arose
between the 1950s and the 1960s (sece, e.g., Lozier
(1956), Fertik and Ross (1967)), during the migration
of control systems from simple analog implementations
(such as PID controllers) to more complicated digital
ones. Already in those early years, “anti-windup
designs” were characterized as augmentations to a
prespecified linear controller (which induces a highly
desirable closed-loop behaviour when interconnected
to the plant without saturation) with the goal of
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guaranteeing two properties from the arising augmented
nonlinear closed-loop system: (1) as long as the
actuators do not saturate, the response coincides with
the linear, unconstrained response; (2) if the actuators
saturate, stability is preserved and performance is
recovered as much as possible (within the limits imposed
by the saturation constraint).

At the early stages of anti-windup research, roughly
corresponding to the 1970-1990 period, most of the
available tools were generalizations of ad-hoc tech-
niques developed by industrialists when facing the
input saturation problem. Nevertheless, already in
those years, the anti-windup problem started to be
addressed in a more systematic way and solutions that
were applicable to classes of control systems became
available (see, e¢.g., Hanus (1988), Astrém  and
Rundqwist (1989) for surveys of these approaches).
More recently, the anti-windup research strand has
been recognized as a fully nonlinear theoretically
challenging problem, where the bounded stabilization
goal has to be accomplished while guaranteeing a local
preservation property imposing additional constraints
on the type of control task to be performed. Indeed, in
light of the great advances in nonlinear control design
characterizing the last two decades, several constructive
anti-windup techniques that apply to large classes of
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systems have been proposed and shown to be successful
in several control applications.

While the first anti-windup schemes mainly consisted
of static gains feeding back to the controller a weighted
version of the mismatch between controller output and
plant input (so that when saturation did not occur,
no modification was enforced), more effective and
systematic generalizations of those approaches involve
the design of linear dynamic anti-windup, and up to
fully nonlinear anti-windup compensation schemes,
where even the plant under consideration may be non-
linear (before saturation). In particular, according to
figure 1 and 2, “linear anti-windup augmentation”
denotes cases where the filter AW driven by the excess
of saturation is linear. Moreover, “linear static” anti-
windup denotes the case where AW is simply a linear
gain, while ‘“linear dynamic” denotes the case where
AW is a linear dynamic filter (namely, it has an internal
state). Nonlinear static and dynamic anti-windup
denotes generalizations of these schemes where the
filter AW is nonlinear. Linear anti-windup with formal
stability (and, sometimes, performance) guarantees was
recently addressed, e.g., in Kothare et al. (1994),
Zheng et al. (1994), Park and Choi (1995), Edwards
and Postlethwaite (1999), Mulder er al. (2000),
Zaccarian and Teel (2003), Cao et al. (2002a, b)
Grimm et al. (2003a, b, 2004a, b), Wu and Lu (2004)

whereas nonlinear anti-windup was addressed, e.g., in
Teel and Kapoor (1997), Teel (1999), Zaccarian and
Teel (2004), Bemporad et al. (2004), Galeani et al.
(2004). Many anti-windup approaches were also pro-
posed in the context of the so-called reference governor
framework (see, e.g., Kapasouris et al. (1988), Gilbert
et al. (1995), Bemporad er al. (1997), Angeli and
Mosca (1999), Gilbert and Kolmanovsky (1999),
Shamma (2000). Finally, some schemes for nonlinear
anti-windup for nonlinear plants were also proposed
recently in, e.g., Kendi and Doyle III (1997),
Bemporad (1998), Kapoor and Daoutidis (1999),
Angeli and Mosca (1999), Hu and Rangaiah (2000),
Morabito et al. (2004).

1.2. Full-authority and external linear anti-windup

When restricting the attention to linear anti-windup
schemes, it is useful to characterize the degrees of free-
dom available to the anti-windup compensator for
injecting modifications in the pre-designed controller
dynamic equations. In particular, in the so-called ““full-
authority” case represented in figure 1, the anti-
windup compensator AW can inject signals at each
state equation (through the signal v;) and at the
output equation (through the signal v,) of the pre-
designed controller C. When considering exponentially
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Figure 1. The full-authority linear anti-windup augmentation scheme.
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Figure 2. The external linear anti-windup augmentation scheme.
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stable plants (so that global finite £, gain of the closed-
loop could be achieved) the linear full-authority anti-
windup augmentation problem has been thoroughly
addressed and characterized in Grimm et al. (2003a).

On the other hand, the so-called ‘“‘external” case
corresponds to the situation where only the input and
output signals of the pre-designed controller are
accessible for anti-windup modifications and the full
authority over all the controller states is not allowed
anymore to the anti-windup signals. This situation is
depicted in figure 2, where v; is now only allowed
to modify the controller input. When considering
exponentially stable plants (so that global finite £,
gain of the closed-loop could be achieved) the linear
external anti-windup augmentation problem has been
thoroughly addressed and characterized in Grimm
et al. (2004a).

