文

53-B 32

論

電力系統の動揺特性解析のための等価集約 モデル

正員武田捷一 (三菱電機)

1. はじめに

電力系統は近年設備の効率化、供給信頼度の向上を 目指して広域連系を更に強化する傾向にあるが、この ような大規模かつ広範囲に分布する交流系統の固有の 問題として定態安定度の悪化が懸念され、この点より 最大送電電力が制約される心配もある。このように, 今後更に重要な意味を持つ系統の定態的性質を解析す るにあたって、従来多く問題となった事故後の第一波 に対する過度安定度の解析とは異なった困難が存在す る。後者の場合は、時間が短いために外乱の影響が局 部的で,その結果外部の系統を1機または適当に簡略 化した系統モデルを用いることができた(1)。しかし、 前者においては外乱が全系統に波及した結果、系統全 体が動揺する長周期で減衰の遅い振動が対象となるの で、この現象をシミュレーションなどの計算により再 現するためには系統全体を模擬したモデルが必要とな り、その結果、膨大な記憶容量と計算時間が要求され る。ちなみに西地域の実測結果(2)によれば、系統全体 に波及した 4~5 秒周期の動揺が観察される。

そこで本論文では、このような困難をできるだけ軽 減する目的で、連系系統の定態的性質を調べるための 発電機を減らした等価集約モデルの構成について考察 した。このような試みは、従来よりよく用いられてい る系統の一部を短絡容量を用いて簡略化する方法、ま た最近では文献(3)などに見られるが、いずれにして もモデルの等価性について理論的に十分考察した例は ないように思われる。そこでその第1歩として、上記 の目的には必ずしも十分なモデルとはいえないが、発 電機に xd' 背後の電圧を一定とするモデルを用いた 簡単な場合について系統の集約方法および計算例を報 告する。

次に、本論文での系統集約に対する基本的な考え方 を説明する。第1図は以下の議論の対象となる連系系

第1図 連系系統の概念

Fig. 1. Schematic idea of interconnected systems.

統の概念を示したもので、図のように系統が主系統と 従系統に分割できるものとし、各従系統は主系統と1 点で連系されているものとする。いま、シミュレーシ ョン計算の目的を主系統内で発生した事故その他の外 乱による主系統内の電力、電圧変動のようすを求める ことに限定するならば、従系統のモデルとして別段従 系統を正確に模擬したものを用いる必要はない。すな わち、各従系統を主系統との連系点より見た特性、換 言すれば連系点の電圧の任意の変動に対してそこを通 過する電流、あるいは電力が等しくなるモデルであれ ばいかに簡略なものを用いても、上記の目的には何ら 支障を来さないことは明らかである。この考え方に従 って、従系統の発電機数を減らした等価集約モデルの 構成法を次節で考える。

2. 等価モデルの条件と構成法

〈2・1〉 等価モデルの条件 n機よりなる,従系統の動きを表現する数式モデルは次のように書ける。 各発電機が過渡りアクタンス $x_{a'}$ と慣性定数 M に よって表わされると考え,連系点の位相角,電圧を θ_0, V_0 ,また各発電機の $x_{a'}$ 背後のそれを θ_i, V_i (i=1, ..., n) とし,これらの点より見た従系統の $x_{a'}$ を 含めた n+1 次のアドミタンス行列を

 $Y = \{G_{ij}\} + j \{B_{ij}\}$ (1) とすると、各発電機の出力 P_i は

また,連系点より力入する潮流 Po, Qo は

Reduced-Order Modeling for Power System Transient Analysis. By *Shoich Takeda*, Member (Central Research Lab. Mitsubishi Electric Corp.).

