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Abstract. - A complete model for transformers is derived on the base of 
very efficiently calculated elementary (turn-to-turn) parameters. A 
high-order turn-to-turn model is constructed for the windings. This 
model is reduced to a lower order by operating on the resulting matrices. 
An electric equivalent circuit for the core is obtained from the principle 
of duality. By the use of test turns the winding model is interfaced with 
the iron-core. For validation, the frequency response of the model has 
been compared with test results. The model for the calculation of tran- 
sients has the form of a Norton equivalent circuit and it can easily be 
incorporated in a power system transients program such as the E m .  
Examples of calculated transients are given for illustration and further 
validation. 
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INTRODUCTION 
The progress in transformer modeling for the calculation of elec- 

tromagnetic transients has not kept pace with the advances in the model- 
ing of most other major power system components. This is probably due 
to the complexity of the physical phenomena that take place in the 
transformer. There has been much work reported in the literature but no 
power transformer model for a wide range of frequencies is yet available. 
In this paper we present a model for the transformer windings that is suit- 
able for a wide frequency range. In reference [ l ]  we computed the 
parameters (leakage inductances and capacitances) in a very efficient 
way on a turn-to-turn basis. Now we use that information to form a 
model for the windings. Then we combine the windings and iron-core 
models to form a complete transformer model. 

There are three main approaches followed in the modeling of 
transformers: 

a) Modeling based on the principle of duality. In references [2] and 
[3] it was shown that an equivalent electric circuit for a transformer 
can be derived from its magnetic circuit by applying the principle 
of duality. Therefore, the leakage flux (rather than leakage induc- 
tance) is used for modeling the phenomena in the air. This may 
lead to inaccurate terminal response, which depends on the leakage 
inductance and not on the leakage flux. This problem was solved 
by the use of negative inductances; see references [4] and [5 ] .  The 
parameters of these (duality based) models are calculated assuming 
that the magnetic field is in axial direction in cylindrical geometry. 
As shown in reference [ 11, this leads to a greater error than our pro- 
posed image method when predicting the terminal leakage induc- 
tance. However, a model based on the principle of duality reflects 
properly the flux balance and thus the nonlinear iron-core can be 
represented accurately. Recently, this approach has been used in 
the modeling of transformers in highly saturated conditions; see 
reference [6]. 
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b) Modeling based on leakage inductances. These models frequently 
use an inverse inductance matrix, often referred to as r [7].[11]. r 
models reflect accurately the transfer characteristics of the 
transformer (short circuit response) because their parameters are 
obtained from short circuit tests. As we will show later in this 
paper, there is no need to use the r matrix to construct a model 
from leakage inductance information. The r models present a 
difficulty in relation with the iron-core which has to be attached in 
a heuristic way since the magnetizing effects are lost in the short 
circuit tests. 
Modeling based on self and mutual inductances. There exist accu- 
rate formulae to compute the self and mutual inductances for sec- 
tions or windings of a transformer [12,13]. However, because of 
the presence of the iron-core, the self and mutual inductances have 
values that are very close in magnitude, so that this approach leads 
to an ill-conditioned set of equations. 
We use a combination of the first two approaches: leakage induc- 

tances (turn-to-turn) are used for the modeling of the windings and the 
principle of duality is used for the iron-core. 

A model considering each turn as an independent entity would be 
impractical due to its large size. To overcome this problem, we lump, by 
matrix manipulations, as many turns as the frequency range we are 
interested in permits. We assume for the calculation of the winding 
inductance matrix that the geometry is axisymmetrical and that the iron- 
core has infinite permeability. The magnetizing effects are then included 
into the model by the use of test turns and the principle of duality. 

