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Abstract

This paper concerns the application of reduced order modeling techniques to power
grid simulation. Swing dynamics is a complex non-linear phenomenon due to which
model order reduction of these problems is intricate. A multi point linearization based
model reduction technique trajectory piece-wise linearization (TPWL) method is
adopted to address the problem of approximating the nonlinear term in swing models.
The method combines proper orthogonal decomposition with TPWL in order to build a
suitable reduced order model that can accurately predict the swing dynamics. The
method consists of two stages, an offline stage where model reduction and selection of
linearization points is performed and an online stage where the reduced order
multi-point linear simulation is performed. An improvement of the strategy for point
selection is also proposed. The TPWL method for a swing dynamics model shows that
the method provides accurate reduced order models for non-linear transient problems.
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Background

Transient stability of the power grids is a keen area of research because of its implications

in the power system planning, operation and control. Energy based methods for the

transient analysis of power grids were developed originally by Mangnusson [1] and Aylett

[2]. The substantial size of power gridsmakes the transient analysis computationally costly

to simulate and therefore a need of model order reduction arises. Reduced order models

need to be computationally cost-effective while retaining considerable accuracy of the full

model in large network grids simulations.

A number of approximation schemes are available for model reduction and selection

of an appropriate scheme depends upon the problem to be solved so that a suitable

reduced order model is achieved [3]. Some of the earliest methods in the domain of model

order reduction are Truncated Balance Realization proposed by Moore in 1981, Hankel-

norm reduction published in 1984 byGlover [4], proper orthogonal decomposition (POD)

[5], assymptotic waveform evaluation, PRIMA [4] and a more recent proper generalized

decomposition (PGD) [6].
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The techniques defined by Bai et al. [3] includes Krylov-subspace techniques, Lanczos

basedmethods such asMPVL algorithm and SyMPVL among others for the reduced order

modeling in the electromagnetic applications. The study by Parillo et al. [7] presents the

use of POD to reduce the hybrid, nonlinear model of a power network. The authors used

the “Swing Equations” which are the differential-algebraic equations of second order to

simulate the cascading failures in power systems. They employed model order reduction

in parts of the system that remains unaffected by the failures. POD based model order

reduction has found applications in diverse fields and is the preferredmethod in electrical

engineering applications such as in the study by Montier et al. [8]. In their study, POD is

applied in combination with discrete empirical interpolation method.

Kashyap et al. [9] have used model order reduction for the purpose of state estimation

of phasor measurement units (PMUs). The authors have proposed an algorithm based

on reduced-dimension matrices which operate separately on PMU measurements and

on conventional measurements. The proposed scheme is applicable to distributed imple-

mentation and is reported to be numerically stable. The algorithm was applied on a IEEE

14-bus system and compared with existing schemes in the literature and demonstrated

good accuracy. Wille-Haussmann et al. [10] used symbolic reduction approach to model

lower order grid segments. The study shows reduction by a factor of 2 for a typical grid.

The main hurdle in the effective model order reduction of the power grids is the strong

nonlinearity appearing in swing dynamics models. Trajectory Piecewise-Linear method

(TPWL) is a well-definedmethod for themodel order reduction of nonlinear time varying

applications [11]. This method proposes a suitable strategy for treatment of nonlinearities

which presents the real bottleneck of model order reduction. This method has been

applied on several nonlinear problems especially to electronics engineering applications

[12–19]. A similar method to the one adopted in this paper is found in the work of

Bugard et al. [20] and Panzer et al. [21] who have proposed a parametric model order

reduction. The main idea presented in these works is to reduce several local models and

then produce a parametric reduced order model using a suitable interpolation strategy.

Compared to these methods, TPWL has one global reduced basis and uses interpolation

of locally linearized models just to represent the nonlinear term in the reduced variables

space. More than one training trajectories can be added together to form the single global

reduced basis similar to the concept of POD.

TPWL method has been implemented in non-linear control of integrated circuits and

MEMS [14]. Xie and Theodoropoulos [22] have used the capability of TPWL of reducing

large scale non-linear dynamic models and demonstrated it through the stabilisation of

the oscillatory behavior tubular reactors as the case study.

Trajectory piecewise-linear methods are not limited to just power electronics and con-

trol systems applications, indeed there are vast areas of research where the application of

TPWL based model order reduction will be beneficial [23,24]. The study by He et al. [23]

involves the implementation of TPWL macromodeling for subsurface flow simulations.

In another study by Cardoso and Durlofsky [24] the work onmodel order reduction using

TPWL methods for subsurface flow simulations is presented.