武田捷一:正員,三菱電機(株)中央研究所

$$P_{0} = \sum_{j=0}^{n} V_{0} V_{j} \{G_{0j} \cos (\theta_{0} - \theta_{j}) + B_{0j} \sin (\theta_{0} - \theta_{j})\} \dots (3)$$

$$\theta_{0} = \sum_{j=0}^{n} V_{0} V_{j} \{G_{0j} \sin (\theta_{0} - \theta_{j}) - B_{0j} \cos (\theta_{0} - \theta_{j})\} \dots (4)$$

である。各発電機の運動はその機械入力を Pmi として,

そこで本論文では、等価モデルの使用目的を次に示 すように限定することによって、その範囲内でのみ等 価性が成立すればよいと考えることにする。

(1) 使用目的 系統動揺が線形近似方程式で近 似され得る程度の軽微なものであるとき,主系統内に 見られる動揺のようすを求めること。

この目的の範囲内で等価性を保つためには,まず次 の条件が満たされねばならない。

(a) 条件 1 (2)~(5)式を,動作点で線形化 した状態方程式と等しい入出力関係を持つ。

この条件によって系統の定態安定度性質が不変に保 たれるが、システム理論によれば入出力関係の等しい 等価線形システムの中で可制御かつ可観測なものが最 小次元であることが証明されており⁽⁴⁾、本論文でもこ の考え方に基づいて等価集約モデルを導出する。

次に、このモデルを、実際の計算に用いるときの矛 盾、不都合を避けるために更に2条件を付加する。

(b) 条件 2 連系点における初期潮流状態が一 致する。

(c) 条件 3 連系点より見た従系統の駆動点アドミタンスが等しい。

条件3は主系統内の短絡事故時の主系統内の状態変 化を等しくするためのもので,これによって系統の受 けるじょう乱を近似できる。

以上3条件を満足するものを以下,本論文では等価 モデルと呼ぶことにする。

〈2・2〉 等価モデルの構成法 等価モデルの構成 法を2段階にわけて説明する。まず第1段階として, n機からなる従系統の線形動揺方程式よりその入出力 関係を表わすn次の伝達関数を求め,更にこれの不必 要な部分を消去した等価なm次(m<n)の伝達関数 を算出する。次に第2段階として,この伝達関数と同 じ入出力関係を持つ並列m機系の構成法を示し,更に この方法が結果的に条件2,3をも満足する等価集約 モデルの構成法となっていることを述べる。

(1) 第1段階 n機従系統の運動は(2)~(5) 式によって表わされるが、 P_{mj} および x_d' 背後の電 圧 V_iは一定とし、(2)~(5)式を残りの変数 θ₀, V₀, θ₁,....., θ_n についてその動作点付近で線形近似して線 形化動揺方程式を求めると、(2),(5)式より

また, (3), (4)式より

$$\begin{pmatrix} \Delta P_0 \\ \Delta Q_0 \end{pmatrix} = C \left[\Delta \theta \right] + D \begin{pmatrix} \Delta \theta_0 \\ \Delta V_0 \end{pmatrix} \dots \dots \dots \dots (7)$$

が得られる。ここで θ は $\theta_1, \dots, \theta_n$ を要素とする n次ベクトル, $\Delta \theta, \Delta \theta_0, \Delta V_0, \Delta P_0, \Delta Q_0$ はそれぞれ $\theta, \theta_0, V_0, P_0, Q_0$ の微少変動分とする。また, 行列 A, B, C, D は動作点におけるヤコビアンで, その要素は それぞれ

$$\begin{array}{c} a_{ij} = -(1/M_i)(\partial P_i/\partial \theta_j) \\ b_{i1} = -(1/M_i)(\partial P_i/\partial \theta_0) \\ b_{i2} = -(1/M_i)(\partial P_i/\partial V_0) \\ c_{1j} = \partial P_0/\partial \theta_j, \quad c_{2j} = \partial Q_0/\partial \theta_j \\ d_{11} = \partial P_0/\partial \theta_0, \quad d_{12} = \partial P_0/\partial V_0 \\ d_{21} = \partial Q_0/\partial \theta_6, \quad d_{22} = \partial Q_0/\partial V_0 \end{array} \right| \dots \dots (8)$$

である。更に系統のヤコビアンの重要な性質として

$$\begin{bmatrix} \sum_{j=0}^{n} a_{ij} + b_{i1} = 0, \quad i = 1, \dots, n \\ \sum_{i=0}^{n} c_{ij} + d_{i1} = 0, \quad i = 1, 2 \end{bmatrix} \dots \dots \dots (9)$$

が成立していることに注意したい。

さて, (6), (7)式は 40, 4Vo を入力, 4Po, 4Qo を出力とする状態方程式の形をしているので, その入 出力関係を伝達関数を用いて表わすと

$$\begin{bmatrix} \Delta P_{0} \\ \Delta Q_{0} \end{bmatrix} = \{ D + C (sI - A)^{-1}B \} \begin{bmatrix} \Delta \theta_{0} \\ \Delta V_{0} \end{bmatrix}$$
(10)

