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Abstract

In this paper, we review the development of new
reduced-order modeling techuniques and discuss their
applicability to various problems in computational
physics. Emplasis is given to methods based on
Volterra series representations and the proper orthog-
onal decomposition. Results are reported for different
nonlinear systems to provide clear examples of the
construction and use of reduced-order models, partic-
ularly in the multi-disciplinary field of computational
aeroelasticity. Unsteady aerodynamic and aeroelastic
behaviors of two-dimnensional and three-dimensional
geometries are described. Large increases in compu-
tational efficiency are obtained through the use of
reduced-order models, thereby justifying the initial
computational expense of constructing these models
and motivating their use for multi-disciplinary design
analysis.

Introduction

Prior to the recent appearance of powertul digi-
tal computers, it was necessary to construct models
of physical behaviors that took advantage of existing
analytical techniques or which involved numerical cal-
culations with small numbers of degrees of freedom
(DOFs). Now, partial differential equations, represen-
tative of complex physics that were previously unob-
tainable, can be discretized and integrated with nu-
merical algorithis implemented on massive parallel
supercomputers. Indeed, the simulation of nonlinear
physical behaviors i even three space dimensions has
become relatively commonplace; problems with mil-
lions of DOFs can be routinely simulated, thereby
allowing investigators to capture precisely important

*Senior Research Aerospace Engineer, Structural Design and
Development Branch, AFRL/VASD, Bldg. 146, 2210 Eighth
Street, Wright-Patterson AFB OH 45433-7531; Associate Fellow
of AIAA

*Senior Research Scientist, Aeroelasticity Branch, Mail Stop
340, NASA Langley Research Center, Hampton, VA 23681-0001;
Senior Member of AIAA

This paper is a work of the U.S. Government and is not subject
to copyright protection in the United States.

phenomena. For example, as part of the Department
of Energy’s Accelerated Strategic Computing Initia-
tive (ASCI), the world’s fastest supercomputer (ASCI
White - 12 trillion calculation per second) is being
used in a shift from nuclear test-based methods to
computation-based methods.

I the abseince of other tools and analysis, numerical
simulation is often insufficient in the knowing represen-
tation of complex physics. We see two main limitations
of numerical simulation. First, while simulation can
provide detailed time histories of discretized field vari-
ables, such data may not readily imbue the investiga-
tor with an increased level of understanding concern-
ing the physics essential to a given phenomenon. As
is true of physical experiment, careful analysis of the
data is required to develop simpler models that can be
used to predict important characteristics of system be-
havior. This process can be impeded by the enormous
size of computed datasets. Second, without the ded-
ication of massive resources, numerical simulation of
large systemns remains far too computationally expen-
sive to be used in various multi-disciplinary settings,
including control model synthesis, multi-variable op-
timization, and stability prediction. For example, in
the field of computational luid dynamics (CFD), codes
for the simulation of turbulent. viscous flows in three
space dimensions are often used to obtain point solu-
tions, but less frequently used in related disciplines,
such as aeroelasticity and shape optimization. Thus,
there is a fundamental gap between the analysis fi-
delity available to simulate an individual case and that
practical for multi-discplinary analysis.

Both limitations of numerical simulation suggest
that computed data need to be distilled into lower or-
der models that can serve as the basis for additional
analysis. The intent in constructing such reduced-
order models (ROMs) is twofold: to provide quantita-
tively accurate descriptions of the dynamics of systems
at a computational cost much lower than the original
numerical model, and to provide a wmeans by which
system dynamics can be readily interpreted. We think
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of a low-order model as a characterization of a phys-
ical process, such that the essential behaviors of the
process are captured with a relatively small number
of DOFs. The use of point vortices to simulate the
nonlinear dynamics of vorticity gencrating systems is
a simple example of low-order modeling. ROMs are
low-order models derived from some appropriate pro-
jection of a full systems DOFs to a much smaller set
that encapsulates most, if not all, of the systems funda-
mental dynamics. Model accuracy typically depends
on the number of retained DOF's and the convergence
properties of the ROM. The reduction in computa-
tional cost needed to solve the ROM is offset by a
potential loss of accuracy and model robustness.

The term “fidelity” is used to denote the degree to
which a model captures the physics of a phenomenon
of interest. Low fidelity implies that a computational
model is missing key physical behaviors that render the
model highly inaccurate in certain regimes, whereas
high fidelity implies a broader range of mode! applica-
bility. These terms alone are of ambiguous meaning,
as they are dependent on the class of problems to
which models are applied. For example, the linear
potential equation can form a very accurate hasis for
computing loads in the subsonic regime, especially if
corrected for viscous effects, but is a low-fidelity rep-
resentation of flow behavior in the transonic regime,
since leading-order (nonlinear) physical behavior is not
properly modeled with this equation. Even in the sub-
sonic regime, the linear potential equation may not be
regarded to form the basis for a high-fidelity model if
vehicles at large angles of attack are to be simulated.
For a specified range of problem interest and physi-
cal behaviors, high-fidelity modecls capture the relevant
physical behaviors using validated techniques to ac-
ceptable levels of accuracy. Thus, use of high-fidelity
models usually leads to accurate solutions. However,
application of a high-fidelity model is not sufficient for
accuracy, owing to the need to execute properly the
model on a computer (e.g., proper construction of a
grid and selection of a time step).

One important trend driving the development of
new ROM techniques is the increasing level of fidelity
within multi-disciplinary analysis and design, which is
a necessary consequence of the need for increased per-
formance and reliability in many systems. The general
purpose of reduced-order modeling is to lower the com-
putational DOFs present in a numerical model while
retaining the model’s fidelity, i.e., the model’s abil-
ity to capture physics of interest. Point simulations
using high-fidelity equation sets (e.g., Navier-Stokes
equations) typically cannot be obtained fast enough
to permit design. This situation will improve, but at
the same time, it is likely that models of even greater
fidelity will be desired as more complex interaction
physics are accounted for in simulation.

This paper reviews recent progress in the develop-

ment of reduced-order modeling techniques and their
application to multi-disciplinary problems, particn-
larly in the area of computational acroclasticity. The
scope of the review is limited to the Volterra theory
of nonlinear systems and the proper orthogonal de-
composition (POD), which have been applied to the
high-fidelity analysis of aercelastic configurations in
two and three space dimensions, and which show great
potential for continued practical use. The remainder
of this Introduction is devoted to an overview of these
methods, while later in the paper, we describe appli-
cations of these methods beyond the field of acroelas-
ticity.

Volterra Theory of Nonlinear Systems

Over several decades of aerodynamics research, sim-
ple analytical models have given way to numerical
descriptions of vehicle flight loads. This transition
has been described by Silva,! which we summarize
here. Early mathematical models of unsteady aero-
dynamic response capitalized on the efficiency and
power of superposition of scaled and shifted funda-
mental responses, or convolution. Classical mod-
els of two-dimensional airfoils in incompressible flow?
include Wagner’s function (response to a unit step
variation in angle of attack), Kussner's function (re-
sponse to a sharp-edged gust in incompressible flow),
Theodorsen’s function (frequency response to sinu-
soidal motion), and Sear’s function (frequency re-
sponse to a sinusoidal gust). As geometric complexity
increased, the analytical derivation of response func-
tions was no longer practical and the numerical com-
putation of linear unsteady aerodynatnic responses in
the frequency domain became the method of choice.3
And, when geometry- and/or flow-induced nonlineari-
ties became significant in the aerodynamic response of
configurations of recent interest, the nonlinear equa-
tions were computed via time integration.

The trend towards time-domain numerical analysis
of the aerodynamic equations has revealed the dynam-
ics of numerous important and complex phenomena,
but has not provided a framework for the analysis of
complex configurations without severe computational
costs. Aeroelastic analyses involving coupling of the
nonlinear aerodynamic equations with the linear struc-
tural equations have been particularly costly to carry
out. Post-processing of time transients at numer-
ous flight conditions can be used to compute stability
boundaries of the coupled system, but this approach
has not been used extensively in industry due to tle
prohibitively high computational costs.

Attempts to address the problem of high computa-
tional cost include the development of transonic indi-
cial responses.? 3% Transonic indicial (step) responses
are responses due to a step excitation of a particu-
lar input, such as angle of attack, about a transonic
(or nonlinear) steady state condition. Neural net-
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works have also been used to develop nonlinear models
of unsteady aerodynamics” and nonlinear models of
maneuvers (using an experimental database).® Neural
networks and Volterra series have some shnilarities,
since each involves the characterization of a system
via an input-output mapping.® 7 In particular, there
is a direct relationship between the weights of a neural
network and the kernels of a Volterra series represen-
tation for a particular system.”

A major difference between Volterra series and neu-
ral networks is in the training effort. Neural networks
can require a substantial training effort® while Volterra
series neither require a training period or curve fitting
for model construction. Also, Volterra kernels pro-
vide a direct means for physical interpretation of a
system’s response characteristics in the time and fre-
quency domains. However, potential disadvantages of
the Volterra theory method include input amplitude
limitations related to convergence issues and the need
for higher order kernels.!

Another approach to reducing the computational
cost of aerodynamic analysis with CEFD is to restrict
attention to linearized dynamics. The response of
the lincarized system about a nonlinear steady-state
condition can be obtained with a linear state-space
representation of the system at that condition. In
this form, the order of the state-space model can be
reduced using various techniques.!®!! One method
for building a linearized, low-order, frequency-domain
model from CFD analysis is to apply the exponen-
tial (Gaussian) pulse input.!? This method is used to
excite the aeroelastic system, one mode at a time, us-
ing a broadband Gaussian pulse. The time-domain
respounses are transformed into the frequency domain
to obtain a frequency-domain generalized aerodynamic
force (GAF) influence coefficient matrix. These lin-
earized GAFs can then be used in standard linear
aeroelastic analyses.!® Raveli, Levy and Karpel'? ap-
ply this method while replacing the Gaussian pulse
with step and impulse excitations. The responses to
these alternate excitations can then be transformed
into a state-space form for direct use in other disci-
plines such as controls or optimization.!® We describe
other frequency-domain representations in the context
of the proper orthogonal decomposition.

However, in order to develop robust and efficient,
nonlinear CFD-based ROMs that are mathematically
correct, a rigorous method, well defined in the time
and frequency domains for continuous- and discrete-
time systems, is required. The Volterra theory of
nonlinear systems fulfills these requirements. In par-
ticular, this theory has found wide application in the
field of nonlinear discrete-time systems' and nonlin-
car digital filters for telecommunications and image
processing. 7

Application of nonlinear syvstem theories, including
the Volterra theory, to modeling nonlinear unsteady

aerodynamic responses has not been extensive. One
approach modeling unsteady transonic aerodynamic
responses is Ueda and Dowell’s'® concept of describ-
ing functions, which is a harmonic balance techngiue
involving one harmonic. Tobak and Pearson'® apply
the continuous-time Volterra concept of functionals to
indicial (step) aerodynarnic responses to compute non-
linear stability derivatives. Jenkins®® also investigates
the determination of nonlinear aerodynamic indicial
responses and nonlinear stability derivatives using sim-
ilar functional concepts. Stalford, Bauman, Garrett,
and Herdman?! develop Volterra models for simulating
the behavior of a simplified nonlinear stall/post-stall
aircraft model and the limit cycle oscillations of a sim-
plified wing-rock model. In particular, they establish
a straightforward analytical procedure for deriving the
Volterra kernels from known nonlinear functions.