> 

c) 

HIGH-ORDER WINDING MODEL 
In reference [ l ]  we have calculated the parameters taking the turns 

as basic elements for the capacitances and the leakage inductances. For 
the calculation of the capacitances we have used the charge simulation 
method with axisymmetric geometry. We have used the image method 
for the calculation of the turn leakage inductances, based on axisym- 
metric geometry. As a consequence, our model for the windings is not 
able to represent the mutual leakage effects between different legs of a 
transformer, it accounts only for the mutual effects between the turns 
wound on the same leg. The inductive coupling through the leakage 
paths (between two different legs) is believed to be negligible, especially 
when it is compared with the tight coupling from the yokes. However, 
the capacitive coupling between the windings on different legs and to the 
tank may not be negligible. We can add external capacitance to represent 
this effect after the leg-by-leg model is constructed. 

Inductive Model 
For an N turn transformer the voltage-current governing equation 

for the inductive part of the transformer (using leakage inductances, 
equation (17) from [I]). is 

The order of the matrix L ' is N-1 because one of the turns serves as 
.reference. 

Relation (1) constitutes the backbone of the inductive model for 
windings. A similar process for obtaining a model was described in [IO] 
for complete. coils and it involves the inversion of the matrix L' to get an 
inverse inductance matrix r '. As we will see, obtaining the r ' matrix is 
not necessary since we can integrate equation (1) and get a Norton 
equivalent directly. We will lump several turns in series before integrat- 
ing in order to reduce the model to a manageable size. 
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Capacitive Model 
The turn capacitance matrix C'"", obtained in reference [ I ]  from 

the charge simulation method, relates currents and voltages through the 
turn-to-turn capacitances. We can use this information to produce a 
nodal model. Shifting half of each capacitance to the two ends of the 
turn, we can write the nodal equation 

(2) icnodc=C- - vdc 

where the nodal capacitance matrix Cde can be obtained fmm the turn 
capacitance matrix c'"'" by recognizing which elements are connected to 
each node. The resulting matrix Cnoh is of order 2N, with the general 
terms given by 

d 
dt 

C2i42j-1 = CZ,2j = $5 c y  (3a) 

C 2 i 4 2 j  = CZJj-1 = 0 (3b) 

Figure 1 shows an equivalent circuit for the winding model. The 
inductances are not explicitly shown. This model is of a very high order 
since it is based on turn-to-turn variables. 

TURN 3 I I 
C5.G:' - 6*c6.G - 

Figure 2a. Turn-to-turn model (turns disconnected) 

inductive couuline 

Figure 1. Winding model 
Figure 2b. First lumping step 

mdsnrmbo d m h r  
formum3 fa.acuan 1 

\ / indueuvc coupling 

MODEL REDUCTION 
To reduce the model, we lump several series connected turns to 

form sections. The essence of the process is the shifting of some (inter- 
nal) capacitances towards pre-established section nodes. Once the capa- 
citances are moved to sectiori nodes, the loop inductances are easily 
lumped. In order to show how the reduction is done, a 3-turn section 
will be formed step by step; see Figures 2a to 2e. 

Reduction of Capacitances 

The first step is to move the capacitances connected to internal 
nodes to the external ones (section nodes). For convenience, an odd 
number of turns per section is chosen. The reduction of the capacitance 
network can be done by operating on the nodal capacitance matrix Cnodr. 
Consider first that the three turns are disconnected (Figure 2a). The 
nodal capacitance matrix for this arrangement is 

Figure 2c. Capacitances moved to the section nodes 

T U R N S  
N O D E S  

1 2 3 4 5 6  
SECTION 
NODES 
1 2  

6 

Lower case c is used for capacitances in the circuit; upper case C for the 
elements in the matrix. For example, C l l  = c l c  +c13 +c15 and 
C 13 = - c 13. Connecting the end of one turn to the beginning of the next 
one, gives the circuit shown in Figure 2b. By moving the capacitances 
connected to the internal nodes (2-3 and 4-5) towards the nearest external 
node ( 1  or 6). we obtain the circuit shown in Figure 2c. This circuit has 
the section capacitance matrix 