ここで、 $s = p^2$, p はラプラス演算子, I は単位行列 である。この伝達関数を G(s) とすると

$$G(s) = \begin{bmatrix} d_{11} + u(s)/q(s), d_{12} + w(s)/q(s) \\ d_{21} + v(s)/q(s), d_{22} + z(s)/q(s) \end{bmatrix}$$
.....(11)

98 巻 3 号

き、主系統内に $a_{ij} = b_{i1} =$

< 58 >

と書けて、q(s) は A の特性多項式で n 次、u(s),… …,z(s) は n-1 次の多項式となることがわかる。こ のとき q(s)=0 の根 q_1 ,……, q_n は A の固有値でも ある。一方、 $\Delta \ddot{\theta} = A \Delta \theta$ は連系点を無限大母線 ($\Delta \theta_0 = \Delta V_0 = 0$) と仮定したときの従系統の動揺方程式である ので、よほど特殊な潮流状態でない限り A の固有値 は実数と考えられる〔正定値行列と対称行列の積であ る行列の固有値は実数となるが、Aは(8)式よりそれ に近い〕。また、これが重根を持つことも実系統の計 算では特殊な例に限られるので、以下議論を簡単にす るために、 q_1 ,……, q_n が相異なる実数の場合のみに限 定する。このような仮定を設けると G(s) の各要素は 1次の部分分数に展開できて、

$$G_{11}(s) = d_{11} + \sum_{i=1}^{n} u_i / (s - q_i)$$
(12)

と書ける。これに(9)式を考慮すれば、 G11, G21 は

$$G_{11}(s) = \sum_{i=1}^{n} u_i' s / (s - q_i), \quad u_i = u_i' q_i \dots (16)$$

$$G_{21}(s) = \sum_{i=1}^{n} v_i' s / (s - q_i), \quad v_i = v_i' q_i \dots (17)$$

とも書ける〔詳細は付録(1)に示した〕。

次に、等価モデルを実際に求めるためには系統定数 と潮流状態より定まる(6)、(7)式より(12)~(17)式 の係数を数値として算出しなければならない。 q_i に ついては既に述べたように A の固有値として求まる。 残りの係数については行列 A を対角行列に相似変換 する変換行列 T によって変換された等価システムの 行列 F=TB, $H=CT^{-1}$ の要素 f_{ij}, h_{ij} を用いて

とすることもできるが、付録1に示した計算方法は変 換行列を算出する必要がなくより簡単である。また、 (18)より

 $u_i z_i = v_i w_i$(19) が常に成立しているので z_i を求める必要はないが、 数値計算誤差の補正には有効である。

以上のようにして部分分数の形で得られた伝達関数 の各項で、もし

 $u_i = v_i = w_i = z_i = 0$ (20) となるものがあれば、そのような項を除いても全体の 入出力関係に何ら変化のないことは自明である。すな わち(20)式の成立する項をすべて除いて残りが m 次 となったとすると,よく知られているように, この m 次の伝達関数が元のシステムの状態空間の可制御かつ 可観測な部分空間のみを受継いだ最小次元の等価シス テムを表わしている⁽⁴⁾。このことは逆に言えば, いま 求めようとしている等価集約モデルが条件1を満足す るためには,この m 次の伝達関数をその入出力関係 として持たねばならないことになる。そこで次の段階 として,この伝達関数を入出力関係として持つような m機系統を構成する方法を述べる。

(2) 第2段階 以上によって得られた m 次の 伝達関数において,各項がそれぞれ第2図に示す1機 モデルで表わせること,そしてその結果全体が並列m 機の等価な系統に復元できることを示す。

第2図は、左端の連系点母線にインピーダンス jxを介して発電機(過渡りアクタンス xa',慣性定数 M) が接続され、その端子にアドミタンス g+jb の負荷 を持つ系統であるが、この系統の発電機端子を消去し て連系点と発電機 xa'の背後より見たアドミタンス行 列を