According to the results reported in Grimm et al.
(2003a, 2004a), absolute stability tools may be employed
to design linear anti-windup compensators with stability
and performance guarantees. In particular, based on
the sector and incremental sector properties of the
saturation function, quadratic stability of the compen-
sated closed-loop system can be guaranteed by writing
suitable matrix conditions involving the matrices
characterizing the state-space representation of the
plant P, of the controller C and of the anti-windup
compensator AW. In Grimm et al. (2003a, 2004a) it is
shown that for a given anti-windup compensator
(namely if all the systems in figure 1 and 2 are
known), the closed-loop quadratic stability property
and an upper bound on the £, gain from w to z can
be determined by solving a convex optimization prob-
lem expressed in terms of Linear Matrix Inequalities
(LMIs). (The characterization in terms of LMIs is
useful because LMI solvers such as Hu er al. (2005)
are very efficient in providing solutions to the corre-
sponding problems.) It is also shown in Grimm et al.
(2003a, 2004a) that the quadratic stability and perfor-
mance conditions remain convex also in the case
where the matrices of the anti-windup filter AW are
unknown, as long as the order of the filter is restricted
to being either zero (thereby characterizing a static
compensation scheme) or equal to the order of the
plant P. Therefore, constructive tools for linear full-
authority and external anti-windup design are given in
Grimm et al. (2003a, 2004a), respectively, which only
cover the static and the plant order case. On the other
hand, it is established in Grimm ez al. (2003a, 2004a)
that anti-windup design of reduced order (namely, the
design of a dynamic compensator of order smaller
than the order of the plant) leads to non-convex
constraints involving a rank condition. It is worth
mentioning additional recent work on LMI-based
static and plant-order regional anti-windup designs.

These recent approaches are aimed at improving the
anti-windup performance in a prescribed region, at the
cost of giving up the global properties of the above
mentioned works. In general, this goal is achieved by
relying on absolute stability concepts combined with
generalized sector conditions such as those proposed
in Hu et al. (2002a, b). Applications of these approaches
can be found in Cao et al. (2002a, b), Gomes da Silva Jr
and Tarbouriech (2003), Fang et al. (2004), Tarbouriech
et al. (2004) and Hu et al. (2005). Although we only
focus here on the global designs of Grimm et al.
(2003a, 2004a), it is quite straightforward to extend
the proposed methods to the regional anti-windup
approaches of Hu et al. (2005).

1.3. Contribution

In this paper we address the reduced order linear anti-
windup design problem for exponentially stable plants,
in both the full-authority and external cases. We use a
convex relaxation of the nonconvex constraints given
in Grimm ef al. (2003a, 2004a), based on standard
approaches for the design of reduced order H,/H.,
compensators.

Reduced order linear anti-windup design is of great
importance because it often represents the most
desirable trade-off between closed-loop performance
and/or stability guarantees and implementation
complexity. Indeed, it is shown in Grimm et al. (2003a,
2004a) that the convex tools for static anti-windup
design are only applicable to a restricted set of cases,
where suitable system theoretic conditions are satisfied.
If these conditions do not hold, dynamic anti-windup
compensation is necessary, and for high order plants,
the convex tools for plant-order anti-windup may lead
to overly complex solutions. Therefore, tools for
reduced order dynamic anti-windup design are
mandatory to address all of these cases.

The main contribution of this paper is to provide
constructive algorithms for reduced order anti-windup
design. These algorithms are mostly relevant for all the
cases where static anti-windup design is not feasible
(or yields unacceptable £, performance). Then, the algo-
rithms can be used to compute a low order anti-windup
compensator guaranteeing stability and a prescribed
level of quadratic £, performance (whenever the
corresponding problem is feasible). These algorithms
are conveniently immersed in a context where the
performance levels induced by static and plant order
compensators can be exactly computed with the
convex tools of Grimm et al. (2003a, 2004a). Then the
performance level imposed to the convex relaxations
used here could range between these two limit values
(the first one possibly being infinity). By spanning the
whole set of possible performance values, a conservative
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estimate of the best performance achievable by a fixed
(reduced) order compensator could be determined.
This approach gave interesting results on a few low
order simulation examples studied here. Checking the
potentials of these algorithms on larger order examples
would also be an interesting problem to study.

The paper is structured as follows: in section 2
we introduce the problem data and clarify the
anti-windup construction problem; in section 3 we
summarize the non-convex design algorithms given in
Grimm et al. (2003a, 2004a) and in section 4 we give
the relaxations of these algorithms leading to convex
constructions. Finally, in section 5 we test the reduced
order construction on two simulation examples.

Notation: Given a generic matrix B, B, will denote a
matrix of full column rank that spans the null space
of B. For a square matrix X, He(X) := X + XT.