C Z  = 

Figure 2d. Reduction process 

Note that we can obtain this matrix by operating on the Cnde matrix 
(equation (4)): partitioning Cnde in four square matrices of order 3 and 
adding all the elements in each submatrix, we obtain the capacitance 
matrix (5) of the reduced model (see Figure 2d). In terms of the ele- 
ments of the matrix Cde, the last equation can be written as 

1 11 c 2 2 K 3 3 + 2 c 1 3  c 1 5 K 2 4 + c 2 6 K 3 5  

C15+C24+C26fC35 c44c55+c66+2c46 (6) r +  c;y& = 
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There is no need to write explicitly the matrix Cnde of order 2N 
since all the needed information is contained in the matrix Ct" which is 
of order N. For our example, using equation (3a) and the definitions of 
self (CJ and mutual (C, , i#J capacitances in equation (6). we have 

cy; = ciy+ !L? (ciy + Cyy) + !L? ciy 
czg = c;y+ % ( C g  + Ciy) + !L? ciy 
cyg = CTf = c;y+ % ( C y y  + Cyy)  

The procedure described above can be generalized for any (odd) 
number of turns per section and any number of sections per winding. The 
general equatlons to form a winding are 

1, 1. 1. 1, 
C f y d e = x  CC!? + %xC:y + % x C E y  + Y Z C E ~  (7a) 

1=1, J =4 

where 
Ii = ii + (wk-1)/2 - 1 

ii = first turn in section i 
rn = turn in the center of this section 

wk = number of lumped turns in section k 

From equations (7a) and (7b) we can see that the reduction process con- 
sists simply of an addition of elements in the turn capacitance matrix 

by blocks. The boundaries for forming the blocks are the turns 
located at the beginning, at the center, and at the end of the section to be 
formed. Each section produces four entries in the node capacitance 
matrix for sections CFA,. The procedure is presented schematically in 
Figure 2e. 

ctwn 

1 2 . . NS -SECTIONS 

\ 
1 2 3 4 . . . 2Ns- SECITONNODES 

12...2w, ... 2N - TURN NODES a 
1 2  3 4 ... 2Ns 

. I  1 I 

Figure 2e. General reduction procedure for the capacitive network 

1 2 . . .  Ns - SECTlONS , 

L' 

Figure 3.  General reduction procedure for the loop inductance matrix 

Reduction of Inductances 
Once the capacitances have been moved to the ends of the section, 

the turns inside each section become connected in series (see Figure 2c). 
Then, for a section containing k + l  turns, we have 

(8) j .  - i .  . 1 - = I i + Z  = . . . = Ii+k 

Applying this condition to equation (1). we see that the equivalent induc- 
tance is the sum of all elements (self and mutual). In our example 
i 1 = i 2  = i3 and equation (1) with turn N as reference becomes 

v 1  - v N  L'11 L'12 L'13 
!v2 - = [ L'21 L'ZZ L'23] 5 1:: 
v3 - v N  L'31 L'32 L'33 

Adding the three rows, yields 

or, in compact form, 

This process can be generalized to any number of turns per section 
as illustrated in Figure 3. Note that the reduction process is simply the 
addition of elements in the matrix L' by blocks. Equation (1) would 
become 

where 

M = number of sections 
wi = number of lumped turns in section i 
N = W 1 + W Z +  . . .  + w M + ~  

The matrix L" of equation (9) is a modified (reduced) version of 
the loop inductance matrix L'. The new loops involve several simple 
loops in series; the definition of a simple loop was given in [ 11. 

COMPLETE MAGNETIC MODEL 
The model for the windings of a transformer is given by equation 

(9). This model is calculated from leakage inductances assuming that the 
iron-core is perfect. The model can predict accurately the transfer 
characteristics of the transformer but it assumes that p = -, so that the 
iron-core (i.e. the magnetizing current) is not properly represented. On 
the other hand, iron-cored devices have traditionally been modeled using 
the principle of duality with the disadvantages noted in the Introduction. 
In this section we show how the two models can be used together so that 
their drawbacks are eliminated. 