とする (連系点側が G_i, B_i)。発電機の x_a' 背後の電 E E=1, その位相角を δ とすれば発電機出力 P_i は

 $P_i = G_0 + V_0 \{G \cos(\delta - \theta_0) + B \sin(\delta - \theta_0)\}$

また、連系点より流入する潮流
$$P_{0i}$$
, Q_{0i} は
 $P_{0i} = G_i V_0^2 + V_0 \{G \cos(\delta - \theta_0) - B \sin(\delta - \theta_0)\}$ (23)
 $Q_{0i} = -B_i V_0^2 - V_0 \} G \sin(\delta - \theta_0)$

 $+B\sin\left(\delta-\theta_{0}\right)\} \qquad (24)$

であるが、これらを微少変分について展開すると

$$\Delta P_i = K_3 V_0 (\Delta \delta - \Delta \theta_0) + K_4 \Delta V_0 \dots (25)$$

$$\Delta P_{0i} = -K_1 V_0 \left(\Delta \delta - \Delta \theta_0 \right)$$

$$+(K_2+2G_iV_0)\Delta V_0$$
.....(26)

$$\Delta Q_{0i} = -K_2 V_0 (\Delta \delta - \Delta \theta_0)$$

Fig. 2. Equivalent one-machine model.

 \langle 59 \rangle

$-(K_1+2B_iV_0)$	$\Delta V_0 \dots \dots \dots \dots (27)$
と書ける。このとき各係数は θ	₀=0 とおくと
$K_1 = G \sin \delta + B \cos \delta$	
$K_2 = G\cos\delta - B\sin\delta$	(28)
$K_3 = B\cos\delta - G\sin\delta$	
$K_4 = B \sin \delta + G \cos \delta$	

である。そこで、第2図の系統の伝達関数を(6)~ (11)式と同様の操作によって求めると

$$\begin{bmatrix} u' s/(s-q), & 2G_i V_0 + v'/V_0 + w/(s-q) \\ v' s/(s-q), & -2B_i V_0 - u'/V_0 + z/(s-q) \end{bmatrix}$$
.....(29)

$$\begin{array}{c} q = K_{3}V_{0}/M \\ u' = K_{1}V_{0}, \quad w = K_{1}K_{4}V_{0}/M \\ v' = K_{2}V_{0}, \quad z = K_{2}K_{4}V_{0}/M \end{array} \right) \quad \dots \dots \dots (30)$$

の形に書けるので、この係数 q~z が与えられたとき 第2図の系統定数を以下のように逆算することができ る。

$M^2 = u'^2 (u'^2 + v'^2) / (u'^2 q^2 + w^2 V_0^2) \dots (31)$
$\tan \delta = u' (u' - Mq) V_0 / (u' \cdot v' + M \cdot v V_0)$
$B = (u' + Mq)/2V_0 \cos \delta \dots \dots \dots \dots \dots (33)$
$G = (u' - Mq)/2 V_0 \sin \delta_1 \dots \dots$
また, Poi, Qoi を適当に与えると
$G_i = (P_{0i} - v') / V_{0^2}$ (35)
$B_i = -(Q_{0i} + u')/V_{0^2} \dots \dots$
と求まるので、結局
$1/x = G_i B/G - B_i \dots (37)$
$1/x_d' = (G^2 + B^2)(B + x B B_i + x G G_i)$
$g = G/x x_d' (G^2 + B^2)$ (39)
$b = 1/x + 1/x_d' - g B/G$ (40)
そして発電機端子は
$\tan \theta_T = x P_{0i} / (x Q_{0i} - V_{0^2}) \dots \dots$
$V_T^2 = \{x^2 P_{0i}^2 + (V_0^2 - x Q_{0i})^2\} / V_0^2 \dots (42)$
$P_i = V_T \sin \left(\delta - \theta_T \right) / x_d' \dots (43)$
1+++7 ++ (98) ポポッパマーマンのの関係がまての

と求まる。また, (28)式でu'z=v'wの関係があるの で,以上の計算にzは必要ではない。この部分の詳細 は付録(2)に示した。

さて、以上に示したように従系統の伝達関数(14)~ (17)式の各項は、第2図の系統の伝達関数(29)式と一 致することがわかったので、各項は(31)~(43)式を用 いて第2図の系統に復元できる。そしてその結果、従 系統の伝達関数全体はこのようにして求めた m 機が、 同一の連系点母線に並列に接続された系統(第4図参 照)によって復元されることになる。但し両者の伝達
 関数が完全に一致し、復元された m 機集約系統が条件1を満足するためには、(14)、(15)、式の定数項 d12、
 d22 についても一致する必要がある。