A particular response from a CFD code may pro-
vide information regarding the nonlinear aerodynamic
behavior of a complex configuration due to a particu-
lar input at a particular flight condition. It does not,
however, provide general information regarding the be-
havior of the configuration to a variation of the input,
or the flight condition, or both. As a result, repeated
use of the CFD code is necessary as input parameters
and flight conditions are varied. A primary feature
of the Volterra approach is the ability to characterize
a linearized or nonlinear system using a small number
of CFD-code analyses. Once characterized (via step or
impulse responses of various orders), the functions can
be implemented in a computationally efficient convo-
lution scheme for prediction of responses to arbitrary
inputs without the costly repeated use of the CFD
code of interest. Characterization of the noulinear re-
sponse to an arbitrary input via the Volterra theory
requires identification of the noulinear Volterra kernels
for a specified configuration and flight condition.

The problem of Volterra kernel identification is
addressed by many investigators, including Rugh,??
Clancy and Rugh,?® Schetzen,?! and more recently
by Boyd, Tang, and Chua®® and Reisenthel.? There
are several ways of identifying Volterra kernels in
the time and frequency domains that can be applied
to continuous- or discrete-time systems. Tromp and
Jenkins®T use indicial (step) responses from a Navier-
Stokes CFD code and a Laplace domain scheme to
identify the first-order kernel of a pitch-oscillating air-
foil. Rodriguez?® generates realizations of state-affine
systems, which are related to discrete-time Volterra
kernels, for aeroelastic analyses.  Assuming high-
frequency response, Silva?? introduces the concept of
discrete-time, aerodynamic impulse responses, or ker-
nels, for a rectangular wing under linear (subsonic)
and nonlinear (transonic) conditions. Silva®¥ improves
upon these results by extending the methodology to
arbitrary input frequencies, resulting in the first iden-
tification of discrete-time impulse responses of an aero-
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dynamic system. It should be noted that owing to
separation of the input terms, Silva’s first approach
had limited applicability for the identification of non-
linear Volterra kernels,®® a situation which has been
resolved more recently.!

In his dissertation, Silva! discusses the then prevail-
ing misconceptions concerning aerodynamic impulse
responses, including the purported difficulty in com-
puting such responses. These misconceptions primar-
ily arise from fundamental differences between tradi-
tional, continuous-time theories and modern discrete-
time formulations. The appearance of discrete-time
methods has great implications for aeroelasticity and
aeroservoelasticity by providing a means for efficiently
modeling nonlincar acrodynamics. In a similar fash-
ion, other fields are likely to benefit from the coupling
of large simulation codes and discrete-time response
methods.

The Proper Orthogonal Decomposition

Before discussing the background of the proper or-
thogonal decomposition, as applied to large, discrete
systems, we will first summarize the role POD of-
ten plays in computational physics. Reduced-order
modeling with POD is essentially analysis by an em-
pirical spectral method. With spectral methods, field
variables are approximated using expansions involving
chosen sets of basis functions. The governing equa-
tions are manipulated to obtain sets of equations for
the coefficients of the expansions that can be solved
to predict the behavior of field variables in space and
time. The POD is an alternative basis that is derived
from a sct of system observations. In short, samples, or
snapshots, of system behavior are used in a computa-
tion of appropriate sets of basis functions to represent
system variables. The POD is remarkable in that the
selection of basis functions is not just appropriate, but
optimal, in a sense to be described further in the Anal-
vsis section.

The need to obtain samples of system behavior to
construct the POD-based ROM is both a strength
and a weakness of the method. One strength is that
models can be efficiently tuned to capture physics in
a high-fidelity manner. Two noteworthy weaknesses
are the need to compute samples with a high-order,
high-fidelity method, and the possible lack of model
robustness to changes in parameters that govern sys-
tem behavior. Generally, the payoff in applying POD
is quite high when, following an initial investment of
computation, a compact ROM can be constructed that
can be used many times in, say, a multidisciplinary
environment and which is valid over a useful range of
system states.

The POD basis, otherwise known as the Karhunen-
Loéve basis,?!32 {s not new, but dates to the 1940s for
continuous systems. Use of the POD is also known as
principal-component analysis in the statistical litera-

ture.?® In fluid mechanics, the POD was first applied
to the study of turbulence and the analysis of turbulent
flow data.’*3> Numerous studies since then have em-
ploved POD to characterize the turbulent properties
and dominant, or coherent, structures of wall-bounded
flows and free shear layers using experimental data.
This work, and much other activity related to the
POD is thoroughly reviewed by Berkooz, Holmes and
Lumley,*® where references are given for early applica-
tions of POD in the fields of image processing, signal
analysis, data compression, chemical engineering, and
oceanography. Other references can be found in the

fields of civil engineering®™?® and structural dynam-

ics. 39,40

More recently, computational data has been used
in the construction of POD bases. For example,
Moin and Moser?! used data from a numerically simu-
lated channel flow to compute characteristic structures
within the channel flowfield. Sirovich also put forth
the method of snapshots (or strobes)?? to case the
computational burden of obtaining the K-L basis for a
discrete system. With the method of snapshots, eige-
nanalysis of an M x A matrix is carried out, where
M is the number of snapshots, instead of an N x N
matrix, where N >> Af is the number of data points
in a snapshot. This process will be described in the
Analysis section.

With the successful interpretation of large compu-
tational data sets using POD, the technique was ex-
tended to the dynamical modeling of various systems,
including fluid-dynamical systems. Through this ap-
proach, for example, fluid-dynamical systems are first
simulated with CFD techniques, samples are taken, a
POD is constructed, and then a set of low-order equa-
tions is formulated in the POD basis, typically with a
Galerkin projection, to study the dynamics of the sys-
tem. Deane, Kevrekidis, Karniadakis and Orszag give
an early example of this process as applied to flows
through grooved channels and about circular cylin-
ders.®3 In their noteworthy work, they successfully
apply POD-based ROMs to the prediction of limit-
cvcle behavior in these systems. Other applications
of POD to the dynamic modeling of nonlinear heat
transfer and fluid dvnamic problems can be found else-
where 4445, 46,47

POD-based ROMs are now being developed for the
analysis of acroelastic systems. Romanowski authored
the first paper, which appeared quite recently, doci-
menting reduction of the aeroelastic equations using a
K-L basis.®® His time-domain procedure involved the
construction of a low-order model for the linearized
dynamics of an airfoil with structural coupling abont
nonlinear static states computed with the Euler equa-
tions. Subsequent to this work, frequency-domain
procedures have appeared that more efficiently corn-
pute POD basis functions for linearized aeroclastic
systems.?% 5% Work is also underway in the extension
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of POD techniques to the analysis of problems in non-
linear aeroelasticity. Beran, Huttsell, Buxton, Noll
and Osswald®! proposed and tested a computational
framework for computing static and dynamic behav-
iors of nonlinear systems with POD-based ROMs that
Pettit and Beran®?%® have extended to treat the dis-
crete Euler equations. This work also forms the basis
for an ongoing study of nonlinear panel response in the
transonic regime.® Dowell, Thomas and Hall are also
using POD techgniques to investigate the limit-cycle
oscillation of an airfoil with a nounlinear structural cou-
pling in the transonic regime.?®

Analysis

In this section, we review important aspects of the
analytical foundation of Volterra theory and the POD,
as well as the application of reduced-order modeling
techniques based on these methods to aerodynamic
and aeroelastic systems. As described above, the POD
is being applied in many different scientific and engi-
neering disciplines, including acroelasticity. While ref-
erences are drawn from numerous sources, this review
of POD analysis is not intended to be comprehensive,
but is focused on recent work with connectivity to Air
Force research activities.

We will restrict our attention to solution vectors in
an N-dimensional, real, Euclidean space; these vectors
will be written in boldface, along with the matrices
used in vector equations. Time-dependent vectors of
spatially discretized field variables, refered to as full-
system vectors, are written as w(t), where ¢ is time.

Volterra Theory

We begin by reviewing key features of the Volterra
theory, as applied to time-invariant, nonlinear,
continuous- and discrete-time systems. The liter-
ature on Volterra theory is rich, including several
texts; 6 57:22:58 we follow the presentations of Silva!+39
and Ravel, Levy and Karpel'? to capture issues re-
lated to aeroelastic analysis. Furthermore, this sec-
tion will concentrate on time-domain Volterra for-
mulations, consistent with the implied application to
time-domain, computational aeroelasticity methods;
the foundations and applications of frequency-domain
Volterra theory can be found elsewhere.>7:22-7¥.25

While one goal of this work is to document the appli-
cability of Volterra to discrete-time systems (e.g., sys-
tems arising in CFD), we first consider time-invariant,
nonlinear, continuous-time, systems. Of interest is the
response of the system about an initial state w(0) =
W, due to an arbitrary input u(t) (we take v as a real,
scalar input, such as pitch angle of an airfoil) for ¢t > 0.
As applied to these systems, Volterra theory yields the
response

-t

w(t) = hy + / hy(t = T)u(r)dr
0
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The Volterra series in expression (1) contains three
classes of terms. The first is the steady-state term sat-
isfying the initial condition, hg = Wy. Next is the
first response term, fo‘x‘ h, (t — 7)u(7)dr, where h is
known as the first-order kernel (or the linear unit im-
pulse response). The identification of the kernel h(r;)
is based on measuring the response of the system to a
unit impulse (Dirac delta function) at 73 = 0. Equa-
tion (1) requires the system to be time invariant, so
that the system responds in an identical manner (but
translated in time) to an impulse at any 7 > 0. The
first response term represents the convolution of the
first-order kernel with the system inputs for times be-
tween 0 and t, where by causality, inputs beyond time
¢t are excluded. Lastly are the higher order terms in-
volving the second-order kernel, hy, and the n'"-order
kernels, h,,. These terms do not all vanish when the
system is nonlinear.®® For example, identification of
the second-order kernel is based on measuring the two-
dimensional response of the system following impulse
inputs at two different times. More will be said about
kernel identification shortly.

The convergence of the Volterra series is dependent
on input magnitude and the degree of system non-
linearity. Boyd®® shows that the convergence of the
Volterra series cannot be guaranteed when the maxi-
mum value of the input exceeds a critical value, which
is system dependent. Of course, the issue of conver-
gence is important, since the Volterra series must be
truncated for analysis of practical systems. Silval-5®
and Raveh et al.!* consider a weakly nonlinear for-
mulation, where it is assumed that the Volterra series
can be accurately truncated beyond the second-order
term:

n—=

t
wi(t) = hg +/ h {t — 7)u(r)dr
0

t pt
+ / / hy(t — 71, t — m)u(r )u(r)dndr.  (2)
o Jo

The assumption of a weakly nonlinear system is consis-
tent with the emergence of limit-cycle oscillation of a
2-D aeroelastic system in transonic flow through a su-
percritical Hopf bifurcation.®® For linear systems, only
the first-order kernel is non-trivial, and there are no
limitations on input amplitude.

Silva! derives the first- and second-order kernels,
which are presented here in final form in terms of var-
lous response functions:

hl(T1)=2Wu(71)—%W2(71), (3)
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ha(r1,72) = 5 (Wi (17, 72) = wo(m) = wo(n) . (4)

In (3), wo(7;) is the time response of the system to
a unit impulse applied at time 0 and wy(m) is the
time response of the system to an impulse of twice
unit magnitude at time 0. These response functions
represent the memory of the system. If the system is
linear, then wy = 2wgy and h; = wg, which is why
the first-order kernel is refered to as the linear unit
impulse response. The identification of the second-
order kernel is more demanding, since it is dependent
on two parameters. Assuming 7o > 71 in (4), wo(72)
is the response of the system to an impulse at time 7.