In the current study, we implemented TPWL method to accurately obtain a reduced

ordermodel for the nonlinear transient dynamics of power grids,mathematicallymodeled

by swing dynamics. The swing dynamics model is highly non-linear and it is very difficult

to have accurate results with linearized reduced order models and the nonlinear POD is
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inefficient with respect to time consumption. Therefore, the adoption of TPWL method

in the current study is suitable for the model order reduction of power grids.

The article has been divided into three sections, where “Swing dynamics equations” sec-

tion discusses about the mathematical model of the power grid. “Model order reduction”

section deals with the model reduction techniques of POD and introduces the method of

TPWL adapted for the swing model. “Numerical experiments” section provides a couple

of test cases as an example and the robustness of the application of TPWL method.

Swing dynamics equations

Problem statement

Amathematical model to describe the transient dynamics of power systems is the “Swing

Dynamics” [25]. It involves a second order differential equation representing the generator

node or bus which originates from the rotor dynamics of the generator and an algebraic

equation associated with the load bus. The differential equation for the ith bus:

miδ̈i + diδ̇i = pmi − pi for i = 1, . . . , N (1)

The unknown in the Eq. (1) is δi(t) and i varies from i = 1, . . . , N where N represents

the number of nodes in the system. The variables δi represent the generator rotor angle

derivations with respect to a synchronously rotating frame, while δ̇i and δ̈i are respectively

the first and the second time derivatives of the rotor angle. The quantities pmi and pi are the

mechanical power input and the electrical power output and are given. The parameters

mi and di are the ith generator’s normalized inertia and damping coefficients.

The expression for the electrical power output is given by:

pi =

N∑

k=1

|Vi||Vk |bik sin(δi − δk ) for i = 1, . . . , N (2)

In Eq. (2) Vi = |Vi|e
ιδi , and yik = gik + ιbik represents the complex admittance matrix

with bik is the line susceptance and gik is the line conductance, it is assumed that voltage

magnitudes |Vi| do not change and the transmission line losses are negligible, i.e. yik is

purely imaginary (gik = 0). Using Eq. (2) in Eq. (1) gives,

miδ̈i + diδ̇i = pmi −

N∑

k=1

|Vi||Vk |bik sin(δi − δk ) for i = 1, . . . , N (3)

Equation (3) describes the transient dynamics of the power system under the assumption

that the lines are purely reactive and voltage magnitudes are kept constant [7] since all

the nodes are considered as PV nodes.

In the current study, POD is employed for the purpose of model order reduction. It is

to be noted in the framework of PODmathematical manipulations of system (3) are more

easily handled using matrix and vector representations. Hence, we present the system of

equations in matrix form:

[M]{δ̈} + [D]{δ̇} = {pm} − {p({δ})} (4)

where, [M] and [D] are N × N diagonal matrices, while {δ̈}, {δ̇} and {δ} are vectors in

R
N , N being the number of nodes in the grid. Note that, the notation [M]{δ̈} stands for

the matrix-vector product. The vector {p({δ})} is a nonlinear function of {δ}. Eq. (4) is the

high fidelity model of the swing dynamics in contrast to the reduced order model that is

developed based on the high fidelity model.
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Numerical integration of the high fidelity model

Swing equations are numerically integrated in the commercial software MATLAB. A

built-in function ‘ode15s’ has been used in the evaluation of the time dependent ODE

represented in Eq. (4), because of the potential stiffness of the problem this is the most

effective ODE solver available in MATLAB. It is based on the numerical differentiation

formulas (NDF) and optionally use backward differentiation formulas (BDF) and is a

multistep solver. A detailed description of this method and its incorporation inMATLAB

environment is provided in the article by Shampine and Reichelt [26].

Model order reduction

Proper orthogonal decomposition

Proper Orthogonal Decomposition is an “a posteriori” method formodel order reduction.

The objective is to find an orthonormal basis considerably smaller as compared to the high

fidelitymodel using the information extracted frompreviously computed simulations. Say

δ is a vector of dimension N containing all the state variables of the system, the objective

of POD is to reduce the dimension from N to q where q ≪ N . The mapping from the

original to the reduced coordinates is expressed by the linear application:

{δ} = [Ũ ]{z} (5)

where {δ} is a N × 1 vector, [Ũ ] is a N × q matrix, and {z} is a q × 1 vector. The goal

of POD is to compute matrix [Ũ ] from the analysis of the principal components of the

available solutions.

Thematrix [Ũ ] can be calculated using several techniques. In essence, POD is similar to

the Karhunen–Loeve decomposition (KLD) and it is often referred to as KLD, principal

component analysis (PCA) or the singular value decomposition (SVD) [27]. In the current

study, SVD interpretation has been used to obtain a reduced order model.