2. Problem definition

2.1. The unconstrained closed-loop system

Consider a linear stable plant given by

)'c,, = A,,.Xp -+ Bp’ul,t —+ Bp,wn’
P v =Cpyxp+ Dpyutt + Dp yw (1)
z = Cp:Xp + Dp st + Dy -yw,

where x, € R" is the plant state, u € R™ is the control
input, w € R™ is the exogenous input (possibly contain-
ing disturbance, reference and measurement noise),
y € R™ is the plant output available for measurement,
z € R™ is the performance output (possibly correspond-
ing to a weighted tracking error) and 4,, B, ,, By, Cp..
Dy yus Dy, Cpzy Dy and D, -, are matrices of suitable
dimensions.

Assume also that an unconstrained controller of the
form

{ Xe = AeXe + Beyww + Be e + vy )

Ve = CeXe + Deyyw + Deyue + vy

is given (where x, € R™ is the controller state, y. € R™ is
the controller output and 4., B., Bc,, C¢, D, and D, ,
are matrices of suitable dimensions). Moreover, v; and
v, are additional inputs that will be used for anti-
windup augmentation. Also assume that the controller
interconnection to the linear plant through the
equations

v =0, v =0, 3)

uzy(?a u(’zys

is well-posed and guarantees internal stability of the
arising unconstrained closed-loop system (1), (2), (3).

2.2. Input saturation and anti-windup augmentation

Assume that a nonlinearity is present at the input « of the
plant. In particular, in this paper we will restrict the atten-
tion to the decentralized saturation sat(-): R"™ — R™
defined as sat(u) = [o1(u1) - -+ o, (uy,)]", With

uy, i up > upg,

o(u;) =3 Upin 1 1 < Uy, 4)
u;, otherwise,
where u,; <0 <uy;, i=1,...,n, are the saturation

levels of each input channel. Note that in Grimm et al.
(2003a, 2004a), the saturation function is assumed to
belong to a larger class on nonlinearities (including the
decentralized saturations), so that necessary and
sufficient conditions can be established in the feasibility
results. We restrict the attention to decentralized satura-
tions here, because they represent the most common
case encountered in practice and, as commented in
Grimm et al. (2003a, Remark 5), the decentralized
property can be exploited to gain extra degrees of
freedom when selecting the anti-windup compensator
matrices.

Suppose the control input of the plant is subject to the
above defined decentralized saturation. Then, given
an integer ng,, >0, the full-authority anti-windup
compensation problem deals with the design of an
order n,, linear filter called full-authority anti-windup
compensator

Xaw = Aawxaw + Baw(yc - M)

V1
V= |:V i| = CawXaw + Daw(yc - u)s
2

AWy, (5)

that guarantees closed-loop quadratic stability and a
desirable £, bound on the norm of the performance
output z, based on the £, norm of the exogenous
input w when interconnected to the closed-loop (1), (2)
through the full-authority anti-windup interconnection

u=sat(y.), uc=y. (6)
Similarly, given an integer n,, > 0, the external anti-
windup compensation problem deals with the design
of an order n,, linear filter called external anti-windup
compensator

xaw = Aawxaw + Baw(J/c‘ - u)

e 7
AV v |:VI i| = Cawxaw + Daw(yc - u)a ( )

V2
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that guarantees closed-loop quadratic stability and a The second aggregate system corresponds once again
desirable £, bound on the norm of the performance to an interconnection between (1) and (2). However,
output z, based on the £, norm of the exogenous here the saturation function is replaced by the zero
input w when interconnected to the closed-loop (1), (2) function, the plant output is disconnected from the
through the external anti-windup interconnection controller input and an additional input signal v; is

considered for the closed-loop
u=sat(y.), u.=y, vi=B.,v, m=v. (8)
xol = AyXor + Bol.ww + Bolf)]

3. Non-convex algorithms for anti-windup synthesis 2= CotzXot + Dotzww. (1n
In this section we report on the nonconvex algorithms In (11), the state x,, := [x; xf]Te R corresponds to
for reduced order anti-windup design given in Grimm the aggregated state and the matrices A,;, By, Boiws
et al. (2003a) for the full-authority case and mentioned C,.- and D, .,, are uniquely determined by the matrices
in Grimm et al. (2004a, Remark 2) for the external in (1) and (2). For completeness, explicit expressions for
case. The convex formulations that we report in the these matrices are given in the following equations:
following section 4 are based on an approximation of
these algorithms. A, O] B,,]| O
A B | B ’ 7

[ C"’ D"”‘ "’] =| 0 A Bew| Ba |. (12)

3.1. Aggregated systems and compact closed-loop olz| Zolzw Cp: 0D,

Similar to Grimm et al. (2004a), we need to define the
two aggregate systems corresponding to two different
interconnections between the plant (1) and the uncon-
strained controller (2). The first aggregate system
corresponds to the unconstrained closed-loop system
and is given by