Time is discretized with a set of time steps of equiv-
alent size. Time levels arc indexed from 0 (time 0) to
n {time t), and the evaluation of w at time level n is
denoted by w([n]. The convolution in discrete time is

N
win] =ho + Y hi[n - kJulk]
k=0
N N
+ 3 > o~ ki - koulkaJulks]. (5)
k1 =0 ko=0

It should be noted that an important conceptual
breakthrough in the development and application of
the discrete-time Volterra theory as a ROM technique
is understanding the fundamental difference between a
continuous-time unit impulse response and a discrete-
time unit impulse response.!*®® The continuous-time
unit impulse response is a highly abstract function
which suffers from a difficult, if not impossible, prac-
tical (i.e., numerical) application. The discrete-time
unit impulse response (also known as a unit sample
response), on the other hand, is specifically designed
for discrete-time (i.e., numerical) applications. The
proof of this and details regarding the very powerful
unit sample response can be found in any modern text
on digital signal processing.®!

The identification of linearized and nonlinear
Volterra kernels is an essential step in the develop-
ment of ROMs based on Volterra theory, but it is not
the final step. Ultimately, these functional kernels can
be transformed into linearized and nonlinear (bilinear)
state-space systems that can be easily implemented
into other disciplines such as controls and optimiza-
tion.?%! Currently, research is underway to develop
these models, and results should be available soon.!'®

In addition, some very interesting and fundamen-
tal research in the area of frequency-domain Volterra
theory®? and experimental applications of Volterra
methods as applied to nonlinear aeroelastic problems®?
continues.

Proper Orthogonal Decomposition (POD)

POD is a linear method for establishing an optimal
basis, or modal decomposition, of an ensemble of con-
tinuous or discrete functions. Detailed derivations of

the POD and its properties are available elsewhere* 5

and not repeated herein. In our discussion of POD),
M basis vectors are used to represent deviations of
w(t) from a base solution, Wy. These arc written as
{e',e?,...,eM}, and are referred to by many names,
including POD vectors,?® empirical eigenfunctions®
or, simply, modes.®**2  For the sake of brevity, we
shall use the term “modes” to denote the POD basis
vectors. The modes are orthonormal

€ &= { 0 otherwise, (6)

and computed in a manner to be described shortly.
The modal decomposition of w using Af modes is given
by
A
sz0+Zziue":Wg+<I>\?v, (

i=1

-~
—

where @ is an N x A/ matrix containing the or-
dered set of modes, ® = [e!,e? ..,eM] and W is
an AM-dimensional vector of modal amplitudes, w =
{Wy,1bg, ..., 0as]. As a time-varying function, w is ap-
proximated by Wq + &w(t).

Asstated by Holmes et al..84 “Linearity is the source
of the [POD] method’s strengths as well as its limita-
tions ...” The method is linear owing to the inde-
pendence of the modes from the modal amplitudes,
thereby allowing for the straightforward construction
of reduced-order equation sets from the full equation
sets following mode computation.

The POD modes are constructed by first computing
samples, or snapshots, of system behavior (solutions
at different instants in time for dynamic problems,
or equilibrium solutions at different parameter values
for static problems) and storing these samples in a
snapshot matrix, S. For now, we assume that AM snap-
shots are collected and column-wise collocated into the
N x A snapshot matrix: § = [WI,WE. ...,w‘”]. By
assumption, the snapshot matrix represents a random
vector class of signals associated with the system. The
basis provided by the POD, known as the Karhunern-
Loeve3l:32 (or K-L) basis, minimizes the error in ap-
proximating a member of this class with fewer than Af
basis vectors. This property of optimal convergence
associated with the K-L basis is established in many
works.54 65 66.67.50 The K.L basis can be readily coni-
puted by relating the mode matrix to the snapshot
matrix through a transformation matrix V', & = SV,
maximizing the projection of the snapshot matrix onto
the POD basis. This leads to the eigenproblem

STSV =vaA (&)

for eigenvectors V and eigenvalues A = diag();). The
eigenvalues are non-negative, since $7S is symmetric
and positive semi-definite. Provided that the cigenvee-
tors V are scaled to be orthonormal, VIV = I (I is the
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identity matrix), the transformation formula & = SV
vields @7® = A. Multiplying each e! by VA, yields
an orthonormal set of modes, ®T® = I, as originally
specified. It should be noted that for their frequency
domain analysis, Hall et al. construct complex modes
from S#SV = VA, where S is the complex conju-
gate of the transpose of S.

In practice, fewer than M modes are retained to
simulate system behavior. These are selected based
on the size of the modal eigenvectors. Simply put, the
K-L basis for a subspace of dimension M, < Al is ob-
tained by retaining the modes associated with the M,
largest eigenvalues computed in (8). It should also be
noted that K-L theory establishes the K-L basis to be
the eigenvectors of SST /M, where SS” is the snap-
shot covariance matrix. Manipulation of (8) yields
SST® = ®A, and from the singular value decom-
position of S, M eigenvalues are equivalent to those
in A, while the other N — M eigenvalues vanish (for
finite-dimensional problems of dimension N).%® Com-
putation of V followed by evaluation of @ = SV much
more efficiently vields the POD modes than explicit
analysis of the covariance matrix. In the following, we
will consider the number of modes retained to be a
variable denoted by Al that is less than equal to the
number of snapshots in S.

The techniques described below provide different
means for obtaining reduced-order equations sets gov-
erning w(¢) in the POD subspace. There are several
methods for accomplishing the projection, including
the Galerkin projection, “subspace” projection (for
linear and nonlinear systems), and collocation. We
will explore the former two approaches herein.

Governing Equations
We place the nonlinear and spatially discretized,
full-system equations in first-order form:

dw
P R(w;A), (9)

where w is an array of variables associated with inte-
rior evaluation points (e.g., cell centers) throughout
a computational domain, A is a free parameter (or
set of parameters), R is an array of nonlinear func-
tions of the discrete variables, and t is time. For the
discrete Euler equations in two space dimensions and
conservative form, w is a collocation of density, two
components of momentumn, and total energy, involving
N = 4N, variables, where IV, is the number of interior
evaluation poiuts. We also define an array of variables
associated with boundary grid points (so-called ghost
points), wy, that are referenced in the evaluation of
R but not explicitly carried as variables. The 41,
boundary conditions are specified in general form as

where B can be nonlinear in w and wy, and f is a time-
dependent array representative of an evolving bound-

-1

ary state. When f vanishes, equilibrium states, W, of
(9) exist and satisfy R{W; A) = 0 aud B(W, W;j = 0.

Linear (Frequency Domain) POD Formulation

Rapid progress has been made in the application of
POD to aerodynamic and aeroelastic equation sets us-
ing a linecar POD formulation.®® The basic approach
is to develop POD-based ROMs for the linearized dy-
namics about equilibrium solutions of the fully nonlin-
ear equations, (9). For a given value of A {e.g., Mach
number), the nonlinear base solution is computed
with CFD methods accelerated for steady-state con-
ditions. The governing equations are then linearized
for periodic disturbances of small amplitude, placed
in frequency-domain form, and solved using similarly
accelerated CFD methods. Solutions of the linearized
equations, gathered for a range of different frequencies,
serve as snapshots in the construction of a POD-based,
linear ROM. Furthermore, a linearized ROM represen-
tative of the aerodynamics, can be attached to a set
of nonlinear structural dynamic equations to form a
compact, nonlinear aeroelastic model.%% %0

Following Hall et al.,’" a small disturbance to the
equilibrium state is introduced:

w(t; A) = W(A) + qe/*', (11)

where w is the disturbance frequency, q is a distur-
bance of small amplitude, j is the imaginary number.
The disturbance is a response to forced oscillation
about the equilibrium state at the boundary (c.g., a
response in fluid velocity to the time rate-of-change of
angle-of-attack for a pitching airfoil):

d ,
B(w,w;) = Eb(’fj"d = jwbe/<!, (12)

where b represents the type of forcing applied to the
system. Introducing wy, = W, + qed*t leads to a
small-disturbance boundary equation (assuming the

. P e _(‘_)E_ .
invertability of (.,)wb)

0B OB

—qp = jwb - =—q. 13

v T d (13)
This equation is coupled to the small-disturbance form
of the governing equation,

IR .
Jq+ 5qu = jwq (14)
Wy
where J = 2B g the system Jacobian (an N x N real

— Jw
matrix). Combining both sets of equations yields

Aq = jub, (15)
A= OR OB ~'0B
T 0w, 0wy, Ow
The solution of (15), q, is a function of the forcing

frequency, w, and the character and amplitude of the
forcing as expressed through b.

+jul, b= ——=——
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It should be noted that (15) is based solely on the
spatial discretization leading to R and does not ac-
count for the iterative character of numerical schemes
by which q is computed. For example, Hall et al.
obtain an equation with structure equivalent to that
of (15) using an explicit, cell-centered, finite-volume
Godunov method, but derive an expression for a Lax-
Wendroff scheme that contains additional terms which
are second order in w.>®

The POD is constructed using M solutions q*(i =
1,..., M) of (15), for different frequencies and forcing
conditions (e.g., airfoil pitch and airfoil plunge), as
column entries in the complex snapshot matrix, S.59
As has been reported, accuracy can be retained while
keeping A quite small; M is typically between 10 and
100. Approximately half of the solutions need not be
computed from (15), since solutions q at negative fre-
quencies are complex conjugates of those at positive
frequencies. The complex mode matrix ® is com-
puted by first solving the complex form of (8), and
then forming the product SV. To predict the time-
dependent response about the equilibrium state, q is
approximated by ®q (q is the array of reduced-order
variables) and substituted into the small-disturbance
equation (15): A®q = jwb. Hall et al.’® project this
equation onto the space spanned by ® to obtain a
reduced-order set of equations:

Ag = jwb (A =3"A®, b= @”B) . (16)

Returning to the original system, (15), we see the ad-
vantage of the POD formulation. If several solutions
of (15) are required for different forcing conditions, the
matrix A may be Li/-decomposed or may be analyzed
for cigenmodes that will dominate in the predicted re-
sponse. Such “up-front” computations reduce the per
unit computational cost of solutions beyond the first,
but hecome impractical when N becomes sufficiently
large, since the computational effort grows at a much
faster rate than the number of equations. For example,
on square computational domains, the decomposition
of A grows as N2

With POD, the up-front cost is far less than that
just described. The empirical eigenvectors are com-
puted once in no more than O(NM?) operations (the
product S¥8). These eigenvectors are used in the
construction of A, which also requires O(NM?) opera-
tions (assuming A is not explicitly formed. but implied
through the computation of A®,; as suggested by Hall
et al.""). In practice, M is sufficiently small that the
work is dominated by computation of the snapshots, a
process requiring (H{N M) operations. Furthermore,
for a specified level of accuracy, M does not typi-
cally grow with NV; i.e., beyond a nominal threshold,
grid refinement does not better capture low-frequency.
high-energy structures. Once (16) is formed through
a set of transformations involving the empirical eigen-
vectors, many different cases (O(N)) can be examined

at a commensurate cost, owing to the smallness of A
(an M x M matrix). Accuracy of the approach is
high, provided that a sufficient number of modes are
retained, and provided that the forcing conditions are
within the scope of the sampling process.