Test Turns 
For the purpose of interconnecting the two models we require test 

turns that measure the leakage inductance and simultaneously the leak- 
age flux. This can be achieved if the test turns are very thin. To measure 
the total leakage flux per transformer leg, we use two test turns as shown 
in Figure 4. 

Turn CY 

Figure 4. Test turns to measure the leakage flux 
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In Figure 4 turn a links the leg flux while turn p links only the 
yoke flux. Thus the flux difference $, - $p is the leakage flux. Test turns 
such as a and p can be used to define sections of the iron-core for lump- 
ing leakage fluxes into a single node. For example, the leakage flux 
between our two test turns is lumped to node A (see Figure 4). 

We cannot simulate turn p around the yoke with our image method 
as the required geometry is axisymmetric. We can, however, choose 
another location for this test turn so that it links the same flux; see Figure 
5. If we consider that the leakage flux is axial, or almost axial, we can 
estimate the radius of turn p as half the distance between the centerlines 
of the legs of the transformer. 

Figure 5. Alternative test turn 

The Augmented Matrix L’, 
We can compute an augmented matrix L’, including the p test turn, 

using the test turn a as the reference and following the process esta- 
blished in reference [l]. Then, we have 

In compact form, (1 1) becomes 

(12) 
d 
dt 

v , - ~ , e , = L ” ~ - - i ,  

where 

V , = [ V ~ , ~ , I ~ = [ V ~ . Y ~ .  . . .  , v M , e y I  lT 

i, = [iT , i p  lT = [ i1  , i 2  , . . . , i M  , i g  1’ 

w ,  = [ W T .  1 ] T = [ w 1  , w 2 ,  ‘ . ’  , W M ,  1 IT 

We have substituted e, for v u  and er, for vp in equation (12) to make 
clearer that they represent voltages due to the iron-core. There are two 
reasons for taking turn a as the reference. First, it is a fictitious turn, 
and thus equation (12) includes the voltages and currents of all actual 
turns as variables. Second, its flux is the common flux that all turns link: 
therefore, the voltage of turn a represents the common voltage e, of all 
turns. Thus equation (12), rewritten as 

(13) 
d .  
Z’, v,  = w ,  e, + L”, 

shows that the voltage of each section (or turn) has a common com- 
ponent e, due to the flux through the leg and a component due to the flux 
in the air. 

We can include in equation (13) the resistance of the conductors, as 
follows 

v, = w ,  e, + R, i, + L”, Ai, (14) dt 
Here R, is a diagonal matrix whose elements are the sum of the resis- 
tances of the turns in each section. 

Note that al l  inductance matrices are calculated with the use of the 
image method based on axisymmetric geometry. As a consequence, the 
magnetic effects represented by these matrices have mutual coupling 
only with the turns (or windings) that are wound on the same leg. The 
image method does not permit to include the (small) mutual inductances 
due to leakage fluxes between coils wound on different legs. 

Model from Duality 
Applying the principle of duality to a three phase (three-legged) 

transformer, we obtain the electric equivalent circuit shown in Figure 6, 
described in references [2]-[6]. This equivalent circuit consists of five 
nonlinear inductors, La, Lb, Lc, Ly, and b2, that represent the flux in the 
iron-core. It has three liiear (positive) inductors that represent the leak- 
age flux, La,, Lb, and L , .  The circuit also has a number of negative 
(linear) inductors in series with the terminals (only two terminals per leg 
are shown), La, . . . Lc2. 

For the nonlinear inductor on leg a (if the current through it is i , ) ,  
we have 

4 
dt 

e, = - $=$( i , )  

from where we get 

(16) 
d 
dt 

e, = La(ia) - i ,  

where 

A similar equation can be obtained for each nonlinear inductor. 

I I I 
0 

Figure 6. Application of the principle of duality 

Complete Model 
The interfaces between the model based on leakage inductances 

and the model from duality are the test turns a and p on each leg. Turn a 
can be considered to be the connection to the leg inductor (La, for exam- 
ple) while turn p is used to connect the model to the yoke inductor (such 
as Lyl ). In Figure 7 we show the complete model for one leg. 