It will also be useful to represent the closed-loop system
(1), (2), (6) in a compact form, where the anti-windup
filter (to be designed) is disconnected (so u in (1) is
replaced by y. — ¢) so that the signals ¢ := y. — sat(y,)

and
Vi
V2

I
| —

x('l = A(?lxcl + Bz?l,wW v
zZ= Ccl,zx(?e + Dcl,zwws (9)
appear as external inputs
T
where xe :=[x] x/] € R™ represents the uncon-

P
strained closed-loop state (with n. :=n, +n.) and 4., Xei = AcXer + BepywW + Bergq + Beryv
B... C. and D, are uniquely determined by the 2= Cop2Xe + Doty + Dey2gq + Desoyy

matrices in (1) and (2). For completeness, we report

next the explicit values of these matrices Ve = CabyXet & Detyww + Detygq + Daiyry, - (13)

y B Ap + Bp,uAch,y Cp,y Bp,uAuCc Bpﬁw + Bp,uAu(Dc,pr,yw + Dc,w)

cl clw

|: Ccl 2 | Det, 2w :| - B"J’Ay pr" AU + B"J" A}’Dl’s}’”c' BC’W + BL'J" A}’(DP,}’”DC,W + DP~}’W) ’ (10)
' ' Dp,zuAuD(?,pr,y +C ,Z Dp,:uAuC(? ‘ Dp,:w + Dp,zuAu(Dc,pr,yw + Dc,w)

where A, = - Dp,yuDC.y)71 and A,:=U—-D., where 4., B.;,,, C.;- and D, ., have been defined above

Dp,},.l,)_1 are always well defined (namely, the matrices in (10), and the remaining matrices (plus matrices B,
in parentheses are invertible) if the unconstrained D, and D,,,, which will be used in the sequel) are
closed-loop system is well-posed (see section 2). given by
_Bp,uAu 0 Bp,uAu _Bp,uAch,y Bp,uAu
Bcl,q Bcl,v Bcl,v
D., D., Do, —B.,AyDyyy I Bo,AD,,, B, A, AyD,
cl,z cl,zv clzv
1 _Dp,zuAu 0 Dp,zuAu Dp,zuAch,y Dp,zuAu (14)
Dclu\!q Dcl,yv Dcl,yv
I_ Au O Au AuD(,',y Au

[Cc/,y | D(’l,yw] = [Ach,pr,y AuCc‘ Au(Dc,w + D(’,pr,yw)]-
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3.2. Design algorithms

We report in this section the generic-order anti-windup
construction algorithms given in Grimm et al. (2003a,
Procedure 1) (for the full-authority case) and suggested
in Grimma et al. (2004a, Remark 2) (for the external
case). For completeness, we report here the explicit
expressions of all construction matrices (which wasn’t
done in Grimm ef al. (2003a, 2004a)). Note that the cor-
responding conditions (and, in particular, the feasibility
conditions at Step 1 of both algorithms) are non-convex,
so that the algorithms cannot be directly applied. In the
next section we will comment on how to relax the non-
convex feasibility conditions to provide a constructive
design tool.

Procedure 1 (Full-authority anti-windup design):

Step 1 (Solve the feasibility LMIs): Find a solution
(Ry1,S,y) to the following set of nonlinear matrix
inequalities (possibly minimizing y):

R“APT+ ApRiy - By RIICPTJ
T T
Bp’w -yl D o <0 (15a)
CPJRU Dp,zw —}/1
SAZ; + AL'IS BL'l,w SCL.T[’Z
Bl —yI DL, | <0 (15b)
CC[-ZS Dz'l,zw _)/1
Rii=Rj, >0 (15¢)
S S
SZST:[ r 12}>0 (15d)
Sty S»
Ry —81=0 (15¢)
rank(Ry; — S11) < gy (15f)

Step 2 (Construct the matrix Q): Using the solution
(Ry1, S, y) from Step 1, define the matrices

Ry Si
R =

[Ssz S22
and N € R"*" ags a solution of the following equation:
RST'R—R=NN". (16)
Since R and S are invertible and Conditions (15¢)
and (15f) are satisfied, then RS™' R — R is positive
semidefinite and of rank n,,, so there always exists a

matrix N satisfying equation (16). Define the matrix
M c anvxnmr as

M:=I1+N'R'N. (17)

Finally, define the matrix Q € RV a)x(atna) qq

0= [AffT A]\;] (18)

Step 3 (Build required matrices): Set n=n,+
ne +nge.  Construct  the  matrices Ay € R™",
qu c [RI’IXI’I,,, Cy() c Rl’luX”, qu[] c [R”“Xn“, Cz() c Rn:xn,

qu(] c Rn:xn,,’ Bw c Rnxﬂ“-’ D:w c [Rﬂ_- XHy, and
D,,, € R"™*™ as
A B B Acl 0 Bcl,q Bcl,w
e 0 > 40 > w B 0 0 0 0
C)zo quO 5 yw = Cc Ly 0 D, Lyg D, Lyw
o =40 = Ccl, z 0 Dcl, zq D(’l, zw
Step 4 (Anti-windup compensator LMI): Choose