The POD approach is well-suited to multi-
disciplinary analysis involving repeated interactions
hetween equation sets. A POD-based ROM can be
used to simplify a computationally demanding equa-
tion set so that it can be efficiently integrated with
a simpler equation set. For example, Hall et al. ap-
ply their analysis to the study of an isolated airfoil
in transonic flow with pitch (a) and plunge (h) struc-
tural coupling.®® Their development is now sumina-
rized. Following collocation of the structural variables
into the array h = (h,a)7, the structural dynamic
equations are expressed as

-I 0] d]|h 0 I h| 0
ERIE R R
17)
where M is a 2 x 2 matrix containing the airfoil mass,
static imbalance and moment of inertia (about the
elastic axis), K is the 2 x 2 stiffness matrix, F is an
array representing the integration of the discrete flow-
field into an applied force and moment, and h = %)

Here, (17) is placed in small-disturbance form as-
suming that aeroelastic equilibrium is achieved when
h = 0, such that h = hge/*t and h= jwhg(’jwt. The
force and moment function is written as F = Cqed*!,
where q is the flowfield disturbance captured by the
aerodynamic equations. C is a sparse 2 x N ma-
trix that represents the discrete force and moment
integration; it is a function of the reduced velocity
(V' = Ux /waby/11, where Uy is the freestream veloc-
ity, wq 1s the pitch natural frequency, b is the airfoil
semi-span, and g is the airfoil-fluid mass ratio). Us-
ing a POD-based ROM, suitably trained for pitch
and plunge oscillations, the disturbance q is replaced
by a set of reduced-order variables as shown above:
q = ®q. In small-disturbance form, (17) becomes

0 1 hg -1 0 hy | 0
K 0} [50]4_'“[ 0 M BOJ‘{C%}'
(18)
Pitch and plunge variables are linked to the aerody-
namic disturbance problem by defining a sparse N x 2
transformation matrix B such that b = Bh. Thus,
(16) becomes Aq — jw®TBh = 0, leading to a cou-
pled set of A + 4 equations:
A 00 q
0 01 bo
-C® K 0o hg

0 -&"B o q
+jwi 0 -I 0 hy | =0 (19)
0 0 M h,
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Equation (19) represents a complex, general eigen-
value problem (for 3 = jw) of small size that can be
used to compute the stability properties of the aeroe-
lastic system with great efficiency. For a given airfoil
configuration, the flutter speed can be bracketed by
systematically varying reduced velocity as a parame-
ter until the eigenvalue with largest real part changes
sign. This approach can be contrasted with the di-
rect approach of Morton and Beran,” 7" 72 which has
been successfully applied to the prediction of airfoil
flutter speeds in the transonic regime. Their direct
method does not reduce the nutber of degrees of free-
dom in the solution array, and amounts to an implicit
analysis of the eigensystem 3q = Jq, which is ex-
panded to include the structural equations. However,
the method does search for a single, conjugate pair of
eigenvectors that becomes neutrally stable, and with
this restriction, allows flutter speeds to be predicted
at a computational rate comparable to that of solving
the nonlinear equations for the static base solution.
As will be further reported in the Results section, the
POD-based approach extends nicely into three dimen-
sions,” while much additional work in this direction
is required for the direct approach.

Nonlinear POD Formulation - Subspace Projection

The linear POD formulation described above pro-
vides a practical means for assessing the linear stability
and dynamics of complex, acroelastic systemns at a very
sniall fraction of the computational cost of full-system
analysis. Specific examples will be given in the Results
Section. In cases where the dynamics are nonlinear,
or in which a reduced-order model of the nonlinear,
static behavior is desired, a different class of methods
is required. Two methods are described for treating
nonlinear systems with POD: a subspace projection
technique®' % and the Galerkin projection technique.
The former is described in this section, while the latter
is treated in the following section. The following devel-
opment assumes that computed fields are reasonably
smooth; the issue of field discontinuities is partially
addressed later.

Equation (9) is projected onto the subspace of
reduced-order variables through a weighted-residual
approach.” The dynamic residual, R, is defined as

R = fl_vz - Riw; A),
dt
which, when forced to vanish after weighting by each
of the M modes, yields

d
o7 (d—": ~ R(Wy + ®Ww; )\)) =0, (20)
With ®7® = I, (20) takes a form equivalent to that
previously applied by Pettit and Beran:*?

dw

T PTR(W, + dw; \). (21)

Equilibrium solutions of (21) satisfy the equation
R=3TR(W,+ ®w; ) = 0. (22)

This system of A nonlinear equations can be efhi-
ciently solved with the chord method following com-
putation of the Jacobian, J = UR 51 With this ap-
proach, the Jacobian is numerically computed about
a specified state, w®, and then frozen in the itera-
tive procedure J(w®) (W**+! — w¥) = —R, where the
superscript index denotes iteration. Only O(M) eval-
uations of R and ®w are necessary to construct J.
For the results presented below, chord iterates are con-
tinued until [|R|| < 1072 or a lack of convergence is
demonstrated.

Unsteady solutions, w(t). of (21) can be time in-
tegrated using either explicit or implicit techniques.
As described further below, results have recently been
presented™ for integration with the second-order-
accurate Crank-Nicolson scheme:™®

Fw't) = wirl - wh - 92—’ (8TR(Wo + ®W"; )

+ 87 R(Wo + @w"711 1)) =0, (23)

where the superscript now denotes time level. At each
time step, the nonlinear system (23) may again be
solved with the chord method. For weakly nonlinear
systems, the Jacobian I — A, J(W)/2 can be evaluated
once at t = 0; with stronger nonlinearities the Jacobian
can be periodically updated at additional computa-
tional expense.

Sensitivities of equilibrium solutions to a can be
very efficiently predicted with POD-based ROMs.
Three formulas are relevant: the relationship between
full-system and ROM sensitivities, %ﬁ’— = ‘P%, the
definition of ROM residuals, R = TR, and a condi-
tion on the ROM solution path

dR = Jdw + (?—Rdo =9, (24)
Ja
dw -_,0R
— = =J = 25
da Jda (25)
From these formulas, it follows that sensitivities satisfy
dw < OR
— =@J el —. 2
da da (26)

The ROM is most beneficial for sensitivity analysis
when there are several differeut parameters on which
the system depends. In the procedure above, J can
be computed and decomposed once (as true for the
steady-state analysis), and then repeatedly used in
evaluating the sensitivity formula (26) for each vari-
able. Following the decomposition of J, the primary
computational expense in evaluating (26) is calculat-
ing g—f}, which is variable dependent, but efficiently
obtained.
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The point at which (21) loses stability to time-
oscillatory disturbances is a Hopf bifurcation point.
The stability exchange occurs when a complex pair of
eigenvalues of J has vanishing real part, while other
real components of the eigenvalues of J are nega-
tive.”! For small M, this process can be inexpensively
and indirectly tracked through examination of all the
eigenvalues of J. We define v such that y(a) is the
real part of the eigenvalue of J(a) with largest real
part; critical points of stability exchange, a*, satisfy
v(a*) = 0. For practical problems, where M may not
be very small, critical points can be directly found in
a manner similar to that applied to aerolestic systems
by Beran and Morton.” The direct approach involves
solving v = 0 through Newton’s method:

9y

o (AI/+1()’) — _,y(au),

(27)

av

where the correction A¥*la is typically relaxed with
the parameter whopt: @+ = a” + whoprA¥ e

Nonlinear POD Formulation - Galerkin Projection

In comparison to the subspace projection method,
a more compact and efficient ROM can be obtained
through Galerkin projection. This approach is the
most common technique used to obtain nonlinear
ROMs through the proper orthogonal decomposition,
including applications involving equations of fluid mo-
tion.45. 16

The projection procedure is derived from the origi-
nal partial differential equations, written as

ow

¥ _R(w: \) =0,

5 (28)

where w is now interpreted as a continuous field vari-
able. As with the subspace projection method, the
residual of (28) is forced to vanish after integrating
the residual over the flow domain §2, weighted by each
POD mode e* (k=1,2,...,M):

[ Oow
/Qek (-8—17 - R(w;/\)) dQl = 0.

The modes are obtained by: carrying out a numerical
sampling process to obtain S in discrete form; solving a
eigenvalue problem similar to (8); computing ® = SV,
and scaling the modes to be orthonormal:

(29)

/ STSVIN = VA, (30)
JQ

/ eieidn={ LII=J

Q 0 otherwise.
As an example, Park and Lee apply a Galerkin pro-

jection to the reduction of the Navier-Stokes equations

in non-conservative form for the two-dimensional flow
of an incompressible fluid.*> They obtain a set of M

(31)

ordinary differential equations for w following substi-
tution of w(t) = ®Ww(t) into the continuum equations
(29) (for k=1,.., M):

. ALM
diiy

A
7 =ar + Z Wy Py + Z Z Wyl Qi s

=1 {=1 m=1

(32)

where ay, Py, and Qn are elements of singly, dou-
bly and triply indexed arrays computed by integrating
over terms involving the M retained modes. For ex-
ample, one term appearing in the expression for Qs
is [, e*e! %*Ildﬂ, which is evaluated numerically, since
the modes are available in discrete form.

The main difference between the Galerkin and sub-
space projections is in the evaluation of spatial deriva-
tives. With the Galerkin projection, modes are in-
serted into terms involving continuum derivatives that
are integrated once in weighted fashion prior to nu-
merical solution of the ROM. Alternatively, with the
subspace projection, modes are dynamically inserted
into the full, spatially discretized equations, which are
then projected onto the ROM subspace. There are
advantages and disadvantages associated with each ap-
proach. For the Galerkin projection, distillation of the
original equations into a fully reduced-order systemn
(e.g., (32)) yields a representation that can be very
efficiently solved for steady and unsteady problems.
However, the low computational cost of solving the
ROM is accompanied by a high cost in the construction
of the ROM. Returning to the Navier-Stokes equa-
tions for incompressible flow, the cost of computing
the elements Qg is O(NAM?), which is impracti-
cal if M grows too large. Other potential drawbacks
include: the need for ROM reconstruction if modes
are changed; the lack of full-system data with which
to assess model error; the need to have a problem-
specific procedure by which ROMs are constructed,
and the difficulty of expressing some parameters (e.g.,
those representing variations in local properties) in
the ROM equations. The main disadvantage of the
subspace projection method is evaluation of the full-
system array R at each iteration, which increases the
per iteration computational cost by at least O(N) and
requires software linkage between the procedures that
integrate the ROM and evaluate R. However, this
method is free from the drawbacks associated with the
Galerkin projection method.

Nonlinear Dynamics with Harmonic Balance

The last technique to be described in this review is
the harmonic balance (HB) formulation of Hall et al.””
Their approach was first applied to the computation
of time-periodic, nonlinear, viscous flows in 2-D turbc-
machinery cascades, and is now being used to analyze
the aeroelastic behavior of airfoils in transonic flow.™®
The goal of the HB method is the efficient computation
of time-periodic solutions of large, nonlinear systems.
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Current methods based on time integration, for exam-
ple those applied to aeroelastic computations, -3¢ can
be very demanding owing to the need for retention of
timme accuracy. The requirement for small, global time
steps and accurate integration over numerocus cycles
increases computational cost over steady-state analy-
sis, for which large, local time steps can be used. With
the HB method, the governing equations can be recast
in a steady-state form that accounts for the under-
lying time periodicity of the solution, and which can
be solved with pseudo-time-integration using standard
acceleration techniques (local time stepping and multi-
grid acceleration).

There are several techniques, including harmonic
balance, the finite-difference method, the shooting
method, and the Poincaré map method, that have
been applied to a large number of of relatively low-
order problems involving nonlinear oscillations. These
techniques are described in numercus texts and papers
(and the references within). 31328384 The method of
multiple scales has also been applied to the simulation
of limit-cycle oscillation for an airfoil/fap configura-
tion in transonic How.®?