すなわち,

$$\sum_{i=1}^{m} (2G_i V_0 + v_i'/V_0) = d_{12} \dots (44)$$

$$\sum_{i=1}^{m} (2B_i V_0 + u_i'/V_0) = -d_{22} \dots (45)$$

が成立する必要がある。ところが,(35),(36)式にお いて *G*_i, *B*_i を決めるとき *P*_{0i}, *Q*_{0i} を任意に選べたの で、

として,連系点における潮流に矛盾のないように選ぶ ことにする(条件が満足される)。すると(44)式は(35) 式と(46)式によって

と書ける。一方, (3)式の Poは(8), (9)式によって

$$P_0 = G_{00} V_0^2 - \sum_{j=1}^n c_{2j} = G_{00} V_0^2 + d_{21} \dots (48)^{-1}$$

また,

$$d_{12}V_0 = 2 G_{00}V_0^2 + \sum_{j=1}^n V_j \partial P_0 / \partial V_j \quad \dots (49)$$

となって,更に(付11)式より

であるから, (47)式は

$$2P_{0} - \sum_{i=1}^{m} v_{i}' = G_{00}V_{0}^{2} + d_{21} + d_{12}V_{0} - G_{00}V_{0}^{2} - d_{21} = d_{12}V_{0} \qquad (51)$$

結局,(44)式は成立している。(45)式についても同様 であるから,(46)式に従って *Poi*,*Qoi* を選べば伝達関 数の定数項は必然的に一致し,その結果,条件1と条 件2が完全に満足されたことになる。更に,このとき (44)式に(48),(50),(51)式を代入すれば

同様に

となるので条件3も同時に満足されていることがわかる。

98 巻 3 号

以上によって,従系統の伝達関数(14)~(17)式の係数 より(31)~(40)式を用いて求まる並列 m 機系統が求 める等価集約モデルとなっていることがわかった。但 し(46)式によっても Poi, Qoi は一意に決まらないの で,その結果得られる等価モデルも一意ではない。実 用上は Po,Qo を容量の大きい(Mの大きい)発電機 1機または数機に割当てておけば,残りの小さな発電 機を近似的に省略するときに便利である。また,この ようにして得られた集約系統の発電機ともとの系統の それとの対応を物理的に理解することは困難である が、ただ各発電機は行列Aの固有値と対応しているた めその固有ベクトルを調べることによって数学的な対 応はつくので、これについては第3章の計算例でふれ

〈2・3〉集約過程と近似 以上主として等価集約 モデルを構成する理論的な面を述べてきたが、現実の 系統において(20)式が厳密に成立して低次の集約モデ ルが得られることはまれで、現実には必ず近似が必要 となる。そこで次に集約の物理的な側面と近似の指標 について述べる。

ることにする。

伝達関数の各項の係数は適当な定数 c_i と(16), (17) (19)式を用いて

$$u_{i} = u_{i}' q_{i}, \quad w_{i} = u_{i}' c_{i} v_{i} = v_{i}' q_{i}, \quad z_{i} = v_{i}' c_{i}$$

と書けるので、(20)式が近似的に成立している項では $u_i'=v_i'\simeq 0$ または $q_i=c_i\simeq 0$ (55)

となっているはずである。これを(30)式と比較すると 前者は K1=K2≃0 となり(28)式より

後者は、 $K_3 = K_4 \simeq 0$ より(56)式となるか、または

 $M \simeq \infty$ である。そこで $M < \infty$ と $M \simeq \infty$ の場合に分けてその物理的意味を考えてみる。

(1) $M < \infty$ の場合 (56)式より、このような項 は電発機が非常に大きなインピーダンスを介して連系 点に接続されている場合に相当し、その発電機が動揺 を始めても連系点を通過する潮流に及ぼす影響は無視 し得る程度に小さいので(可観測でない状態に対応し ている)、これを省略しても系統全体の等価性は保た れる。このとき省略の判定には(55)式を用いればよい が、 $M < \infty$ のため $q_i = c_i \simeq 0$ ならば結局 $u_i' = v_i \simeq 0$ となるので、判定指標として