§eR, 8 > 0 and define U = §W~". Based on Steps 2 and

3, construct the matrices H € RVatm)x(tnctmtn) o
R(n+nu+nw+n:)><(n+nu+n,r+n;) and G e R(n{m.+nu)><(n+nu+n,v+n_,—)

as follows:
400 BpU+QC), B, 0QCk
0 DyoU—-U Dy, UDZTqO
W=Hel| 0 Yropro ||
2 V4
14
0 0 0 —=1I
2
= 0 I, ‘ 0 0 ‘ 0
- B(Y';,V 0 Dz;,yv 0 DZ’;,ZV
NT M |0]0] O
o] )
0 0 |7]0]O0
Finally, solve the LMI
U+ GI'ATH+ HTAG < 0. (19)

in the unknowns A € RUa+m)x0atn) and U e R,
U > 0 diagonal, and compute the matrices of the full-
authority anti-windup compensator (5) as follows:

Aaw Baw _ 1 0
|: Caw Daw ] =A [ 0 U71 i| (20)

Remark 1: Due to numerical optimization problems,
the anti-windup matrices resulting from solving the
LMI (19) at Step 4 of Procedure 1 may have overly
large entries. This effect can be mitigated by augmenting
that LMI constraint with the following two extra
constraints:

[MWI A

AT M 1:| >0, U>]I
aw
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where M,, > 0 is a prescribed maximum size to be
enforced on the anti-windup compensator matrices. It
is easily seen that the first constraint above is equivalent
to requiring that the maximum singular value of A is
smaller than M,,. The second constraint, combined
with the transformation (20), implies that also the
maximum singular value of the anti-windup matrix at
the left hand side is upper bounded by M,,,.

The procedure for external anti-windup compensa-
tion, only slightly differs from the preceding one. It is
reported next.

Procedure 2 (External anti-windup design):
Step 1 (Solve the feasibility LMlIs): Find a
solution (R, S,y) to the following set of nonlinear
matrix inequalities (possibly minimizing y):

BT 0 0 RAOT/ + AolR Bol,w RCT

ol 1 ol,z
0 I 0 BY, —yI  DI_,
0 0 I C,-R Dorow =y
By, 0 0
X 0 I 0]<0 (21a)
0 0 I
SAL+ A4S Bay SCI.
BI —yl DI, | <0 (21b)
Ce =S Dz —yI
R=R">0 (21c)
S=5">0 (21d)
R-S>0 (2le)
rank(R — S) < ngy, (211f)

where B, is any matrix of full column rank that spans
the null space of B!, (namely B!,B,;, = 0).

Step 2 (Construct the matrix Q): Same as Procedure 1.

Step 3 (Build
Procedure 1.

required matrices): Same as

Step 4 (Anti-windup compensator LMI): Construct
the matrices W e RUFHHmbnx(rbmtntn) — gpq
G € RO tmx(inctmtn) a5 in Step 4 of Procedure 1
and the matrix H € R tm)>xrndntn) o5 follows:

0 I, 0 0 0
H= T T T :
Bz’l,v 0 D(rl,yv 0 Dcl,zv

Finally, solve the LMI (19) in the unknowns
A€ [R('1(/‘t'+n“)X("UH'+”!I) and Ue R"uxnu’ U > 0 dlagOnal,

and compute the matrices of the external anti-windup
compensator (7) using (20).

4. Convex algorithms for anti-windup synthesis

As extensively commented in Grimm et al. (2003a,
2004a), the two procedures reported in the previous
section become convex when the anti-windup order
ngy 18 either equal to zero (thus leading to static anti-
windup compensation) or equal to the order n, of
the plant P. However, for generic values of n,,, the
corresponding anti-windup construction cannot be
formulated in terms of LMIs and the corresponding
anti-windup design could become very complicated.

For a fixed anti-windup compensator order n,, (with
Nayw # 0 and ng, # n,), what makes Procedures 1 and 2
difficult to apply is determining the solution at the first
step. Indeed, conditions (15) and (21) both represent
an optimization problem including a nonlinear rank
constraint (corresponding, respectively, to (15f) and
(21f)) which cannot be incorporated directly in a
convex optimization approach. Nevertheless, due to
the structure of the optimization problems (15) and
(21), it is possible to relax the nonlinear constraints
and replace them with linear ones so that reduced
order anti-windup design becomes easier to accomplish
(at the cost of possible additional conservativeness).
In particular, with reference to (15f) (respectively,
(21f)), since Rj; — S;;1 >0 (respectively, R— S > 0),
the trace of this matrix (namely, the sum of all its
diagonal entries) is proportional to its size. This fact is
well known and widely used in trace minimization
relaxations to rank conditions (see e.g. Boyd er al.
(1994), page 117) and references therein, in addition to
Fazel et al. (2001), where more complex rank minimiza-
tion problems are considered). Therefore, minimizing
the trace of Rj; — Sy, (respectively, R — S) may lead to
a rank deficient result whose rank will be the reduced
anti-windup compensator order. The optimization prob-
lems (15) and (21) can then be solved by removing the
nonlinear rank constraint and minimizing a new
cost variable which is trace(R;; — Sy;) (respectively,
trace(R — §)). Note however that during this minimiza-
tion it is essential to maintain the focus on the perfor-
mance y guaranteed by the arising compensator, as
this performance quantifies the quality level induced
by the arising anti-windup compensator.