However, the HB method developed by Hall et al.
is designed to treat nonlinear, aerodynamic problems
of practical size for which there are large shock mo-
tions.”” To describe this technique, we choose w to be
a discretized field variable with N degrees of freedom
satisfying w(t) = w(t + T), where T is the period of
the oscillation. The solution is expanded in a Fourier
series in time, truncated to 2Ngg + 1 terms:

Nug

Z wn()_]wnt (33)

~Nugp

wi(t) =

The term n = 0 corresponds to the mean flow. Ex-
pansion (33) can be substituted into the governing
equation (9) to obtain 2Nyp + 1 equations for the
vector coefficients in the Fourier expansion, w", by
collecting terms of like frequency. Using the nomen-
clature of Hall et al., these equations are written as
S(w) = R(w; \), whele in the unsteady term, S rep-
resents a collocation of the Fourier coefficients,

S = jwNw, (34)

R is a collection of nonlinear terms arising from the
residual array, R, N is a diagonal matrix containing
the harmonic indices (=Nyp,...,0,..., Nyp), and w is
the set of vector coeflicients

5 — -Nup 0
W = (w ey WO,

whus )T, (35)

The evaluation of R, what Hall et al call
the harmonic fluxes, is computationally expensive
(O(NN} ) for the Euler equations and not casily
extended to turbulent, viscous flows.”” They propose
an alternative harmonic balance formulation that is

both simpler and more efficient. First, w is defined at
2Ny + 1 instants in time, evenly distributed about
the periodic orbit, and collected into a single array w*

. © T W 2NysT
woEw ),W 2Ny +1 T 2Ny +1 '

Then, the discrete Fourier transform operator, E,
which is an N Ngp x NNy blocked matrix, is used to
relate w* and w according to w = Ew". Substitution
of this expression into the equation S = juNw =R
provides

jwET'NEw* = R, (36)

where R” is the residual array evaluated at the
2Npyp + 1 temporal points. The right-hand side of
(36) reduces to a simple form, since when the gov-
erning equations are in strong-conservation form, the
product E-'E = I can be formed through the linear
derivative expressions in R.

Finally, Hall et al. introduce a pseudo-time 777 by
which (36) is integrated towards “steady state!”

x

+ jwET'NEw* = R*(w"; \). (37)

w
or
This step is an important benefit of the HB method,
because it allows the time-dependent solution to
be computed with existing, accelerated steady-state
methods that need far fewer iterations than time-
accurate, time-integration methods. In this formula-
tion, the “unsteady” term is replaced by jwE~'NEw*,
requiring O(NN IUB) operations to evaluate (e.g., th(,
multiplication of Ew*), an improvement over the HB
method in fully spectral form. Furthermore, Hall et
al. report that the evaluation of the fuxes, R*, which
requires O(NNyp) operations using standard tech-
niques, dominates the cost of the numerical scheme.??

We comment that the HB technique does not involve
a reduction in the number of variables arising fromn
spatial discretization, and does not provide a model
that is a compact representation of the full system.
However, this technique does yield an efficient and
low-order representation of the temporal variations of
complex systems experiencing cyclic behavior in time.
Also, a form of this HB niethod that allows the period
T to be explicitly treated as an unknown (i.e., for an
autonomous system) is currently being developed by
Hall and his colleagues.

Results

In this section, we present results obtained with the
Volterra theory of nonlinear systems and the proper
orthogonal decomposition. Attention is primarily re-
stricted to problems in unsteady aerodynamics and
acroelasticity, but results in other fields are drawn
upon to show the wide applicability of the techniques.
Volterra first-order kernals are used to simulate the
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Fig. 1

Volterra kernels for CFD analysis of RAE airfoil.
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unsteady response of viscous flows about driven air-
foils, and the acroelastic response of airfoils and wings.
Higher accuracy can be achieved with second-order
kernals, and the relative improvement is quantified for
selected configurations. We also report on Duke Uni-
versity's application of POD to the rapid prediction of
flutter boundaries of airfoils and wings in the transonic
regime®® 5% and Air Force Research Laboratory’s in-
vestigation of reduced-order forms of the discrete Euler
equations.”® > The section is concluded with a sum-
mary of results obtained with the harmonic balance
technique of Hall et al.””

Volterra Series Analysis

First- and second-order kernels for the Navier-Stokes
solution (with Spalart-Allmaras turbulence model) of
an RAE airfoil in plunge at a transonic Mach num-
ber using the CFL3D code®® are presented in Fig. 1.
On the left are two sets of first-order kernels due to
two different sets of excitation amplitudes. Recall that
the first-order kernel is computed using (3) and is the
result of two pulse responses, one at a particular ampli-
tude and the second at double the first amplitude. One
of the first-order kernels shown in Fig. 1 was computed
using excitation plunge amplitudes of w = 0.01 and
w = 0.02, where w is a percent of the chord of the air-
foil. The other first-order kernel was computed using
excitation plunge amplitudes of w = 0.1 and w = 0.2.
It is clear that the two kernels are not linearly related,
demonstrating how the first-order kernel can capture
amplitude-dependent nonlinear effects. On the right of
Fig. 1 are five components of the second-order kernel
for this case. The second-order kernel is more com-
plicated because it is a two-dimensional function of
time. The important point to be made is that this
kernel is readily generated and its relatively smaller
values (compared with the first-order kernel) and its
rapid convergence indicate a small (but not negligible)
level of nonlinearity present. This information might

be used to determine that the first-order kernel may
be sufficient to capture the dominant nonlinear effects.
This point is demonstrated in Fig. 2

Fig. 2 is a comparison of plunge responses for three
different plunge amplitudes for the same configura-
tion. Specifically, a comparison is made between the
full CFD solution due to a sinusoidal plunging motion
and that obtained using the first-order kernel from
Fig. 1 {due to the larger excitation amplitudes). As
can be seen, the plunge response obtained using the
Volterra first-order kernel compares identically with
the response obtained from the full CFD solution for
the two smaller amplitude responses. The compari-
son for the largest amplitude response (i.e., nonlinear)
is very good as well, with a slight but noticeable dif-
ference between the two results. The nonlinearity of
the large- amplitude plunge responses is confirmed by
linearly scaling the smallest amplitude (i.e., linear) re-
sponse which, as shown in Fig. 2, cannot capture the
amplitude-dependent nonlinear plunge dynamics seen
at the larger amplitude. The turnaround time (*wall-
clock™) for the full CFD solution was on the order of a
day whereas the Volterra first-order solution was com-
puted on a workstation in 30 seconds using digital con-
volution. The initial cost of computing the first-order
kernel was trivial as well due to the rapid convergence
of the pulse responses. In fact, since each pulse (unit
and double amplitudes) goes to zero in less than 100
time steps, the responses were generated using a de-
bugging mode option available on the supercomputer
system used. Using this option, computations requir-
ing less than 300 time steps are executed immediatel-,
intended for debugging purposes. As a result, cach
pulse was computed within five minutes, resulting in
a first-order kernel that was computed in about ten
minutes. Of course, once the kernel has been comni-
puted, it can be used to predict the response to an
arbitrary input (steady, any and all frequencies, ran-
dom) of arbitrary length via digital convolution on a
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workstation. Using this method, there is no need for
the repeated, and costly, execution of the CFD code
for different inputs.

Normal Force

1,5{

Actual, nonfinear

05

0.0

-0.5

First-order

Nondimensional time

Fig. 2 Comparison of actual nonlinear and first-
order Volterra responses for three different plunge
motions and a linear response for the largest mo-
tion.

Ravch, Levy and Karpel have recently applied
the Volterra-based ROM approach to analysis of the
AGARD 445.6 wing.'* They simulate the flow field
around the wing using the EZNSS Euler/Navier-
Stokes code.” This code provides a choice between
two ituplicit algorithis, the Beam-Warming algorithm
and the partially flux-vector splitting algorithm of Ste-
ger et al. Grid generation and inter-grid connectivity
are handled using the Chimera approach. The code
was enhanced with an elastic capability to compute
trimmed maneuvers of elastic aircraft.®” For the CFD
computations, the flow field around the wing was eval-
uated on a C-H type grid, with 193 points in the chord-
wise direction along the wing and its wake, 65 grid
points in the spanwise direction, and 41 grid points
along the normal direction.

A process of mode-by-mode excitation, discussed
previously, was performed for this wing using four
elastic modes at a Mach number of 0.96. The mode-
by-mode excitation technique provides the unsteady
aerodynamic response in all four modes due to an ex-
citation of one of the modes. In this fashion, a matrix
of four-by-four functions (sixteen total) is developed.
Two sets of excitation inputs were used: the discrete-
time pulse input and the discrete-time step input. The
cost of computing these functions is minimal due to the
rapid convergence of these functions and it consists of
only four code executions. Ouce these functions were
defined, several full CFD solutions were generated that
were <ue to various sinusoidal inputs at various fre-
quencies. Shown in Fig. 3 is just one of these results
for a 5 Hz input frequency, comparing the result ob-
tained from the full CFD solution to that obtained
via convolution of the step or pulse responses with
a 5 He sinusoid. As can be seen, the comparison is

exact to plotting accuracy for most of the responses.
The full CFD solution, consisting of 8000 iterations re-
quired approximately 24 hours on an SGI Origin 2000
computer with 4 CPUs. By comparison, the Volterra-
based ROM response shown required about a minute.
Even including the upfront cost of computing the pulse
(or step responses), the computational cost savings are
significant. More importantly, the same pulse (or step)
functions can now be used to predict the response of
the aeroclastic system to any arbitrary input of any
length.

Shown in the left and middle portions of Fig. 4 is a
comparison of linear and nonlinear GAFs for the first
two modes of the AGARD 445.6 Acroelastic Wing at
a Mach number of 0.96. Noulinear GAFs refers to
the GAFs computed using the Volterra pulse-response
technique about a nonlinear steady-state value by ex-
citing one mode at a time and obtaining the resultant
respouses in the other modes. The CFD results are
compared with those using the ZAERO code for a
purely linear case. Frequency-domain values were ob-
tained by performing a convolution of several frequen-
cies of interest with the computed CFD-based pulse
responses. As can be seen, the comparison is reason-
able and shows the small (but not negligible) nonlinear
acrodynamic effects identified using the Volterra pulse-
response technique.

But rather than transforming the time-domain
GAFs into the frequency domain, discrete-time, state-
space systems can be created using the Volterra pulse
responses directly. Presented in the right portion of
Fig. 4 is a comparison of the pulse responses for the
AGARD 445.6 Aeroelastic Wing due to a unit pulse in
the first mode. The CFD-based pulses (circles) com-
pare exactly with the pulse responses obtained from
a state-space system generated to model this system.
The 32nd-order state-space system is a complete rep-
resentation of the entire frequency spectrum of the
unsteady aerodynamics defined by the GAF influence
functions for the four aeroelastic modes of this wing.
The pulse responses due to unit pulses in the second,
third, and fourth mode are just as good as those shown
in Fig. 4, but are not presented here for brevity.

POD Analysis

The proper orthogonal decomposition has been ap-
plied to a variety of multidisciplinary problems in-
volving the aerodynamic equations. In the remainder
of the Results section, we sununarize recent findings
arising from the reduction of system order through
POD-based modeling. We first review application of
the frequency-domain POD to aeroelastic systems in
two and three space dimensions, and then describe
progress in the analysis of nonlinear equation sets with
POD, including those that exhibit limit-cycle oscilla-
tion. This section closes with a summary of stability
results obtained for a front-stage rotor in viscous flow
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Fig. 3 Comparison of direct and convolved responses to sinusoidal excitation at 5 Hz (Mach 0.96).

using the harmonic balance technique.

Linear (Frequency Domain) POD Analysis

Hall, Thomas and Dowell®® report an application
of their linear POD formulation to a two-dimensional
aeroelastic configuration, and, in an ongoing study,
Thomas, Dowell and Hall™ extend this previous work
to the analysis of three-dimensional wings. In 2-D,
Hall et al. develop POD-based ROMs for the NASA
Ames Research Center NACA 64A010 airfoil with a
pitch and plunge structural model representative of
a swept-wing section.®® Base solutions of the Euler
cquations, Wy, are computed with a node-centered
Lax-Wendroff scheme for freestream Mach numbers,
Mo, between 0.7 and 1.0. A shock first becomes ev-
ident. in the base flow solution near the airfoil crest
at about Mach 0.8. The aerodynamic equations are
solved on grids of O topology; solution insensitivity
to grid refinement is verified using a sequence of grids
involving 63 x 33, 97 x 49 and 129 x 65 nodes.