 $\mu_i = \sqrt{u_i'^2 + v_i'^2}$(57) を各項ごとに求めて比較し,他に比して十分小さいも のを省略すればよい。このときそのような*i*に対して $P_{0i} = Q_{0i} = 0$ とすれば,(35),(36)式より $G_i = B_i \simeq 0$ となり条件 2,3 も満足される。また $q_i \neq 0$ ならば 省略される項について(31)式よりM = 0となり,結 果的に省略される発電機は,容量の小さいものになっ ている。

(2) M≃∞ を許す場合 上記集約過程以外に

 $q_i = c_i \simeq 0$ で $u_i' = v_i' \neq 0$ (58) となる場合が考えられ、 $G = B \neq 0$, $M \simeq \infty$ となる。 これは連系点に G, B を介して無限大母線が接続され ている場合に相当し、連系点の θ_0 , Vo が変動しても 動揺しないため(可制御でない状態に対応している) 集約の対象となる。但しこれは条件 2, 3 を満たすた めに無限大母線として残す必要がある。また(58)式と なるのは、元の従系統が無限大母線に近い発電機を持 つ場合以外に通常の例ではあまり見られないが、判定 指標として(57)式に加えて、 $|q_i|$ の値を検討すれば完

全である。

3. 計算例

前節で述べた系統の等価集約法を第3図の系統に適用した例を次に示す。第3図を連系線.4-5によって連系された系統と考え、その左側を主系統、右側を従系統、母線5を連系点と定める。各ラインのインピーダンス (pu1,000 MVA)、各発電機の出力 (MW)と、定格 (MVA) および各負荷の 消費有効電力は、図中に示した。また発電機の定数は自己容量 ベースで M=8 秒、 $x_{a'}=0.3$ 、変圧器 x=0.11 である。その他の細かい数値は省略する。

この従系統の等価集約モデルを第2章に述べた順に 従って求める。まず(6)式の行列 A の5 個の固有値 とその固有ベクトルは第1表のように,また各固有値 に対応する伝達関数(14)~(17)式の各項の係数および (57)式の μ は第2表のように求まるので,この判定指 標に従って第4,5項を省略して初めの3項より3機 系を復元することにする。いま,元の系統において連 系線潮流 $P_0=Q_0=0$ としているので、

 $P_{oi} = Q_{oi} = 0$ i = 1, 2, 3(59)

第1表 固有値と固有ベクトル

Table 1. Eigen values and eigen vectors.

No.	固有值		固有	ベク	トル	
1	-29.76	1.0	0. 83	O	0	0.
2	-26.60	0	0	0.36	1.0	0. 99
3	75. 04	0	0	1.0	-0.22	-0.21
4	- 90. 88	1.0	-0.85	0	0	0
5	- 96. 70	0	0	-0.004	-0.99	1.0

第2表 伝送関数の係数

Table 2.	Transfer	runction	coemcients

No.	u'	υ'	าย	z	μ
1	0. 435	-0.036	9.09	-0.752	0. 436
2	0. 498	-0.105	13. 2	- 2.79	0. 509
3	0.176	-0.074	7.13	-3.00	0. 191
4	0.0114	-7×10-4	0. 439	-0.024	0. 011
5	10-5 以下		10-3 以下		6×10-6

第3表 等価モデルの定数

Table 3. Consts for the equivalent systems.

No.	$M(\cancel{p})$	δ(度)	G(pu)	B(pu)	x(pu)	$x_d'(pu)$	g(pu)	b(pu)
1	4. 532	19.89	0. 1143	0. 4217	1.759	0. 5545	0. 6135	0.1076
2	5. 111	28. 41	0. 1443	0. 4881	1.170	0.8546	0. 5567	0.1409
3	0. 8436	25. 59	0. 0093	0. 1906	0. 5880	4. 703	0. 0918	0. 0209

Fig. 4. Equivalent three-machine model.