In the numerical implementation of this LMI-based
algorithm, the nonstrict inequality constraints (15e)
and (21e) will actually be replaced by strict inequality
constraints and the corresponding solutions will be
very close to being rank deficient (this incorporates the
numerical errors of the LMI solver). Therefore, it will
be useful to use a Singular Value Decomposition (SVD)



122 S. Galeani et al.

to determine a new selection of S for which
Ry — S11 > 0 (respectively, R — S > 0) actually holds.
Since the S matrix is slightly changed by this modifica-
tion, it is mandatory to verify that the new selection of
S still satisfies the LMI condition (15b) (respectively,
(21b)). To this aim, anticipating for such a perturbation,
it is useful to add a small feasibility margin to that
LMI condition to make it robust to these perturbations
(at least to a certain extent). The arising constraint
will be

SAL+AyS+el By, SCL.
Bz;,w - )/1,1“, DZ;, zw

CCZ, ZS Dcl, zw - yln_

<0,

where € > 0 is a small constant. The complete algorithm,
which replaces Step 1 of Procedures 1 and 2, requires
some tuning for € but is typically quite straightforward
to apply once the required performance level is specified.
The two arising algorithms for the full-authority and the
anti-windup case are reported next.

Procedure 3 (Reduced order full-authority anti-windup
design with guaranteed performance):

Step 1: Given a desired performance y, find the opti-
mal solution (R, S) € R"*" x R">" to the following
LMI eigenvalue problem:

nlgi}gl trace(R;; — S11) subject to
T Ry Ry
R=R = - > 0,
Riy Rxn
r S S
S=858" = . >0,
S12 S»
Ry — 811 >0,
[ RuAf+ A,Ri B, RuCl.
T - T
BP»W _ylnn' Dp,zw < 0’
| Cp,zR] 1 Dp,zw _37111_—
[ SAL+AyS+el By, SCY.
B(Z;,w _)_/I”u- DZ’;,ZW <0.
Ccl, zS D cl,zw - )7[ n-

Step 2: Compute the Singular Value Decomposition
(SVD) of the symmetric matrix Rj; — S); determined
from the solution of the previous step, namely compute
F,V such that FVFT = Ry, — Sy1, where V is a positive
semidefinite diagonal matrix whose diagonal entries are
non-increasing (note that the SVD has a special
structure in this case because of the symmetry of
Ry — Sll). Set Ny = Np.

Step 3: Callvy, ... v, the ﬁrsAt N,y — 1 entries on the
diagonal of V gnd define V :=diag{vi, ... vy, -1,
0,...,0}, namely V is a diagonal matrix having its first
ngy — 1 diagonal entries equal to the entries of ' and
the remaining entries equal to zero. Also define
Si=Sn+FV-— V)FT.

Step 4: Given the matrix

— |:§11 512]
ST, S»

where 3‘11 was determined at the previous step, minimize
the variable p in the following LMI:

SAZ; + AC[S Bcl,w SCT

cl,z

BZ;,W - )7]’% DZ;, w <0.
Ccl, ZS D(’l, zw _);In;

If the LMI is feasible, then set (R*,S*,y) := (R, S, 7).
set ng, = ngy — 1 and go to step 3. If the LMI is not
feasible, then go to step 5.

Step 5: Select the order of the anti-windup compensa-
tor as ng,, and the required solution as (R*, S*, y).

Step 6: Follow the remaining Steps 2—4 of Procedure 1.

Procedure 4 (Reduced order external anti-windup
design with guaranteed performance):

Step 1: Given a desired performance y, find the
optimal solution (R, S) € R x R">*" o the follow-
ing LMI eigenvalue problem:

n}gigl trace(R — S) subject to

R=R">0,
S=58">0,
R—S>0,

Byl 0 07][RAL+AyR By, RCI.
0 10 B!, -yl D!,
0 0 [ Co-R Doz —vI

By, 00
X 0 I 0] <O,
0 0 I

SAL+AqS+el By, SCI.

B, ~7In, D, | <0
Cy,-S Dy -~V

Step 2: Compute the Singular Value Decomposition
(SVD) of the symmetric matrix R — S determined from
the solution of the previous step, namely compute
F,V such that FVFT = R — S, where V is a positive
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semidefinite diagonal matrix whose diagonal entries are
non increasing (note that the SVD has a special struc-
ture in this case because of the symmetry of R —S).
Set ngy, = ng.