We can see that the sum of currents entering block L”, has to be 
zero: 

N 

k=l  
c w k  in, - i ,  - i p  = 0 (17) 

The sum of i ,  and i g  is the magnetizing current. Thus, from (17), we 
have 

N 

k=l 
c w k  i,, = i ,  + i p  = i,, ( 17a) 



Figure 7. Complete model for one leg 
of a transformer 

We have a total of N + 4 unknowns: N voltages or currents for the 
sections or tums, plus e,, e b ,  i , ,  and i p .  The equations for the complete 
model are the N+l voltage equations given by equation (14), and two 
nonlinear equations, as (16). for the iron-core elements, and the KCL 
equation (17). Thus, we have a proper set of equations, some of which 
are nonlinear. 

For a three-legged transformer we would have a model as shown in 
Figure 8. This model can be obtained by substituting an L" block (see 
Figure 7) for the inductance network in Figure 6. It is important to note 
that all the equivalent circuits derived from the principle of duality are 
only electric representations of magnetic circuits. These circuits are nor- 
mally referred to a common number of turns (in our models this number 
is one). In al l  cases (Figures 6, 7 and 8), the actual electric connections 
have to be done externally. Also, the capacitances are to be connected to 
the terminals of the turn (or sections) externally to the magnetic model. 

The equations describing the three-legged transformer are 

Figure 8. Complete model for a three-legged transformer 

N 

k=l 
x w k  i ,  - i ,  - i g ,  = O  

N 

k=l 

N 

k=l 

x w k  ib, - i ,  - is, + iy ,  = 0 (21a) 

c w k  ib, - i ,  - i g ,  + iy ,  = 0 (21b) 

The last two equations (equations (21)) are very important conceptually 
since they represent the fact that the sum of the currents inside a window 
is zero. These two equations correspond to the KCL in the nodes 1 and 2 

of Figure 8 and represent, in the electric equivalent circuit, the mmfs  (of 
the magnetic circuit) around the windows. 

Equations (18) to (21) form a fully determined set of equations for 
a three phase (three-legged) transformer (magnetic model). 

CALCULATION OF TRANSIENTS 
Inductive Model 

For the single legged transformer described above (by equations 
(14). (16) and (17)) we obtain the transient model by applying the 
trapezoidal rule of integration. From equation (14) we have 

(22) RTH i, + w, e, = v, + v!$ 
and integrating equation (16) we get 

i, = G ,  e, + i p 
The superscript hisf stands for history and accounts for the previous 
values of current and voltage in the circuit. Equation (22) represents a 
Thevenin equivalent for the windings, and equation (23) models the 
iron-core with a Norton equivalent. Note that in equation (23) the con- 
ductance G is a function of the current through the nonlinear inductor. 
The derivation of these equations can be found in Appendix 1. 

These two equations form together with the KCL equation (equa- 
tion (17)) the transient model for the magnetic part of one leg of a 
transformer. The equations have to be solved by an iterative method 
since they contain some nonlinearities. When the core is not saturated 
(or lightly saturated), the currents i ,  , i g  through the inductors represent- 
ing the iron are small compared with the currents in the actual turns. This 
allows to transfer them to the history vector as a first approximation, and 
then solve the equations iteratively. This gives fast convergence and, 
more importantly, permits to decouple the magnetizing (nonlinear) equa- 
tions from the leakage equations. A more detailed discussion on conver- 
gence is presented in Appendix 2. We can obtain a first approximation if 
we estimate the magnetizin current img = i ,  + ig in equation (17a) and 
transfer it to the history as i& . m e n  we get 

k=l 

After one iteration we can update this value. Combining equations (22) 
with (24) we form 