と定めて(31)~(40)式に従って等価モデルの定数を求 めたのが第3表(数値は 1,000 MVA ベース)で,結 局第4図に示した等価集約モデルが得られる。これを 以下3機モデルと呼ぶことにし,別に近似と誤差の関 係を見るために第4図において G_3 *を除いた系統を 2機モデルと呼ぶ。

このようにして得られた $G_1^* \sim G_3^*$ が, 元の従系統 の G1'~G5' とどのように対応するかを 第1表の固有 ベクトルによってある程度知ることができる。固有べ クトルは変換された新しい状態変数と元の状態変数と の対応を示しているので、例えば G1*の相差角は元 の系統の G1'と G2'のそれを 1:0.83 の比率で合成 したものと言える。これを物理的におおざっぱな解釈 をすれば、 G_1^* は G_1' と G_2' をまとめたものと考え てもよいであろう。同様にして G2* は Gs', G4, G5' をまとめたもの、 G_{3}^{*} については G_{3}' と G_{4}', G_{5}' が 逆位相で振動する動揺を無視させないために設けられ たものと考えることができる。ここで、元の系統の発 電機の慣性定数はすべて自己容量ベースで8秒とした ので、この比率で等価モデルの各発電機の定格を求め ると、G1*は567 MVA となって G1'と G2'の合計と、 また G2*, G3* は 639 MVA, 105 MVA となってこの 合計は $G_{3'}, G_{4'}, G_{5'}$ の合計とほぼ一致するのは興味 深い。

次に、求まった等価モデルが第3図の主系統に連系 されたときの動揺を元の系統のそれと比較するため に、次の2ケースのシミュレーション計算の結果を示 す。

〔ケースA〕母線3に3LSが発生,3+イクル後に復旧した場合。

〔ケースB〕 送電線1-2の1回線に中間で
 3LS が発生、4サイクル後に事故回線を除去、
 更に40サイクル後に再閉路をした場合。

この2種類の外乱による動揺を見るために, 主系統の G1を基準にした G2 の相差角ð12, G1

< 62 >

264

第5図 シミュレーション結果 (ケース A) Fig. 5. Simulation curves for case-A.

第6図 シミュレーション結果(ケースB) Fig. 6. Simulation curves for case-B.

の出力変動分 ΔP_1 ,連系線潮流 P_0 をケース A は第 5 図,ケース B は第6 図に示した。

図中実線は第3図の元の系統の場合, 点線は2機モ デルを用いた場合である。3機モデルを用いた場合に ついては実線との差が図示できない程度に小さいため に特に記していない。

この結果より第4図の3機モデルは従系統の等価集 約モデルとして所期の目的を十分に満たしており,特 にケースBでは動揺幅が δ_{12} で40°, P_1 は定常出力の 40% にまで達しており線形近似の領域を超えている と思われるが,等価モデルとしての機能は十分果たし ていることがわかる。2機系モデルについては若干の 誤差が見られるが,その原因の一つとして第4表(ケ ースAについては復旧時,ケースBについては再閉路 時の主系統 G1,G2 の周波数偏差を記した)よりわか るように,事故中に発電機が受ける加速に若干の差が 見られるが,これは G3*を省略したために従系統の 駆動点アドミタンスに生じた 15% 程度の誤差のため と考えられる。

以上, 簡単な5機系統が発電機で約1/2に集約され

第4表 復旧時の発電機周波数偏差

Table 4. Frequency deviation of main system generators when fault cleared.

		Δf_1 (Hz)	Δf_2 (Hz)
ケ ー ス A	元の系統	0. 0500	0. 1110
	3機モデル	0.0500	0. 1111
	2機モデル	0. 0512	0. 1126
ケ ー ス B	元の系統	0. 5111	0. 5170
	3機モデル	0. 5113	0. 5178
	2機モデル	0. 5153	0. 5314

る例を見たが,大規模系統ほど集約率が良くなる可能 性を秘めていると言える。この点について今後更に検 討が必要である。

4. まとめ

265

系統の比較的軽微な動揺を解析するための等価集約 モデルの構成法を提案し,その有効性を簡単な例題に よって確認した。本論文は系統の等価集約モデルに対 する理論的考察のほんの第一歩で,このような手法の 実用化には実系統に近い規模のモデルによる検討,ま た制御器を含む詳細な発電機モデルを用いた場合の集 約法の検討など多くの問題が今後に残されている。