Here, we will briefly describe the SVD reduction procedure which is available as a built-

in function in MATLAB.

A selection of solution “snapshots” {δ}k , with k = 1, 2, . . . , n, are arranged into the

columns of the matrix [Q] ∈ R
N×n,

[Q] = [{δ}1, {δ}2, . . . , {δ}n] (6)

Thenumber of snapshotsmust guarantee that they represent the complete set of solutions,

i.e., nmust be large enough. The set of n snapshots contains redundant information that

have to be suppressed by keeping only the pertaining remaining modes q.

The factorization under SVD is given as:

[Q] = [U ][�][V ]∗

=

N∑

i=1

σi{Ui}{Vi}
T ≈

q∑

i=1

σi{Ui}{Vi}
T (7)

where, [U ] is aN×N matrix, [�] is aN×ndiagonalmatrixwithnon-negative real numbers

on the diagonal, and [V ]∗ is a n × n, unitary matrix, [V ]∗ is the conjugate transpose of

the n × n unitary matrix [V ]. The left hand side of Eq. (7) accurately estimate the full

[Q] matrix for i = 1,…,N. The last sum is the truncation of first terms that sufficiently

approximates the full [Q] matrix.

To obtain a reduced order model which retains minimum energy required to accurately

capture the behavior of the high fidelity model, it is truncated at q where q ≪ N . Number
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of modes q are selected such that for any j > q, the quotient η is within some defined

tolerance and σj ≪ σ1, where quotient η is defined as the difference of the relative energy

retained, where η = 0means that the total energy of the system is retained. It is usually the

case that only few of the larger σj contain the most energy and the rest σj for j = q, . . . , N

can be dropped from the reduced basis.

η =

∣∣∣∣∣

∑q
j=1 σj

∑N
k=1 σk

− 1

∣∣∣∣∣ (8)

The quotient η is employed to find the size of the reduced basis which accurately mimics

the original basis, typical values are between 10−1 and 10−5. The matrix [Ũ ] is given as:

[Ũ ] = [{U}1, {U}2, . . . , {U}q] , q < N < n (9)

The columnsof [Ũ ] correspond to vectors {U}i representing themost characteristicmodes

in the solution, that is, the most recurrent structures.

For detailed insight into the method and the variations in the above mentioned pro-

cedures of KLD, PCA and SVD, the author refers to the studies by Liang et al. [27].

Additionally one can also refer to Kerschen et al. [28] and Berkooz et al. [29].

The reduced order model for the governing equations is obtained by replacing {δ} with

the relation given by Eq. (5) in Eq. (4),

[M][Ũ ]{z̈} + [D][Ũ ]{ż} = {pm} − {p} (10)

and using Galerkin method to project the residual on the reduced basis

[Ũ ]T [M][Ũ ]{z̈} + [Ũ ]T [D][Ũ ]{ż} = [Ũ ]T {pm} − [Ũ ]T {p({δ})} (11)

Defining the following notations

[M̃] := [Ũ ]T [M][Ũ ]

[D̃] := [Ũ ]T [D][Ũ ]

{̃pm} := [Ũ ]T {pm}

{̃p({z})} := [Ũ ]T {p({δ})}

(12)

we obtain the governing Eq. (4) in the reduced basis as:

[M̃]{z̈} + [D̃]{ż} = {̃pm} − {̃p({z})} (13)

Note that {̃p} is a nonlinear fuction of {z}.

Although it is possible to use POD on nonlinear problems for model order reduction,

the necessity of evaluating the nonlinear function renders it less practical in terms of

computational complexity. In the current study, we are usingMATLAB basedODE solver

‘ode15s’, which requires that the nonlinear function to be defined analytically. Recall the

Eq. (2) describing the nonlinear function

pi =

N∑

k=1

|Vi||Vk |bik sin(δi − δk ) for i = 1, . . . , N

The nonlinear function here depends upon the original basis δ, in the reduced basis it has

to be defined as:

pi(Ũz) =

N∑

k=1

|Vi||Vk |bik sin

⎛
⎝

q∑

j=1

(Ũij − Ũkj)zj

⎞
⎠ for i = 1, . . . , N

p̃l(z) =

N∑

i=1

Ũil pi(Ũz) for l = 1, . . . , q

(14)
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The nonlinear function p̃(z) in the reduced basis therefore becomes,

p̃l(z) =

N∑

i=1

Ũil

N∑

k=1

|Vi||Vk |bik sin

⎛
⎝

q∑

j=1

(Ũij − Ũkj

⎞
⎠ zj) for l = 1, . . . , q (15)

It is evident from the Eq. (15), it requires O(N 2 × q2) operations, which is counter-

productive to the reduced order modeling. To save computation costs and truly exploit

the benefits of reduced order modeling, it would be necessary to eliminate theN 2 number

of operations which is the dimension of original basis. Therefore, a method of trajectory

piece-wise linear method (TPWL) has been proposed that is described in the following

section.