L J  

In compact form, equation (25) is 

R,, i,, = vOug + V& (26) 
For the iron-core we have the following relations: from equation (23), 

i ,  = G , e, + ip (27a) 
and, similarly, for the inductor representing the yoke, 

ig = ~p eyl + ir (27b) 
Equation (26) is a hybrid system of linear equations that can be solved 
(after estimating an initial value for i ,  and i p )  in combination with the 
external circuit (including the capacitances) to get the first approximation 
for i l ,  i 2 ; .  . , i N ,  v 1 , v Z ; . ~  . V N ,  i , ,  i p ,  e,,ande,,.Later, weuseequa- 
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w =  

tions (27) to update i, and ig for the next iteration. Thus we have two 
decoupled steps in the iterative solution of the equations at each time 
step. Note that in equation (25) the matrix remains constant during the 
iterative process and only the history terms change. In equations (27) the 
coefficients Ga and Gg do vary, but they are scalars. 

For a three-phase transformer we would have to follow the same 
procedure as described above, integrating equations (18) and (19) to 
obtain a Thevenin and a Norton equivalent circuit per leg. These Theve- 
nin equivalents are coupled through the iron-core (variables e,, and ey2 
are common to two legs). The resulting equation has the same form as 
equation (25), but instead of the w vector, we have matrices: 

W 

1 -1 
W 

1 -1 -1 

1 -1 
W 

where 

Terminal Model 
Integrating the capacitive equation (2) with the trapezoidal rule, we 

= G c  de v , d  + it';& 
The expressions of G c  and iy are given in Appendix 1. 

Equation (30) is in the nodal reference frame while equation (26) is 
in the brunch reference frame. In order to solve them together, we con- 
vert equation (26) to the nodal reference frame by the use of a pwer-  
invariant transformation defined as 

get 

(30) ic 

iL no& = i a q  ( 3 1 ~  
where A is the node-element incidence matrix. This yields 

iL d e  = GL node vnmie + i f h e  (32) 
The expressions of the new matrices and vectors can be found in Appen- 
dix 1. Adding equations (30) and (32) and dropping the subscripts for 
nodes, we obtain 

(33) i = G v + ihk' 

It is convenient to reorder the nodes in the above equation to have the 
external nodes at the top of the matrix G .  Then we obtain a Norton 
equivalent circuit for the external nodes by partitioning equation (33) as 

Gee Gei [ k] = [Gi, G i ]  k] + (34) 

from which we obtain 

(35) v.--GG-' I -  11 G .  U v e -G:' ,, if&' 

and 

i, = G,, v, + i:? (36) 
See Appendix 1 for the expressions of the new variables. 

Equation (36) should be solved at each integration step in conjunc- 
tion with the Norton equivalent equations of the external system. Subse- 
quently, we can solve for the voltages at the internal nodes and for the 
currents through the branches. Finally, we solve for the voltages and 
currents in the fictitious turns (a and p) and we iterate until we get con- 
vergence for each integration step. Note that, again, all matrices remain 
constant during the iterative process and only the history vectors change. 

Magnetic 
Pan 

(Nonlinear) 

Electric 
Part 

(Linear) 

P S T  P ,  S T P S T  
a b C 

Figure 9. Decuupled transformer model 

FREQUENCY RESPONSE 
d 
dt For the simulation of the frequency response we set - =io. We 

could follow similar steps as in the case of transients presented above 
and would obtain an equivalent admittance matrix at the transformer ter- 
minals, given by 

Ie = Ye, Ve (37) 
We interface equation (37) with the external circuit and then we solve 
iteratively towards the inside of the transformer since we have some non- 
linear equations for the iron-core. As in the case for transients, all 
matrices remain constant. The nonlineanties are reflected, in this case, 
only in the input vector (for example, V, in equation (37)). 
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I I RESULTS 
Frequency Response 

We have used the procedure described in reference [ l ]  (bucking 
test) to obtain the driving point admittance for different frequencies and 
for different degrees of reduction of the model. The 236 turn (per leg) 
transformer, described in Appendix 3, was reduced to 6, 14, 28 and 52 
sections per leg. The test (or series) leakage inductance (at low frequen- 
cies) is obtained using a process similar to that described in Appendix 1 
of [l]. The leakage inductances were exactly the same (up to 5 digits at 
60 Hz) for all cases: Lied =4.3 x lo4. From tests at 60 Hz we get: 
L,,,t =4.5 x lo4 (= 5 %  error). In Figure 7 of [I] we have shown the 
variation of the input admittance with frequency when the transformer is 
short-circuited. The results are in good agreement with measurements up 
to a frequency of 700 kHz. 