Reduced-order models of the flow equations are con-
structed from solution snapshots resulting from two in-
dependent airfoil movements about base states: pitch
oscillation and plunge oscillation. Using the proce-
dure detailed in the Analysis section, snapshots are
computed from (15) for reduced frequencies (nondi-
mensionalized by freestream velocity and airfoil chord)
evenly distributed between -1 and 1. Following collec-
tion of 41 snapshots, Hall et al. assemble ROMs with

up to 41 retained modes.”® A ROM is computed for
each different Mach number {and base flow) examined.
The aerodynamic equations in reduced-order form are
then coupled with the structural equations, leading to
the low-order, aeroelastic eigenproblem (19).

Hall et al.®® carry out very efficient analyses of
(19) to construct flutter boundaries for the thickened
NACA 64A010 airfoil. Their results are summarized
in Fig. 5. Flutter speeds predicted with POD-based
ROMs compare well with those previously reported
from transonic small-disturbance analyses,®®8%9 and
are used to document precisely the fold in the flut-
ter boundary characteristic of the NACA 64A010 air-
foil. As observed by Hall et al., the Mach number st
which the fold occurs is underpredicted by the small-
disturbance analyses relative to the POD-based Euler
analysis.”® Fig. 5 also illustrates that the POD results
are well converged in the number of grid points used
in the CFD computations and the number of modes
retained in the ROM. For only a small set of Mach
numbers do the results obtained with either the coars-
est grid or the fewest number of retained modes deviate
from the remaining results. In particular, the highly
nonlinear behavior around Mach 0.9 is well defined in
most cases.

In work soon to be published,™ Thomas et al. have
extended the linear POD formulation to the analysis
of the (weakened) AGARD 445.6 wing. Their in-
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computed with frequency domain, POD-based ROMs.

versus other computational results; Middle: sensit
sensitivity of POD results (finest grid) to number of

vestigation addresses two potential concerns for the
application of POD-based methods to practical aeroe-
lastic configurations: the size of ROMs necessary to
capture 3-D effects, and the sampling requirements as-
sociated with a multiplicity of configuration-dependent
structural modes. Thomas et al. compute base flow
solutions of the Euler equations with a grid of O-O
topology containing 49 x 33 x 33 nodes, and construct
flutter boundaries through POD analysis for Mach
numbers between (.5 and 1.141. They develop POD-
based ROMs using two approaches. First, a 55-mode
POD is built at each Mach number by computing solu-
tions of (15) at reduced frequencies evenly distributed
between 0 and 0.5 (conjugate solutions are associated
with negative frequencies) for the first 5 natural modes
of the wing structure. With this surprisingly small
number of POD modes, Thomas et al. obtain results
that are very consistent, in terms of flutter speed and
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Left: results from 41-mode ROM (finest grid)
ivity of 41-mode ROM to grid refinement; Right:
retained modes (from Hall et al.?® with permission).

frequency ratio, with those published by Lee-Rausch
and Batina.®! Thomas et al. also propose and demon-
strate a promising technique for reducing the number
of snapshots necessary to construct an effective POD-
based ROM for an acroelastic configuration. With this
approach, only two snapshots are required for each
natural mode of the structure, in addition to a set
of “fundamental” modes, to construct the aercelastic
ROM.

Nonlinear POD Analysis - Subspace Projection

To study the application of POD to problems in
acroelasticity for which the reduced-order model is
nonlinear, Pettit and Beran have first examined flow-
field response to steady and unsteady changes in struc-
tural shape. One such problem which has proved
valuable is the response of inviscid flow over a deform-
ing panel in two space dimensions.®* ™ The flowfield
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is situated above an infinite, panel that lies in the
y = 0 coordinate plane, except for a segment between
r = —% and ¢ = % for which the panel shape is
a parabolic arc defined by y,(z,t) = () (1 — 4z?).
For steady problems, the amplitude parameter § is
a specified constant, while for unsteady problems,
§(t) = 6y sin(wt) (1 — e~ ") is assumed, where &, w,
and « are constants. The length of the “bump” and
the far-field velocity, U, serve in the nondimension-
alization of the aerodynamic analysis. A schematic of
the bump and the 71 x 141 baseline grid are shown in
Fig. 6. The flowfield response is assumed to be gov-

Deformed Panel Segment
U (Shown More Deformed Than Actuah)
= v
/
4
an +172
-x

@
T
LT
it

Fig. 6 Top: Schematic of panel and coordinate
system. Bottom: Baseline grid.

erned by the Euler equations, which are discretized
and solved with the upwind total variation diminishing
scheme of Harten-Yee.?%? A transpiration condition
is used by Pettit and Beran to satisfy approximately
the boundary conditions on the bump surface while
not requiring grid deformation.

Pettit and Beran® conduct an analysis of flow
changes in response to static changes in amplitude
of the bump described above, and their preliminary
results are summarized here. The algorithm for full-
system analysis is validated by comparing computed
results with those obtained using Cobaltgg, an un-
structured, finite-volume algorithm for the Euler and
Navier-Stokes equations® that has been validated ex-
tensively. Differences in the predictions of the two
techniques are small for variations of both Mach num-
ber and bump amplitude in the range of interest.

A single, reduced-order model for the steady-state
bump is constructed from 26 full-system solutions
computed at Mach 1.1, 1.15, 1.2, 1.25 and 1.3. At
each Mach number, snapshots are computed at several
different values of 4. For a given Mach number, there
is a critical bump amplitude beyond which the shock
attached to the leading edge of the bump detached,
forming a bow shock. At sufficiently large values of
4 and prior to shock detachment, response of the sys-
tem is nonlinear to changes in 5. Once the bow shock
forms, flow structure (i.e., shock position) becomes
highly sensitive to additional changes in Mach num-
ber and bump amplitude, a situation not well suited

for POD analysis. Thus, most sampling and ROM
application is limited to cases for which the flow is
entirely supersonic.

With 26 solutions, a total of 104 modes are com-
puted. Pettit and Beran examine results when all
modes are included in the analysis and when there
is truncation to 60 and 40 modces.>® Full-system so-
lutions of (9) are time integrated to steady-state with
2000-10000 function evaluations, depending on param-
eter selection, and are initialized with uniform flow.
While these cases were computed serially, they could
also have been computed in parallel. Up to a point,
sampling is a naturally parallel process; as a solution
space is revealed, fill-in cases can be computed when
resources become available. Equilibrium solutions of
the POD-based ROM, satisfving (22}, are computed
along paths of constant Mach numbher and varying 4,
starting with the trivial solution at 4 = 0 and pro-
gressing in increments of Ay = 0.001. At each point,
ROM values are initialized using the previous solution,
and solutions are typically computed in 3-10 function
evaluations. Computing on the order of 100 solution
points with the ROM typically requires fewer function
evaluations than that necessary for a single solution of
the full-system.

Pettit and Beran interpreted the steady-state results
using the minimum local Mach number, which typi-
cally is observed at the bump leading edge.’? Exami-
nation of other flow variables did not alter their conclu-
sions concerning the viability of the POD-based ROM.
Solutions are compared in Fig. 7. Full-system solu-
tions not used as ROM snapshots are also computed
to obtain predictions of system behavior away from
snapshot locations. Norms of the full-system residual
are readily computed after each function evaluation
in the subspace projection method and used to evalu-
ate the quality of reduced-order solutions. Modeling of
parameter-space subdomains where residual norms be-
come unacceptably high can be improved by retaining
different sets of modes or through model reconstruc-
tion. In the figures just cited, only ROM solutions
with a residual norm less than 0.6 are displayed. Pet-
tit and Beran found this cutoff value to be consistent
with good ROM solutions for the configuration being
investigated. When 60 or all 104 modes are retainerl,
ROM solutions are highly accurate and reproduce the
nonlinear behavior evident in the response of the full
system. Interestingly, the 60-mode ROM is somewhat
superior to that of the full, or 104-mode, ROM. Pettit
and Beran speculate that higher order modes in the
104-mode ROM, which possess length scales on the
order of the node spacing, can lightly pollute solutions
with the present scheme, which makes no attempt to
filter out such modes. However, in the steady-state
analysis, modes are retained that are much smaller in
magnitude (eigenvalues of STS as small as 10719) than
that of the dynamic analysis. The fundamental diffi-
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culty with retaining low-energy modes in the dynamic
analysis is not observed in the steady-state analysis.
This is not a practical problem, since it is desirable
to use fewer than the maximum number of modes.
When the number of retained modes is decreased to 40,
the accuracy of the ROM is nominally degraded, and
the number of computed points satisfying the residual
norm cutoff is diminished. Most notably, solutions at
Mach 1.1 do not meet this criterion, which may not
be surprising, since these points are on the boundary
of the snapshot region and reflect the most nonlinear
fluid dynamic behavior.

Beran and Pettit have also computed unsteady solu-
tions of the Euler equations for supersonic flow over an
oscillating bump with an implicit, POD formulation.
Their results were recently presented at the ICES 2K
Conference,”™ and are reported here to document the
robustness and accuracy of the implicit technique de-
scribed in the Analysis section. They consider a Mach
1.2 flow over a bump with oscillation specified by the
following baseline parameters: ¢ = 0.005, w = 1.0,
and a = 3. The computational domain is discretized
in a manner equivalent to that used in the steady-
state analysis. A POD-based ROM is constructed for
the baseline case by explicitly integrating the discrete
equations, expressed as (9), and collecting snapshots.
Integration is carried out for 20 time units (approxi-
mately 4 cycles) with a time step of 0.01, the maximum
value observed to permit stable integration. A to-
tal of 200 snapshots, each representing a collocation
of the conserved variables over the computational do-
main, are collected at 10-iterate intervals. The initial
state of the flowfield is specified to be uniform flow at
freestream conditions and is used in the definition of
Wo.

Pettit and Beran® block the snapshot matrix so
that the non-trivial elements of each column of S rep-
resent only one of the conserved variables at a specified
instant. Iu this manner, the 200 snapshots described
above fill S, which is organized as a block diagonal
matrix with a total of 800 columns. Each block is as-
sociated with one of the conserved variables, as are
each of the 800 computed modes. This approach is in-
efficient for very large problems owing to the increased
size of 8, but leads to an adaptable framework for com-
puting modes for each conserved variable.

Following (8), ROMs are computed for between 6
and 20 retained modes. With 20 modes retained, the
number of degrees of freedom is decreased by a fac-
tor of 2000. Pettit and Beran observe that with as
few as 8 modes retained, ROM integration yields very
accurate results in comparison to full-system analy-
sis for the case used to construct the reduced-order
model. This is illustrated qualitatively in the left and
middle portions of Fig. 8, where the structure (and
magnitudes) of the density tields near the bump explic-
itly computed with a 14-mode ROM and full-system

analysis are nearly identical (shown at the end of the
sampling period, ¢ = 20). In the right portion of Fig. 8,
time histories of pressure at the bump midpoint are re-
ported for a 10-mode ROM implicitly computed with
the Crank-Nicolson scheme. There it is seen that im-
plicit integration of the ROM accurately reconstructs
the aerodynamic response, even using time steps 40
times larger than needed for explicit integration of the
full system. Results are shown for 5 subiterates in
the Crank-Nicolson scheine; solutions can be obtained
with 2 subiterates (without loss of accuracy) an order-
of-magnitude faster than with full-system analysis.