As an example of the problem with increased computational cost, we performed a

simulation with POD based reduced model, the same simulation is presented later in

detail. The full simulation without the model reduction required around 202 s, with POD

and the nonlinear function as defined in Eq. (15) the simulation took about 290 s.

Trajectory piece-wise linear method

An approach based on TPWL method has been adopted in the current study to reap the

benefits of reduced order modeling while also maintaining a good approximation of the

nonlinear function.

Evaluation of {p̃(z)} requiresN 2×q2 operations which results in similar time consump-

tion as high fidelity model. The objective of introducing TPWL method is to construct

a locally affine mapping {L̃p(z)} from R
q to R

q at some time steps s where s ≪ n which

involves less operations and such that {L̃p(z)} ≈ {p̃(z)}.

Trajectory piece-wise linear method is a method combining the model order reduction

and the linearization of the non-linear functions. The system in the current study given by

Eq. (1) has strong non-linear characteristic and as described in earlier sections, nonlinear

reduced ordermodel does not reduce the time consumption. TheTPWLmethod provides

a combination of linearized models obtained at selected snapshots.

To accurately capture the behavior of nonlinear function, it is important that the points

selected for the linearization should be such that they span the whole manifold in which

the system trajectories evolve. As an example of this, Fig. 1 shows the typical trajectory in

the space of reduced variable {z} and in this the selection of linearization points is made

to ensure that the trajectory is completely covered.

Steps of TPWL Simulation

TPWL method can be separated into an offline and an online stage. The steps during the

offline phase are below:

• Step 1: Simulation of the high fidelity model used as the training trajectories (See

details in “Selection of training trajectories” section).

• Step 2: Generation of reduced basis using POD.

• Step 3: Linearization of the nonlinear function and construction of the set of lin-

earization points S (See details in “Selection of linearization points” section). During

the construction of set S, weights have to computed for the combination of linear

functions which is detailed in the “Weighting function” section.
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Fig. 1 Linearization points on a sample curve in reduced basis (z1 , z2 , z3)

• Step 4: Reduction of the linearized system and the storage of {δ}j , {p̃}j , [J̃ ]j and S,

where j is the element in the set of linearization points S.

Once the above steps are performed andwehave a reduced linear systemwith {δ}j , {p̃}j , [J̃ ]j

and S available, we can perform the simulation of the reduced system in an online phase

of TPWL. The following steps comprise the online phase of TPWL.

• Step 1: Load the stored reduced basis.

• Step 2: Calculate weighting functions.

• Step 3: Combine the linearized systems in a convex combination.

• Step 4: Solve the reduced linearized system.

In the following sections we will present the methodology to select the linearization

points and also the weighting procedure for the combination of the linearization points.

Selection of training trajectories

Training trajectories form an integral part of the TPWL method which theoretically,

should be able to cover all the domain of the nonlinear function. The selection of train-

ing trajectories, therefore, requires careful selection of initial conditions upon which the

trajectories of the swing model depend. One may consider it is inefficient to compute

so many nonlinear functions to cover the whole domain. However, in practice there are

only a few possible conditions a system can achieve in real time applications. Training

trajectories provide the points at which the nonlinear system has to be linearized (see

“Selection of linearization points” section). It is to be stressed that the TPWL method

can interpolate between the training trajectories but not to extrapolate. Therefore, it is

necessary to include all the trajectories in the training set that are considered to be visited

by the nonlinear function [30].

Selection of linearization points

Selection of linearization points has been done during the offline stage of the TPWL

method and is performed on the full original dimension of the system. This is due to

the reason that the construction of the linear approximation {L̃p(z)} is done with the
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information already available from the training trajectories. Therefore, we present the

equations in terms of the original basis {δ}, the nonlinear function {p(δ)} in Eq. (4) is

linearized at certain points in time. This function at a generic snapshot is given by local

approximation {L
j
p({δ})} as:

{L
j
p({δ})} ≈ {p}j + [J ]j

(
{δ} − {δ}j

)
for j = 1, . . . , s (16)

This is the first step in the TPWL simulation after the full nonlinear solutions have been

obtained at the predefined training trajectories. The initial conditions are represented by

{δ}0 and it is by default the first point selected for the linearization. The Jacobian is given

by matrix ‘[J]’ as:

[J ] =
∂{p}

∂{δ}
=

[
∂{p}

∂δ1
. . .