Transients 
We have simulated various transients for the transformer described 

in Appendix 3. The first case is the energization of the transformer from 
a d.c. voltage source (V = 1) in series with a resistance ( R  = 100 Cl),  
when the secondary is in open circuit. The 236 turns per leg are reduced 
to four sections of 59 turns each. 

In Figure loa, we present the resulting (fast) transient that 
corresponds to the charging of the capacitances and the oscillations 
between the capacitances and the leakage inductances. The frequency of 
oscillation, of the order of 1 MHz, matches approximately the value cal- 
culated from v =  l / (  -,/-) with C,, = lO-'OF and 
Lleat = lo4 H . 

Once the fast oscillations have been damped, we have the slow 
transient of the R,L series circuit, shown in Figure lob. We can see that 
the voltage tends to zero exponentially with a time constant 
T=Lm,/R. With R=100R and L m , = l H  we have T=O.Ols .  
Note that the fast oscillations do not appear in the simulation of this case 
due to the large integration time step. 

The second example represents the chopping of the magnetizing 
current. We first energize the transformer (using the same circuit as 
before) and after 100 ps we disconnect the primary from the source. As 
expected, we have an oscillatory voltage. This is shown in Figure 1 1 .  
The frequency of oscillation of this transient corresponds approximately 
to the frequency estimated with simplified calculations, using this time 
the inductance Lmg . 

The decoupled solution method requires iterations within each time 
step, as described before and illustrated in Figure 9. The number of these 
iterations is typically 3 to 5 in the computations we have performed, for a 
tolerance of 10". 

CONCLUSIONS 
The paper has described a reduced order model for the transformer 

windings, suitable for the study of high frequency transients. The model 
is based on the turn-to-turn information obtained in the efficient way 
shown in reference [l]. A methodology for reducing high order models 
was presented in detail. The winding model is interfaced with the iron- 
core model using the principle of duality and test turns. The model has 
been validated with both frequency and time domain simulations. The 
terminal transient model is a Norton equivalent that can be interfaced 
with a power systems transients program. 
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APPENDICES 
Appendix 1. Definition of Some Variables 

First we present the application of the trapezoidal rule of integration. The 
Thevenin equivalent circuit representing the winding model for a one-legged 
transformer (derived from the trapezoidal rule of integration) is given by equa- 
tion (22) where 

2 
At 

R, = R, + - L", 

v:kr = vy - w, e:'d - Rm izu 
For the core model we get the Norton equivalent of equation (23) where 

i' -v- 
e'? 0 
ey, = 0 64-71 
i', 0 

0 - - 

ip = igu + G , e$' 
The superscript old stands for previous value (or initial condition for the first 
step). Note that in equation (23) the conductance G, is a function of the current 
through the nonlinear inductor. 

The Norton equivalent for the capacitors is given in equation (30) where 

&low are the expressions of some variables given in the main text. In equation 
(32) we have 

G, Nld. = A ~  R& A 

ipM& = R& v!$; 

In equation (36) we have 

G,, = G ,  - G,i Gi' Gie 

i y  = - G,. GL.1 i!h + i$bf 

Appendix 2. Convergence Properties of the Nonlinear Equations 
The model of the transformer (neglecting the resistance) is given by equa- 

tions (13), (16) and (17). Using a new set of variables for the derivative of the 
currents, defined by: 

if= .A i 
dr 

we can rewrite the equations as: 

(A-1) 

v, = w. e. + L", i', (-4-2) 

e. =L,(i',) i', (A-3) 

ey, = Lp(i'p) i'p ('4-4) 
N 
z w k  i', - i', - i', = 0 . 