文 献

- B. Spalding, et al.: Use of Dynamic Equivalents and Reduction Techniques in Pawer System Transient Stability PSCC 2 (1975)
- (2) 中地域技術研究連絡会報告書
- (3) R. DeMello, et al.: Coherency-Based Dynamic Equivalents PICA Proceedings (1975)

(4) L. Zadeh, et al.: System Theory (1969)

付 録

1. 伝達関数の計算法 状態方程式の伝達関数は 固有計算を用いて容易に部分分数の形に展開できる。

(11)式の行列の各要素は1入力1出力の状態方程式

 $\dot{x} = Ax + bu, \quad y = c'x + du \quad \dots \quad (\text{ff} 1)$

の伝達関数に相当しており $F(s) = d + c'(sI - A)^{-1}b$ (付2)

と書ける。ここで

$$\det(I + bc') = 1 + c'b \dots (\text{ff} 3)$$

の関係を用いると

 $det[(sI-A)+d^{-1}bc']$ $= det(sI-A)det[I+d^{-1}(sI-A)^{-1}bc']$ $= det(sI-A)(1+d^{-1}c'(sI-A)^{-1}b)$(ft 4) を得る。従って $A = A - d^{-1}bc'$ とすれば $F(s) = d \cdot \det(sI - \tilde{A})/\det(sI - A)...(付5)$ と書くことができる。 $A \ge \tilde{A}$ の固有値をそれぞれ q_1 ,, q_n , p_1 ,, p_n とすると、これは更に

$$F(s) = \frac{d(s-p_1)\cdots(s-p_n)}{(s-q_1)\cdots(s-q_n)} \dots \dots (\texttt{f} 6)$$

となり、いま A の固有値に重複がなければ留数計算 より

$$F(s) = d + \sum_{i=1}^{n} \frac{k_i}{s - q_i} \dots \dots \dots (\text{ff } 7)$$

と求まる。行列の固有値は QR 法により,100次元程 度でも容易に求まるので,以上の方法が伝達関数を (付7)式の形で求めるのに有効と思われる。

また, e を要素がすべて1のn次ベクトルとしたとき

A e+b=0, c'e+d=0.....(付8) の関係があれば Ãe=Ae+b=0 となるので A はゼ ロ固有値を持つ。従って

$$F(s) = \frac{ds(s-p_1)\cdots(s-p_{n-1})}{(s-q_1)\cdots(s-q_n)}$$
$$= \sum_{i=1}^n \frac{k_i's}{s-q_i} \dots \dots \dots (\ddagger 9)$$

とも書ける。このとき k_i = k_i'q_i(付10)

である。また(付7)と(付9)式を比較すると

$$\sum_{i=1}^{n} k_i' = d \qquad (\ddagger 11)$$

- となっている。
 - 2. 系統定数の導出 (28)式より

 $K_1+K_3=2B\cos\delta, K_2+K_4=2G\cos\delta$ $K_1 - K_3 = 2G\sin\delta, \quad K_4 - K_2 = 2B\sin\delta$ であるから $\frac{K_1 - K_3}{K_2 + K_4} = \frac{K_4 - K_2}{K_1 + K_3} = \tan \delta \quad \dots \dots \quad (\text{(f12)})$ となり、(30)式を用いて係数に置換えると $\frac{u'^2 - Mu'q}{u'v' + MwV_0} = \frac{MwV_0 - u'v'}{u'^2 + Mu'q} = \tan \delta$(付13) これより M と $tan\delta$ が求まる。また (23), (24) 式は $Q_{0i} = -B_i V_0^2 - K_1 V_0 \bigg\} \dots \dots \dots (ff14)$ と書けるので、これより G., B. が求まる。 次に, (21)式のアドミタンスは $B_1=1/x_d'$, $B_2=$ 1/x のとき $G + jB = B_1 B_2 / \{g + j(b - B_1 - B_2)\}$(付15) $G_i + j B_i = -j B_2 + B_2^2 / \{g + j (b - B_1 - B_2)\}$(付16) となるので $Gg - B(b - B_1 - B_2) = B_1 B_2$ $G(b-B_1-B_2)+Bg=0$ $G_i g - (B_i + B_2) (b - B_1 - B_2) = B_2^2$ $G_i(b-B_1-B_2)+q(B_i+B_2)=0$(付17) これより B_1, B_2, g, b を求めると, $(37) \sim (40) 式とな$ る。