∂{p}

∂δN

]
(17)

Note that, the jacobian can be derived analytically for the swing equations.

The linearized function approximates the actual nonlinear function using the Jacobian

at the specified linearization points, represented by j in the superscript. The idea behind

the TPWLmethod is that a number of linearization points are selected and the linearized

functions at those snapshots are summedupby aweighting function given a global approx-

imation as presented in Eq. (18). A detail on the selection of linearization points has been

presented in Algorithm 1

{Lp({δ})} ≈

s∑

j=1

wj ·
(
{p}j + [J ]j

(
{δ} − {δ}j

))
(18)

where, Lp is the linear approximation, {p}j , [J ]j are the nonlinear function and Jacobian

matrix evaluated at the jth linearization point, and {δ}j is the jth linearization point. The

weight ŵj is given by (19), which depends on the distance dj between {δ} and linearization

point {δ}j , and the normalized form is denoted by wj which appears in Eq. (18).

ŵj = e−βdj/dmin
(19)

where β is a positive constant and it can be adjusted to reduce the error and smooth the

affine function {Lp}, d
j is the distance between {δ} and linearization point {δ}j and dmin is

the minimum among dj .

The strategy to select the linearization points is traditionally based on the difference

between the phase differences between the successive time steps, i.e., (δi − δi−1)
j − (δi −

δi−1)
j−1 . If the phase difference is greater than some angle, e.g. 10◦, than this point j

will be added to the set of linearization points. This method is widely used in the studies

referenced in our work as presented in the works of Albunni [30] and Rewienski et al. [31].

The limitation in this method is that when the selection is based on the distance between

points, there is no control over the error. This can lead to significant error especially

if the Jacobian is close to singular. The alternative method adopted in this study is to

place the linearization points adaptively based on an error indicator. This is obtained by

the difference between the nonlinear function and the approximation obtained by TPWL

method.When a point is encountered forwhich the error is greater than a given threshold,

the TPWL model is enriched with a new point. This procedure is applied recursively to

all the snapshots of the training simulations, starting with a single point that is the initial

condition.



Malik et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:31 Page 9 of 18

A simple nonlinear trigonometric function and its linear approximation based on the

concept of fixed distance in the context of its norm is plotted in Fig. 2a while a newmethod

developed in the current study is shown in Fig. 2b . As it is observable from Fig. 2a and b ,

the number of linearization points are comparable as 5 in the first case to 7 in the current

case has reduced the approximation error by about 40%.Generally, the increase in number

of linearization points is of no significant loss in computation time as the selection is done

during the offline phase while in the online phase the computation of linear functions is

very quick.

This approach is similar to the method proposed in the study of Liu et al. [12] in which

the authors have used a global maximum error for linearization point selection.

The modified version of the selection of linearization points is more time consuming

then the original method proposed by Albunni [30]. However, selection of linearization

points is performed during the offline phase where time is not a constraint, the proposed

method in the current study has higher accuracy with the problem discussed here.

A very important note that the nonlinear function {p̃}j and the Jacobian matrix [J̃ ]j are

stored in the reduced basis.

Fig. 2 a Linearization at Fixed intervals, b linearization using tolerance, Fig. 2: Two methods for selection of
linearization points
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Weighting function

TPWL method combines the linearized model in a convex combination approximating

the original nonlinear system. In a convex combination all the coefficients are greater or

equal to zero with the sum of all the coefficients equal to one. If there are ‘s’ linearized

models and ‘q’ is the order of the linearized system, then the computation of these weights

is in the order of O(sq) (for detailed study on the weighting function refer to thesis of

Rewienski [11]). The calculation of weights is carried out during both the online and

offline phases in the current study.

Given the set of linearization points S and β , the weights can be calculated for any point

with respect to the points in the linearization set. The value of β should be a positive

constant, in the current study its value is 25 . A smaller value smooths the function and

make its appearance continuous, while a higher value results in kinks in the function. The

necessity of adjusting β is that it helps to reduce the error between the nonlinear function

and its approximation. The first step is to compute the distance dj between a point {δ}

and all the points in the set S using,

dj = ||{δ} − {δ}j||2 for j = 1, . . . , s (20)

The weights are then calculated as,

ŵj = e−βdj/dmin
for j = 1, . . . , s (21)

where, dmin = minj=1,...,s dj

Once, the weights are calculated with respect to all the points in the set S, the weights

are normalized as:

wj =
ŵj

∑s
i=1 ŵ

i
, for j = 1, . . . , s , i = 1, . . . , s (22)

During the online phase, in place of {δ} reduced basis {z} is used to calculate the distance

and the points in the set S consists of linearization points in the reduced basis as well.