k=l 

Equation (A-2) can be uartitioned as shown next: 

(A-5) 

x'; = i', , i'p lT 
We partition equation (A-7) to get 

A XI + B xz = bl 

(A-9) 

(A-10) 

C XI + D xz A bz (A-1 1) 

If the converged solution is given by x * ~  and x * ~  and the error at iteration k is 
given by EI=x*I-xl and E~=x*z-x~.  we can write the incremental versions of 
(A-10) and (A-11) as 

AE'+BE,=O (A-12) 

C E ~ + D E ~ = O  (A-13) 
Applying the fixed-point iteration method to equations (A-12) and (A-13) we 
get: 

( k + l )  =MI E, (k) (A-14) 

where 
(A-15) 

Note that these two matrices are functions of €2 (the error in the magnetizing 
current) since ma& D contains the nonlinear inductances. 

To assess the convergence properties of the method, we may look at the 
non-zero eigenvalues of M, or M, (they are identical). If all 19 I e 1, the 
method converges, and the smaller the largest eigenvalue, the faster is the con- 
vergence. For a one-legged transformer, it can be shown that there are only two 
non-zero eigenvalues. 

For our non saturated) transformer. the two eigenvalues obtained are 
hl = -5.3 x lo-' and & = 1.34 x lo-'. As the transformer saturates, the absolute 
value of the eigenvalues increases in inverse. oportion to the permeability. 
Thus, for psa, = 1 / 100 we have Irl = -5.3 x 1K'and & = 0.134. The maximum 
saturation degree for which the method converges is 1 / I I,,,,, I ; for our exam- 
ple, this gives pa@ = p / 746. 

Appendix 3. Transformer Data 
Single phase, 2 kVA, 2 windings, 110 V / 110 V, 2 layers per winding, 2 

windings per leg, 59 turns per layer, 236 turns total per leg, square conductor 
(a=3.5mm insulated). The geometrical dimensions are shown in Figure 8 of [l]. 
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Discussion 

C. M. Arturi, (Politecnico di Milano, Italy): I wish to congratulate 
Professor Semlyen and Dr. De Leon for their lucid and very timely paper. 
I particularly appreciated the description of the mathematical frame in 
which their models can be developed and the adopted solution method. 

I should appreciate their comments on the following problems. 

1. The authors have divided the ferromagnetic core in several non linear 
branches and, therefore, an accurate simulation in very high saturation 
conditions should be possible. I wonder if the equivalent inductance 
seen from the external terminals of the model corresponds to the air 
core inductance of the coils. Did the authors obtain any results to 
validate the model from this point of view? 

2. Have the authors simulated their model by means of the present EMTP 
program? If so, can they please comment of these results compared to 
those obtained by the integration procedure as described in the paper? 

3. Have the authors experienced the problem of the dissipative parameters 
to be considered in the models for high frequency transient voltage? 

F. de Leon and A. Semlyen (University of Toronto): We wish to thank 
Dr. Arturi for his interest in our paper. The following are our answers to 
his questions. 

1 )  The inductance seen from the external terminals corresponds in full 
saturation to the air core inductance since the leakage part of the 
model represents the flux outside of the iron core which will go 
into saturation. In reality, the actual flux inside the core will no 
longer follow an exclusively axial direction. 
As our inductive model c m o t  be easily interpreted as a network of 
inductances we were forced to write our own code instead of using 
EM”T or any other simulation package. However, we have used 
the trapezoidal rule of intergration to get a Norton equivalent at the 
terminals of the transformer which is fully compatible with E m .  

3) The frequency dependence of the losses (damping) is of prime 
interest to us and is included in the model of reference [A]. 

[AI F. de Leon and A. Semlyen, “Time Domain Modeling of Eddy 
Current Effects for Transformer Transients”, to be presented at the 
IEEE/pEs 1992 Winter Meeting. 

2) 
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