Step 3: Call v, ...v,,— the first n,, — 1 entries on the
diagonal of v and define v := diag{vy, ...v,,,-1,0,...,0},
namely Visa diagonal matrix having its first n,, — 1
diagonal entries equal to the entries of V' and the
remaining entries equal to zero. Also define
S:=S+FV-V)FT.

Step 4: Given the matrix S determined at the previous
step, minimize the variable y in the following LMI:

SAT + A4S B, SCT

cl,z

BZ;,W _f/lﬂw D(?;,Z\t' <0.
Crl, ZS Dcl, zw )7111:

If the LMI is feasible, then set (R*, S*, y) := (R, S, ), set
Hgw = Hgy — 1 and go to step 3. If the LMI is not
feasible, then go to step 5.

Step 5: Select the order of the anti-windup compensa-
tor as ng,, and the required solution as (R*, S*, y).

Step 6: Follow the remaining Steps 2—4 of Procedure 2.

Remark 2: Note that Procedures 3 and 4 allow us to
determine a “‘minimal order” anti-windup compensator
(minimal within the convex relaxation of the nonconvex
rank constraints) guaranteeing a prescribed perfor-
mance level. This feature becomes quite useful within
the general context of the anti-windup approaches
under consideration. Indeed, by first noticing that
static and plant-order anti-windup designs both corre-
spond to convex algorithms (because the rank con-
straints transform into linear constraints in those two
special cases), it is possible to compute a lower bound
via the performance induced by plant-order compensa-
tion, and an upper bound via the performance induced
by static compensation on the anti-windup performance
achievable by reduced order compensators (this upper
bound may actural be infinity, in cases where static
anti-windup design is not feasible). Indeed, by applying
Procedure 3 (respectively, Procedure 4 for the external
case) for values of y within the range defined by these
upper and lower bounds, it is possible to compute a
“minimum order” curve which represents the minimum
order compensator guaranteeing a prescribed perfor-
mance level. The curve will evidently be a piecewise con-
stant nonincreasing curve and may be a useful tool for
the designer to determine the most desirable trade-off
between guaranteed performance and compensation
complexity (namely, the order of the anti-windup
compensator).

Remark 3: When adopting the convex relaxations of
Procedures 3 and 4, the resulting R* and S* matrices
may in some cases be prone to numerical errors. In par-
ticular, when running the last step of Procedures 1 and 2,
corresponding to solving the large LMI (19), numerical
problems may make that LMI only feasible for a larger
performance level y (or even infeasible for any y). This
fact has been noticed in several other papers related to
the use of LMIs for robust control design and motivated
interesting studies on the use of explicit formulas
that replace the LMI-based strategy of Step 4 of
Procedures 1 and 2 with an explicit computation of
the so-called ‘“‘central controller”, which is far more
robust from a numerical viewpoint (see, e.g., Gahinet
(1996) and aslo Wu and Lu (2004)) for an application
of these formulas in the anti-windup design context).
We do not pursue this type of approach here although
we recognize that it may be useful to follow it for an
increased robustness of the design algorithm.

5. Examples

In this section we will test the reduced order anti-windup
construction on two simulation examples. The first
example is a SISO system for which both static full
authority and static external anti-windup augmentation
are not feasible. The second example is a MIMO system
for which static external anti-windup is not feasible and
static full-authority anti-windup is feasible. The pro-
posed constructions lead to successful reduced order
anti-windup compensation for both examples.

5.1. An academic SISO example

This example has been introduced in Mulder and
Kothare (2000) where it was shown that quadratically
stabilizing static anti-windup compensation is not
feasible for it, and revisited in Grimm et al. (2003b)
where it was shown that plant order anti-windup
compensation (which is always feasible for exponentially
stable plants) leads to a performance level y =4.4766.

The problem data correspond to the following
matrices:

[—0.2 -0.2 1

1 0o | o
0.4 —0.9 |-0.5
|04 09 |05

o1 =1
2022

For this example, since the controller state has dimen-
sion 1, external anti-windup compensation has full

A, | By | Bpw
CI’}’ D pyu D pyw =
Cp: D pzu D pzw

~Nlolo ©
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authority, therefore both full authority and external
compensation lead to the same results. We will therefore
only apply our full authority anti-windup design
algorithms. A plant order full authority anti-windup
compensator can be designed for this example (see
also Grimm et al. (2003b) for the same construction)
thus obtaining the following second order compensator
inducing a finite gain y =4.4766:

—64.125 —14.075 | —8.4772
Awe | Baw | | =11.784  —2.7914 ‘ ~7.0104
[c \ DWJ = | Z0.68354 0.24182 ‘—1.5125

~3.0759 0.18258 | -1

When applying Procedure 3 and requiring a guaranteed
performance level y = 4.48, the following reduced order
full authority anti-windup compensator is obtained
(recall that quadratically stabilizing static anti-windup
compensation is not feasible for this example), leading
to the performance level y =4.4825:

was first introduced in Kapasouris er al. (1988) and
then revisited in Grimm ez al. (2003a). The plant consists
in a fourth order model with two inputs and two outputs
and the unconstrained controller is an 8th order
controller designed to guarantee desirable linear
closed-loop response. The reader is referred to
Kapasouris et al. (1988) for the numerical entries of
the plant and controller matrices.