Numerical integration of the reducedmodel

Once a linear model has been obtained from the training trajectories during the offline

phase, the values of the nonlinear function and the Jacobian matrix evaluated at the

selected linearization points are reduced and stored to be used during the online phase

along with the set of linearization points. The nonlinear function and the Jacobian is

projected in the reduced space as:

{p̃({z})} = [Ũ ]T {p({δ})}

[J̃ ] = [Ũ ]T [J ][Ũ ]
(23)

Since, we replace the nonlinear function with an approximation containing sum of lin-

earized functions, we have

{L̃p({z})} = [Ũ ]T {Lp([Ũ ]{z})}

⇒ {L̃p({z})}≈

s∑

j=1

wj ·
(
{p̃}j + [J̃ ]j

(
{z} − {z}j

))
(24)

In the above equation, the weights wj are evaluated afresh in the reduced dimension. The

weights are calculated exactly as described in the “Weighting function” section with {z}

replacing the {δ}.

With the above information, we now have a system in reduced basis which fully exploits

the benefits of reduced order modeling. As it can be observed from Eq. (24), the number

of operations now depend on s rather than N 2.
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Numerical experiments

The network grid studied here is termed as the “Ring Grid” consisting of only generators

with one reference node connected to all the generators, represented in Fig. 3. The math-

ematical model describing the ring grid is the swing dynamics given by the Eq. (1). The

grid in this study is a ring grid containing all the generator nodes and a slack node in a

topology such that the slack node is connected with all the generators. A slack node or

bus in electrical power system is a bus where both |V | and δ are known and is used to

balance the power losses or power demand shortage while performing a power flow study

[32]. Here, the slack bus is modeled as an infinite bus which is a simplifying assumption

that the voltage at this bus is always constant and it has infinite power capacity as the

impedance is zero for this bus. A list of assumptions for the grid in the current study are:

• The power grid is loss-less

• The generators are small and the ratio between the length of transmission line joining

generators to the infinite bus and the length of transmission line joining two consecu-

tive generators ismuchbigger.Hence, the interactionbetween a generator and infinite

bus is much smaller than the interaction between two neighboring generators

• Transmission lines joining two consecutive generators is shorter than the line joining

the generators with the infinite bus

• Transmission lines between the infinite bus and all the generators are of same length

• Transmission lines connecting the generators are of same length

The nonlinear function pi in Eq. (1) is different from its form given in Eq. (2) due to the

assumptions described earlier and is given as:

pi = b sin(δi) + bint [sin(δi − δi+1) + sin(δi − δi−1)] for i = 1, . . . , N (25)

where, b is line susceptance between generators and the reference node and bint is the line

susceptance between two connected generators.

The Eq. (1) takes the following form

miδ̈i + diδ̇i = pmi − b sin(δi) − bint [sin(δi − δi+1) + sin(δi − δi−1)]

for i = 1, . . . , N (26)

The grid studied consists of 1000 generators and one slack node connected to all the

generators. The data used in the study is given in Table 1, all the values are given in

per-unit system.

N identical

generators Infinite bus

Fig. 3 A ring grid power network. Blue circles representing generators connected to an infinite bus
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Table 1 Grid data

Symbol Description Value

mi Mass of the generators 1 (p.u.)

di Damping of the generators 0.25 (p.u.)

pm Power generated by the generators 0.95 (p.u.)

b Susceptance between generator and slack node 1 (p.u.)

bint Susceptance between consecutive generators 100 (p.u.)

N Number of generators 1000

The values used in the current study are adapted from the study of Susuki et al. [33] with

the addition of damping to ensure the steady state stability of the power grid. Also, the

number of generators in the study of Susuki et al. are only 20 and the focus of their study

is to demonstrate the coherent swing instabilities. Although different from the study by

Susuki et al., the grid loop as described in their study presented a good opportunity to

showcase the ability of TPWL method for the model order reduction and fast simulation

of electrical power grids.

Training trajectories and reduced order models

In the current study, there are three different scenarios of initial conditions that must be

taken into account for the training trajectories, these are listed inTable 3. The dependence

of the trajectories on the initial conditions is evident since the trajectory will be different

in each case.