In a manner motivated by the frequency-domain
analysis of Hall et al.,%0 Pettit and Beran,”® construct
hybrid ROMs combining snapshots computed for dif-
ferent bump amplitudes and frequencies. These hybrid
ROMs successfully reproduce aerodynamic responses
for cases not explictly included in the sampling pro-
cess. Pettit and Beran also report®? 53 for the bump
problem that the subspace projection method yields
numetically divergent results when the number of re-
tained modes exceeds 19. By increasing the number
of modes, the onset of divergence can be delayed, and
the accuracy of the ROM solution increased prior to
divergence. At present, the cause of this instability
has not been identified; however, a violation of mass
conservation in the system can be associated with the
onset of divergence, which suggests a direction for fu-
ture examination.

Nonlinear POD Analysis of Limit-Cycle Oscillation

To assess the applicability of POD-based ROMs to
differential equations that exhibit limit-cycle oscilla-
tion (LCO), Beran et al.®! computed solutions of a
tubular reactor, known to experience LCQ ¥ 90 with
the subspace projection technique.  The governing
equations are

Bwl

a9t = Lwy —w; Quy). (38)

O — Ly = 81 (wr = ) + B @), (39)
=2 o? 0
“ Pedus?  Ox
where Pe, 31, B¢, 83, I', and g are specified param-
eters. Equations (38) and (39) describe convection,
diffusion and reaction within the reactor, and are re-
ferred to as the CDR equations. The variables w; and
w, represent concentration and temperature, respec-
tively, and the parameter u (the Damkohler number)
determines the ability of the CDR equations to sus-
tain LCO. The spatial domnain is normalized; boundary
conditions are applied at £ = 0 and x = 1. Following
spatial discretization of the equations and specifica-
tion of suitable initial conditions, which are details
described elsewhere,®! the CDR equations take the

dw

form Z¥ = R(w;p).

Q) = pesp (F . L) ‘

wo
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Right: Time histories of computed surface pressure at bump midpoint for different integrations of 10-mode

ROM.

The CDR system experiences a supercritical Hopf
bifurcation at p* = p = 0.16504,°" which is accu-
rately predicted by a POD-based ROM. The stability
properties of the CDR system are shown in Fig. 9,
where it is scen that stability of the equilibrium sys-
tem is lost beyond the bifurcation point. Solutions
are characterized by the maximum value of tempera-
ture computed over the domain, Tinax. The ROM is
developed by sampling the CDR system as it evolves
towards steady-state (0 < t < 2.5) for a value of ;i lead-
ing to system stability: u® = 0.16 < p*. Following the
procedure described above, 8 modes are computed and
retained, representing a 13-fold reduction in problem
size. Solutions of the full system are explicitly com-
puted with time integration using a maximum time
step of 0.0005 (limited by numerical stability). Equi-
librium solutions of the ROM are computed with the

procedure described above, while LCO solutions are
found with an explicit procedure like that applied to
the full system.®! It should be noted that even with
the explicit procedure, dynamic solutions of the ROM
can be obtained with time steps 50 times larger than
0.0005. This increase in allowable time step is a con-
sequence of the absence of high-frequency, odd-even
modes in the POD-based ROM that would destabilize
the numerical scheme.®!

Equilibrium solutions of the full system and the
ROM are observed to be in excellent agreement. As
seen in Fig. 9 (left), agreement is nearly exact at
1% = 0.16, where the POD is constructed, and is ex-
cellent for the remaining values of p shown. A slight
inaccuracy is introduced at the Hopf point, where new
system behavior becomes available. Beyond the Hopf
point, LCO amplitude is well predicted with the ROM.
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Comparison of full-system and ROM solutions for an 8-mode ROM trained at u® = 0.16. Left:

Equilibrium and LCO branches. Middle: ROM system stability. Right: Sensitivity to p variation.

Quantitative differences between ROM and full-sytem
solutions can be reduced with nominal improvements
in sampling (increasing the number of retained modes
or increasing the sampling period).?!

The critical value of p at which the CDR system
loses stability is also very accurately predicted using
reduced-order modeling. The variation of the stability
parameter v computed with the ROM (cf. (27)) is
shown in Fig. 9 (middle). Stability loss is observed
at p = 0.16503, nearly the same value predicted with
the full-system equations (g = 0.16504). The Hopf
point is computed directly with Newton’s method in 11
iterations (wyopr = 0.5), starting with the equilibrium
solution at = 0.16.

Seunsitivity of the variable T,,.x to the bifurcation
parameter p is computed with the ROM formulation
(20) at a = 0.164 using the 8-mode ROM described
above. As shown graphically and quantitatively in
Fig. 9, the accuracy is excellent, with only a 1% dif-
ference between the ROM and full-system results.

Nonlinear POD Formulation with Shocks

The application of POD to flows with shocks is
a challenging endeavor, owing to the obvious diffi-
culty of capturing movements of solution discontinu-
ities with a fixed set of global modes. In preliminary
work, the utility of ROM/POD for modeling the quasi-
static movement of strong shock waves in a quasi-one-
dimensional nozzle, assuming inviscid flow, is being
assessed YT The location of the standing shock is var-
ied by altering the the boundary conditions and/or the
ratio of specific heats. It is observed that with straight-
forward application of the nonlinear POD analysis de-
scribed above, accurate modeling of shock movement
requires an excessively large number of modes and data
samples. Essentially, one snapshot is needed for every
grid point location traversed by the moving shock.

To improve the effectiveness of POD for problems
of this type, a domain decomposition approach has
been successfully developed as part of an ongoing in-
vestigation.®” In this approach, regions of the flow field

that do not experience shocks are modeled with POD,
while the flow-field region over which the shock moves,
identified during the sampling procedure, is modeled
with the full-system equations. See Fig. 10. With
almost no degradation of accuracy, this methodology
captures shock movernent in the nozzle using an order-
of-magnitude fewer degrees of freedom. An extension
of these techniques is currently underway for a two-
dimensional configuration where greater levels of order
reduction are anticipated.
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Fig. 10 Top: Nozzle with standing shock. Bottom:
Decomposed domain for POD analysis.

Nonlinear POD Analysis - Galerkin Projection
Galerkin projection is being used by a number of in-
vestigators to develop POD-based ROMs of low order
for the study of various nonlinear phenomena. One
noteworthy example is the work of Cizmas (Texas
A&M University) and Palacios (San Diego State Uni-
versity), which involves the construction of reduced
order models for two-phase flow, heat transfer and
combustion in dense or dilute fluid-solids flows. Their
ongoing research project has several objectives: nu-
merical generation of a database that includes spatio-
temporal samples of system variables; modal decompo-
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Fig. 11
gas/solid mixture.

sition of these variables through POD analysis; identi-
fication and separation of dominant spatial structures
during the evolution of the fluid and solids phases;
Galerkin projection of the governing partial differen-
tial equations onto POD-basis functions to produce a
low-dimensional set of ordinary differential equations,
and development of visualization tools for low-order
models.

Preliminary results obtained by Cizmas and Pala-
cios demonstrate the ability of the POD to capture
efficiently the energy content in a gas/solid mixture.
The 2-D configuration is jet flow into a fluidized bed
(40cm x 60cm) of 300 micron particles. The governing
transport equations are much more complex than the
Navier-Stokes equations; 3 gas and 3 solids equations
comprise the set. Illustrated in Fig. 11 are ten snap-
shots of the y-component of velocity taken at equal
intervals in time that partially represent the ensemble
of snapshots over all system variables. The snapshots
are used in the computation of 20 POD modes for this
component of velocity that account for 80% of the sys-
tem energy (ratio of sum of retained POD eigenvalues
to sum of all POD eigenvalues). Flow asymmetries
about the vertical axis are captured in several re-
tained modes. Their ongoing work, which is yielding
promising results, is now focused on computing a low-
dimensional set of ordinary differential equations that
govern the fluid-solid flow.

Transonic Aerodynamics with Harmonic Balance

We now describe results obtained with the harmonic
balance technique of Hall et al.,”” as summarized in the
Analysis section. Hall et al. consider the flowfield near
the tip of a front-stage rotor for a high-pressure com-
pressor.”” The flow is modeled as two dimensional and
the configuration is treated as an infinite blade row by
imposing a suitable periodicity condition. The inlet
Mach number and Reynolds number are specified to
be 1.27 and the governing equations are the Navier-
Stokes equations, closed with the Spalart-Allmaras
turbulence model.?* A baseline grid of H-O-H topology
with 193 x 33 points is found to produce grid-converged

Snapshots of gas velocity in the y-coordinate direction at 10 equally spaced time instants of a

results. The complexity of the steady-state flowfield
is captured in Fig. 12, where shock-shock and shock-
boundary layer interactions are observed to occur.

Fig. 12 Computed Mach number contours for
transonic viscous flow through front stage compres-
sor rotor (from Hall et al.”” with permission). Two
instances of spatially periodic flowfield shown for
clarity.

Time-periodic unsteadiness is introduced by Hall et
al. in the rotor flowfield by oscillating the rotors in
pitch about their midchords with a reduced frequency
of 1. While they report many results, we summa-
rize their findings for the imaginary component of the
first harmonic of the unsteady surface pressure, which
has implications for aeroelastic stability.”” Variations
with respect to two parameters are examined: the
pitch amplitude (&) and the interblade phase angle
(). Pressure is nondimensionalized by inlet dynamic
pressure (giniet). aitfoil chord (¢), and & (to better
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display nonlinear effects). For ¢ = 30 degrees, first
harmonics of the unsteady pressure distributions are
shown for different values of pitch amplitude and num-
bers of retained harmonics (Ngp) in Fig. 13. The
first harmonic solution is rapidly convergent in Nyp,
with 5 harmonics being sufficient to capture all details
of the unsteady pressure distribution. Nonlinearity
arises with increasing @&, and are particularly notice-
able when @ reaches 1 degree near a normalized airfoil
surface position of 0.4. At this location, the unsteady
pressure spike spreads out, a result of shock movernent
about this point.””

O 1 Harmonic
2 3 Harmonics
<© 5 Harmonics
A 7 Harmonics

i L L s

. i . L
0.0 0.2 0.4 0.6 0.8 1.0

Imag Unsteady Pressure, Im(p,)/(q,,..c%)

Airfoil Surface Location, x/c
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Fig. 13 First harmonic of unsteady pressure dis-
tribution for front stage compressor rotor airfoils
vibrating in pitch. Top: Variation of number of re-
tained harmonics for pitch amplitude of one degree.
Bottom: Variation of pitch amplitude for Nyg =5
(from Hall et al.”” with permission).

Variation of the imaginary part of the first harmonic
of the pitching moment yields a more dramatic indi-
cation of the role of nonlinearity. Blade stability is

achieved when this component of the integrated pitch-
ing moment is negative for all values of ¢.7" Results
are displayed in Fig. 14, where it is seen that nonlin-
ear aerodynamics serve to stabilize the flow when & is
increased to about 1 degree.
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Fig. 14 Imaginary part of first harmonic of the

blade pitching moment as a function of interblade
phase angle (from Hall et al.”” with permission).

The HB scheme is reported to be highly efficient,
an order of magnitude faster than conventional time-
accurate, time-integration schemes.”” Converged re-
sults are found when 5 harmonics are retained, at
a computational cost 7.5 times larger than that of
steady-state analysis, per iteration. Convergence to a
numerical solution is not obtained with the HB method
when Nyp is increased to 7, a situation that is being
further investigated at Duke University.

Thomas, Dowell and Hall are also applying the HB
scheme to the study of limit-cycle oscillation in air-
foils with structural coupling in the transonic regime.”®
This work is important in unraveling the role of moving
shocks in the phenomenon of limit-cycle oscillation.

Concluding Remarks

The development of ROMs based on the time-
domain version of the Volterra theory of nonlinear
systems has been described, including continuous- and
discrete-time versions of the theory. The basic ob-
jective of the theory is the identification of linearized
and nonlinear kernel functions that capture the dom-
inant response features of a nonlinear system. This
is, in fact, a nonlinear Green's function method that
provides a very natural and intuitive extension of well-
understood linear phenomena into the nonlinear do-
main.