For this example, static full authority anti-windup is
feasible and leads to the performance level y = 22.19,
while plant-order full authority anti-windup design
(which is always feasible) guarantees the improved
performance level y = 19.39. Simulation results corre-
sponding to these two full authority constructions can
be found in Grimm et al. (2003a).

When using external anti-windup compensation,
static anti-windup design is no longer feasible, so
that it is of interest to seek for a reduced order
anti-windup construction. When applying the plant-
order external anti-windup algorithm of Grimm et al.

—0.19595 | —9.7724 (2004a), the following anti-windup compensator is
[AW Bﬂ“} — | 026947 | —183 obtained, which guarantees a performance level
Cav | Daw 0.59266 ‘ 1 y="55.541:
[ —79486  —0.074907 16532  —218.08 7.0708 3.0414 ]
—107.82  —0.027143  —34.201  —30.791 —1.743 0.74299
146.04 —0.037367  —386.14  32.517 —18.195 1.5151
Aaw | Baw | _ 45.389 0.043971 126.84 15.285 6.0989 —0.96823
[Caw Daw:|_ —0.061221  0.14168  —0.14379 —0.31125 | —0.018234 —5.4325-10°¢
0.068187 0.1233 0.11505  —0.25055 | —0.0071096  0.0013914
20.044  —0.0017507 —32.205  4.9089 —0.54445 0.086068
154.19 0.031557 130.37 45.651 6.4992 —0.54433

Figure 3 shows the simulation results for this example
when the reference input w is selected as a step input
switching from 0 to 2 at time fr=1. The saturation
levels for the plant input are selected as +0.5. The
dramatic difference between the unconstrained response
and the saturated response in figure 3 motivates the
introduction of anti-windup compensation for this
example. In accordance with the fact that the perfor-
mance level obtained by the reduced order anti-
windup compensator is essentially equal to that achieved
by the full order one (4.4825 versus 4.4766), in the con-
sidered simulation the reduced order anti-windup
response and the plant-order anti-windup response are
almost coincident (the corresponding curves in figure 3
are perfectly overlapped).

5.2. The longitudinal dynamics of an F8 aircraft

This example corresponds to the linearized model of the
longitudinal dynamics of an F8 aircraft. This example

Applying Procedure 4 and requiring a guaranteed
performance level y =70, it is found that a second
order anti-windup compensator exists yielding the
required performance level. When the final LMI is
solved in order to determine the reduced order
anti-windup compensator matrices, the following
state-space representation (inducing a slightly larger
performance level y =78.016) is obtained:

|:Aaw Baw :|
Caw Daw

[ —173.02 —70.027 | —89.511 22.212
—28.136 —13.009 | —14.158 3.7608
—1.5522  —-0.7855 | —1.0782  0.22587

| —0.32151 —0.30699| —0.39495 0.11759
—2.8332  —1.1045 | —0.53272  0.35068
| 9.4714 4.7319 4.0364  —0.53198 |
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Figure 3. Unconstrained, saturated and anti-windup responses for the Example of section 5.1.
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Figure 4. Unconstrained, saturated and anti-windup responses for the Example of section 5.2.

Figure 4 shows the simulation results for this example
when the reference input w is selected as a step input
switching from [0 0]7 a [0.1745 0.1745]7 at time
t=0. The saturation levels for both the plant input are
selected as £0.4363 (corresponding to a limitation of
25 degrees for the elevator and flaperon angles). The
response deterioration arising when saturation is intro-
duced in the unconstrained closed loop, as well as the
performance recovery obtained by using either the
plant order or the reduced order anti-windup is evident
from figure 4. In accordance with the difference in the
performance levels guaranteed by the two different
anti-windup compensators (55.541 versus 78.016),
in the considered simulation the reduced order

anti-windup response exhibits larger oscillations than
the plant order one. Nevertheless, it still guarantees a
better response than the saturated closed-loop system.

6. Conclusions

Detailed constructive algorithms for reduced order anti-
windup design have been provided in this paper, using
an iterative convex relaxation of a non convex rank con-
straint arising in LMI based synthesis of reduced order
anti-windup compensators. The proposed algorithms
are especially relevant for all the cases where
static anti-windup design is not feasible, or yields
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unacceptable performance. In such cases, the algorithms
can be used either to design a low order anti-windup
compensator guaranteeing stability and a minimized
level of quadratic £, performance, or to compute (when-
ever feasible) a low order anti-windup compensator
guaranteeing a prescribed level of performance, thus
giving the control engineer the possibility to trade-off
between performance level and controller complexity
(namely, anti-windup compensator order).
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