As described in “Selection of Training Trajectories” section, multiple training trajec-

tories have been employed for the generation of reduced order models. These training

trajectories were categorized into three different types. The total time of simulation and

the step size are listed in Tables 2 and 3 lists the perturbation amount and the node for

each case.

1. Initial conditions at the equilibrium point for all the generators bar one.

2. All the generators start from a non-equilibrium point and one generator out of

synchronicity.

3. All the generatros start from the same non-equilibrium state and are synchoronous.

Table 2 Training trajectories data

Symbol Description Value (s)

T Total time of simulation 50

	T Time step 0.005

Table 3 Initial conditions

Training trajectory δ2 δi ∀i �= 2

Trajectory 1 1.45 1.25

Trajectory 2 1.1 1

Trajectory 3 0.8 0.8
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The Jacobian is a tri-banded diagonal matrix in the case under study here.

Jk,l =
∂pk

∂δl
=

∂

∂δl

[
b sin(δk ) + bint sin(δk + δk+1) + bint sin(δk − δk−1)

]

= δ̂k,l{b cos(δk )} + {bint cos(δk − δk+1)}(δ̂k,l − δ̂k+1,l)

+{bint cos(δk − δk−1)}(δ̂k,l − δ̂k−1,l) (27)

It is intuitive that the more the number of modes and the number of linearization points

the more time the reduced model takes to simulate. The time consumption data along

with number of modes and linearization points of the training trajectories is listed in

Table 4. It is to be noted that all the simulations were run on a laptop with a i5-4200 CPU

with a 1.6GHz processor and 8 GB RAM.

The comparison between the reduced linearized model from TPWL and the full non-

linearmodel was carried out on the average δ, which is termed as collective-phase variable

and its time derivate is ω. These are defined for loop power systems as:

δ =
1

N

N∑

i=1

δi (28)

ω =
dδ

dt
=

1

N

N∑

i=1

ωi (29)

The variables are well-known in power system stability analysis as the Center of Angle

(COA) or Center of Inertia (COI) [33]. These variables demonstrate the collective dynam-

ics of the system and are useful in the study of stability of the power grids.

The modes and the linearization points from the training trajectories were saved and

then used with cases which are slightly different from the training cases. The results

we obtained are encouraging for this kind of model order reduction for the nonlinear

functions.

First test case: single node perturbation in non-equilibrium conditions

This is the case which is closely related to the second training trajectory. We have all the

nodes starting from a non-equilibrium point δi = 1 ∀i 	= 2 and in addition one node was

perturbed by about 0.12 radians, i.e., δ2 = 1.12. The initial conditions used for this test

case are presented in Table 5.

The results are very promising and the TPWL simulation is considerably faster as the

full simulation in a similar case takes about 240 s while the TPWL simulation took about

Table 4 Time consumption data

Training trajectory Modes ‘q’ Lin Pts ‘s’ Time (s)

Full model POD Lin Pts Sel

1 312 (η < 10−4 ) 26 (ǫs = 0.01) 202 33 276

312 (η < 10−4 ) 47 (ǫs = 0.005) 632

203 (η < 10−2 ) 47 (ǫs = 0.005) 580

2 312 (η < 10−4 ) 16 (ǫs = 0.005) 191 27 155

199 (η < 10−2 ) 16 (ǫs = 0.005) 150

199 (η < 10−2 ) 49 (ǫs = 0.001) 850

3 130 (η < 10−4 ) 8 (ǫs = 0.005) 60 30 105

62 (η < 2 × 10−2 ) 8 (ǫs = 0.005) 100

62 (η < 2 × 10−2 ) 17 (ǫs = 0.001) 200
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Table 5 Initial conditions for test cases

Test cases δ2 δi ∀i �= 2

Test case 1 1.12 1

Test case 2 1.15 1.15

18 s with good accuracy. The errors are listed in the Table 6. The comparison of the

average δ between the original and reduced order models are presented in Fig. 4.

Second test case: synchronous non-equilibrium

This is a case similar to the third training trajectory where we had all the nodes starting

from a synchronous non-equilibrium position, in this case we gave the initial conditions

of 1.15 rather than 0.8 in the training case δi = 1.15 ∀i. The initial conditions used for this

test case are presented in Table 5.

The results are excellent and the TPWL simulation is considerably faster as the full

simulation in this case takes about 60 s while the TPWL simulation takes about 4 s with

very high accuracy. The errors are listed in the Table 6 and the comparison of the average

δ between the original and reduced order models are presented in Fig. 5.