In the fields of unsteady aerodyunamics and aeroe-
lasticity, the use of influence coefficient functions, such
as aerodynamic influence coeflicient {AICs) functions
and structural influence coefficient (SICs) functions
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are routine. Since these influence coeflicient functions
are derived from Green's function concepts, the exten-
sion of these concepts into the nonlinear domain via
the Volterra theory is quite natural and effective. In
fact, these functions can be seen as a linear subset of
a much broader nonlinear Volterra functional space.

While in its infancy for the analysis of large, spa-
tially discrete systems, the Volterra method is cur-
rently under continued development. One of the en-
couraging applications presented is for a Navier-Stokes
solution of a 2-D RAE airfoil in transonic flow using
the CFL3D code with the Spalart-Allmaras turbulence
model. First- and second-order kernels were computed
for plunging motions of the airfoil. It was shown
that the first-order kernel (that captures amplitude-
dependent nonlinearities) was used successfully to pre-
dict the plunging response of the airfoil for large (non-
linear) plunging motions at a minute fraction of the
cost of the full CFD solution. Another important re-
sult reviewed was an Euler solution of the AGARD
445.6 Aeroelastic Wing recently computed by Raveh
et al.!? using the EZNSS CFD code. It was shown
that with pulse or step responses the full linearized
frequency-domain generalized aerodynamic force ma-
trices were reproduced at a fraction of the time and
cost than that required by standard techniques.

The status of the Volterra-based ROM approach
can be sumimarized as follows. The method has been
used to show that discrete-time concepts, indeed digi-
tal signal processing concepts such as unit pulses and
step inputs, are directly applicable to CFD codes.
The method has also been shown to be a higher-level
generalization of the standard linear methods in use
today. This is beneficial, because it means that indus-
try experts do not need to restructure their analysis
process in order to introduce Volterra-based methods
into their design algorithms. In addition, the nature
of the methaod is such that it requires minimal, if any,
modification to the CFD code of interest. Most un-
steady aerodynamic or aeroelastic CFD codes already
have various excitation inputs (e.g., sinusoidal} and
extension to a Volterra-based ROM approach simply
involves adding a pulse (or step) input to the suite
of available inputs - the CFD code itself remains un-
changed.

As for the challenges associated with the Volterra-
based ROM approach, there is much work to be done.
An important issue that needs to be addressed is the
issue of modal superposition with respect to nonlin-
ear effects. Although it is clear that a mode-by-mode
excitation is a linearization of the aeroelastic process,
it is important to understand the limitations of this
approach. In addition, work continues on the develop-
ment of a technique that provides simultaneous exci-
tation to all modes, eliminating the linearization issue.
Linearized state-space models are heing developed us-
ing the CFD-based pulse responses. These state-space

models can be incorporated directly into control sys-
tem analysis, for example. These state-space matrices
also sidestep the need to transform time-domain CFD)
loads into the frequency-domain only to transform the
frequency-domain loads back into the time domain via
rational function approximations. Using the Volterra
approach, time-domain CFD-based information goes
directly into creating time-domain state-space matri-
ces, a more efficient process. But the ultimate chal-
lenge lies in the creation of nonlinear (bilinear) state-
space matrices which are mathematically related to
the Volterra kernels. Some work has been done in this
area, but there is significantly more work that needs
to be done.

The results reviewed in this paper demonstrate the
viability of POD-based reduced order models for rapid
analysis of aerodynamic and aeroelastic problems. The
frequency-domain approach of Hall et al. has previ-
ously been shown® to predict. accurately the linearized
response of striucturally coupled airfoils in transonic
flow. As is typical in the use of POD-based ROMs, the
computational cost of constructing low-order models
through the frequency-domain approach is dominated
by sampling (snapshot collection). Solutions are re-
quired for discrete distributions of frequency in cach
of the characterisitc modes of deformation (pitch and
plunge in the case of the structurally supported air-
foil). The cost of obtaining a large number of snap-
shots can exceed that required to execute a small num-
ber of general simulations. However, several important
benefits in the application of POD ta aeroelastic prob-
lems are suggested by the work of Hall et al. for 2-D
airfoils®® and Thomas et al. for 3-D wings.”™ Following
the one-time construction of a very low-order aeroe-
lastic model, effects of parametric variations in the
structural dynamics model can be rapidly assessed.
Furthermore, the consequences of more fundamental
changes to the structural model, such as freeplay,®®
can be understood with greater clarity. The exten-
sion to higher level multi-disciplinary applications,
e.g., aeroservoelasticity or design with aeroelastic con-
straints, may be made practical by the presence of
low-order models. Lastly, the frequency domain POD
represents an efficient and accurate compression of the
salient dynamic characteristics of the acroelastic sys-
tem. In summary, the efficiencies of POD-based ROAIs
are realized when system properties can be character-
ized and observed once for ROM construction and then
be allowed to vary in new ways compatible with the
previous observations.

Application of the subspace projection method to
the steady-state analysis of inviscid, compressit:le
flow over a bump has yielded significant insight into
the suitability of POD-based methods for nonlinear
aerodynamic and aeroelastic analyses. By collecting
a nominal number of solution samples over a two-
parameter space, defined by bump amplitude and
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freestream Mach number, a POD-based ROM was
constructed that preserved the nonlinear transition of
supersonic flow states towards transonic states. Not
surprisingly, we observed that the range of validity (as
measured by a residual norm of the full system) of
the ROM decreased as the number of retained modes
was decreased. Interestingly, validity was longest last-
ing in the linear region of the parameter space (small
amplitude for given Mach number), suggesting that
low-energy modes were important in the accurate cap-
ture of nonlinear behavior, as also seen in the dynamic
analysis. Computation of ROM solutions required ap-
proximately two orders of magnitude fewer function
evaluations, which allowed a much more rapid and de-
tailed exploration of the previously sampled solution
space. We speculate that such ROMs are more reliable
and useful than interpolation, although this should
be documented. Aside from the potential advantages
of data compression (i.c., keeping fewer modes than
fully represented by the snapshot data), which could
be significant in large systems characterized by large
numbers of parameters, the ROM/POD provides a
compact set of degrees of freedom that can be varied
to evaluate sensitivities, optimal configurations, and
system stability, in a manner based on the discrete
equations of the full system.

Uunsteady acrodynamic solutions were also obtained
with the subspace projection method at a significant
computational savings over standard analysis.  Re-
sults were reported for the response of a supersonic
flow over a bump, like that described in the steady
analysis, whose amplitude varied sinusoidally in time.
Following construction of a reduced-order model, the
time-dependent character of the reduced-order system
was accurately aund efliciently computed with a sub-
iterate form of the implicit Crank-Nicolson scheme.
Time-dependent solutions of the ROM were computed
an order of magnitude faster than full-system analysis.
As true of the steady-state analysis, the computational
cost associated with application of the POD-based
ROM was dominated by the cost of data sampling used
in ROM construction. The relative significance of the
sampling cost can be minimized by constructing hy-
brid ROMs that account for frequency and amplitude
variations, and which are robust over a wider range of
possible bump dynamics.

Efficiency of the subspace projection technique was
derived from two sources: decrease of the number of
variables that characterize the system, and increase of
allowable time step. In the bump problem, the number
of variables was decreased by three orders of magni-
tude (40,000 to about 10). The method was not three
orders of maguitude faster, however, since evaluations
of the full-system source term (R in (9)) were required
with this approach. For steady analysis, full-system
evaluations were employed in the construction of the
ROM Jacobian, and in unsteady analysis, full-system

evaluations were also necessary in the computation of
dynamic residuals. With the POD-based ROM, com-
putational work associated with implicit portions (i.e.,
left-hand sides) of system equations is virtually elimi-
nated. Thus, the subspace projection method is partic-
ularly well suited for implicit formulations of nonlinear
problems, such as steady-state, sensitivity and bifur-
cation analyses. For unsteady problems, it was also
found that time steps allowed by POD-based ROMs
were an order of magnitude larger than that allowed
by explicit, full-systetn analysis. The current approach
should be compared to the computation of a relevant
viscous flow using a standard implicit technique to de-
termine potential savings for a practical problem.

Once sampling identifies the most energetic POD
modes, other techniques are available with which the
governing equations can be reduced in order; for ex-
ample, Galerkin projection cau be used to fully project
the governing equations. The relative merits and de-
merits of the Galerkin and subspace projection meth-
ods are described in the Analysis section. Currently,
the Galerkin approach is being used by Cizmas and
Palacios to develop a small set of ordinary differential
equations representative of jet flow in a solid/liquid
mixture. A subspace projection method is also be-
ing adapted by Lucia, King, Beran and Oxley”” to
treat a CFD problem for which the computational do-
main is decomposed to isolate a moving shock. Other
techniques, such as collocation, should be explored
that may allow the POD modes to be used in a more
efficient manner than subspace projection, but with
perhaps greater flexibility than Galerkin projection.

An alternative approach to POD based on har-
monic balance has been proposed by Hall, Thomas
and Clark™ for the efficient computation of complex,
time-periodic systems. With their technique, the re-
sponse of a rotor flowfield to rotor pitch oscillation was
accurately simulated, and behaviors related to shock
movement and shock/boundary-layer interaction were
captured. By using a low-order representation of sys-
tem dynamics, the harmonic balance technique yielded
response predictions approximately an order of mag-
nitude faster than with traditional techniques.

In closure, several methods have been described in
this paper that offer new potential for the compu-
tational analysis of large, nonlinear systems. These
methods share a common reliance on existing numeri-
cal techniques, and in this sense do not replace tradi-
tional methods. Instead, reduced-order and harmonic-
balance techniques provide existing methods with a
higher level of algorithnic operation that enables
more sophisticated computations. For example, a
POD-based ROM of a discretized convection-diffusion-
reaction (CDR) system was described and shown ca-
pable of determining a variety of important charac-
teristics of the nonlinear system, including nonlinear
static behavior, bifurcation to limit-cycle behavior,
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and sensitivity to changes in system parameters. The
CDR problem serves as an analog for the study of
the aeroelastic properties of a wing, including static
analysis (e.g., determination of a control-surface re-
versal speed), dynamic analysis (e.g., prediction of a
limit-cycle oscillation amplitude), bifurcation analysis
(e.g., at what reduced velocities of the nonlinear sys-
tem does flutter occur), and sensitivity analysis (e.g.,
how do aeroelastic behaviors depend on structural pa-
rameters). Aecroelastic analysis of all these bahaviors
in a manner that is useful for structural or aeroser-
voelastic design is well beyond traditional methods.
It is by answering more difficult questions, typically in
the framework of multidisciplinary analysis, that ROM
techniques become attractive, if not necessary.

There are several challenges that need to be over-
come before ROM methods can be routinely applied
to practical problems. We group these difficulties into
three categories: construction, generality, and accu-
racy assessment. Which ROM method should be ap-
plied to a particular problem will probably depend on
the relative significance of these issues to the spec-
ified problem. In the first category, work needs to
be carried out to understand what response behav-
iors should be included in the construction of ROMs
to model robustly the response characteristics of sys-
tems with large numbers of parameters. In other
words, how much sampling is required for a partic-
ular system? Generality of the ROM approach is
also an important issue. Is the approach readily or
stubbornly extendable to different problems involving
different simulation tools? Can the ROM approach
function with modern, shock-capturing, CFD meth-
ods that incorporate turbulence models and deforming
meshes with unstructured or structured/overset con-
nectivities? And finally, the accuracy of ROMs must
be quantifiable for confident use. Systematic proce-
dures must be developed (such as residual monitoring)
to self-check ROM solutions and highlight conditions
upon which ROMs should be re-constructed.
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