Convergence analysis

It is important to analyse the source of error in the current study. As the results from the

previous section shows that the error is small but not small enough as to compare with

the machine precision level. In order to understand how does the error diminish and its

dependency on various factors, we studied different factors namely, the number of modes,

number of linearization points and the time step size. It is evident from the previous tables

that the number of modes used has a little impact on error but considerable one on time

Table 6 Test cases of TPWL simulations

Test case Modes ‘q’ Lin Pts ‘s’ Time (s) Error in δ

Full model TPWL Abs Rel

1 199 49 240 18 8.75 × 10−4 6.75× 10−4

2 62 17 60 4 6.62× 10−4 5.27× 10−4

Fig. 4 Comparison of the average δ for the 1st test case
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Fig. 5 Comparison of the average δ for the 2nd test case

consumption during the simulation. The behavior of the maximum relative error in the

reduced linearized variable δ with respect to the time step and the number of linearization

points is shown in the Fig. 6a and b , respectively. The non-monotonic behavior of the

relative error as a function of time step in Fig. 6a is due to the fact that for a larger time

step compared to the one adopted for the training trajectory (	T = 0.005) the reduced

ordermodel might skip some of the linearization points. Hence, it is inferred that the time

step used for the reduced model simulation should be at least equal to the time step used

in the training simulation. For smaller time steps the error is bounded by the truncation

error of the reduced basis.

It can be conclusively said that the major impact on the accuracy of the reduced order

linearized model depends on having more linearized point. This is quite intuitive, since

addingmore points aroundwhich the linearization of the non-linear function is performed

it will be able to capture the non-linear behavior more effectively and hence reducing the

error.

Fig. 6 a Relationship between error and time step, b relationship between error and linearization points,
Caption: maximum relative error in δ
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Confidence interval

In order to give an idea of how the reduced model generated using TPWL compares with

the high fidelity model, we carried out a simple analysis similar to sensitivity analysis. For

this analysis, all the parameters were kept constant bar one. This is repeated for all the

parameters. This analysis is performed using reduced basis generated using one training

trajectory. The details of the training trajectory are similar to as listed in Table 1 and

the initial values of the phase angles are listed in Table 7. The number of linearization

points (s) in the reduced basis for this case is 205 and the modes (q) selected are 199 out

of 1000.

In Table 8 we presented the upper limit and the lower limit wherever applicable

that we can use with confidence having a maximum relative error in {δ} of 5% or

less. Due to the nature of the problem, the lower limit in the case of pm and upper

limit of d are open-ended as the error is always bounded on these limits. The num-

ber of generators N and the susceptances b are not included in this exercise because

they depend upon the network topology and changes in these will have to be incor-

porated through a new reduced model. The mass of the generator is also not included

since the equation is always normalized with the mass of the generator such that mi is

one. The variation in the phase angle δ2 depends upon the initial condition, the per-

formance of the reduced model simulation impvores with the inclusion of more than

one training trajectory and hence, the range for δ2 increases from what is given in

Table 7.

As we have described earlier that in this method several training trajectories can be

included in the offline phase to make the reduced basis. This implies that for values over

the limits in the Table 8, we can add another training trajectory so that the error remains

acceptable.

Conclusions

TPWL proves to be a very robust method for model order reduction of models containing

nonlinear functions. It has been proved as a fast, reliable and accurate MOR technique as

observed from the results presented by the test cases in “Numerical experiments” section.

The method as described is separated into offline and online phases, where in the offline

phase the selection of linearization points is carried out. That is the only time consuming

part of the method and as it is performed only once during offline phase the time penalty

on the overall procedure is not severe.

Table7 Initial conditions used in the build up for confidence interval

Trajectory for confidence interval δ2 δi ∀i �= 2

Trajectory 1 1.5 1

Table8 Confidence interval for parameters with training trajectory of Table 7

Parameter Upper limit Lower limit

pm 0.97 (p.u.) –

di – 0.15 (p.u.)

δ2 2.25 1

bint (p.u.) 105 95



Malik et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:31 Page 17 of 18

For the confidence interval, some other values of disturbances in {δ}, and different values

of pm, di, bint were trialed and the results as shown in “Confidence interval” section proves

the robustness of the method considering the large variations possible for simulation

with reduced model. Note that, the confidence interval’s simulation were performed with

only one training trajectory and if more trajectories are included in the reduced basis the

interval where the method can be applied increases and the results improves.

The method is very well adapted to the problem discussed in this study and more appli-

cation for example, for the differential-algebraic equations (DAEs) of the network grids

containing both generators (PV nodes) and the loads (PQ nodes), can further consolidate

the current method as a well established model reduction method.
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