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Abstract

We present a reduced-order modeling technique for subsurface multi-phase flow prob-

lems building on the recently introduced deep residual recurrent neural network (DR-

RNN) (Nagoor Kani et al. in DR-RNN: a deep residual recurrent neural network for model

reduction. ArXiv e-prints, 2017). DR-RNN is a physics-aware recurrent neural network for

modeling the evolution of dynamical systems. The DR-RNN architecture is inspired by iter-

ative update techniques of line search methods where a fixed number of layers are stacked

together to minimize the residual (or reduced residual) of the physical model under considera-

tion. In this manuscript, we combine DR-RNN with proper orthogonal decomposition (POD)

and discrete empirical interpolation method (DEIM) to reduce the computational complex-

ity associated with high-fidelity numerical simulations. In the presented formulation, POD

is used to construct an optimal set of reduced basis functions and DEIM is employed to

evaluate the nonlinear terms independent of the full-order model size. We demonstrate the

proposed reduced model on two uncertainty quantification test cases using Monte Carlo sim-

ulation of subsurface flow with random permeability field. The obtained results demonstrate

that DR-RNN combined with POD–DEIM provides an accurate and stable reduced model

with a fixed computational budget that is much less than the computational cost of standard

POD–Galerkin reduced model combined with DEIM for nonlinear dynamical systems.

Keywords Recurrent neural network · Proper orthogonal decomposition · Uncertainty

quantification · Multi-phase porous media flow · Reduced-order modeling

1 Introduction

Simulation of multi-phase flow in a subsurface porous media is an essential task for a number

of engineering applications including ground water management, contaminant transport, and

effective extraction of hydrocarbon resources (Petvipusit et al. 2014; Elsheikh et al. 2013). The
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physics governing subsurface flow simulations are mainly modeled by a system of coupled

nonlinear partial differential equations (PDEs) parametrized by subsurface properties (e.g.,

porosity and permeability) (Aarnes et al. 2007). In realistic settings, subsurface models are

computationally expensive (i.e., large number of grid block is needed) as the subsurface

properties are heterogeneous and the solution exhibits multi-scale features (Elsheikh et al.

2012; Petvipusit et al. 2014).

Moreover, these subsurface properties are only known at a sparse set of points (i.e.,

well locations), and the grid properties are populated stochastically over the entire

domain (Ibrahima 2016; Elsheikh et al. 2012, 2013). Monte Carlo methods are usually

employed to propagate the uncertainties in the subsurface properties to the flow response.

Monte Carlo methods are computationally very expensive since a large number of forward

simulations are necessary to estimate the statistics of the engineering quantities of inter-

est (Petvipusit et al. 2014; Elsheikh et al. 2013; Ibrahima 2016). Likewise, Bayesian inference

tasks require a very large number of forward simulations to sharpen our knowledge about

the unknown model parameters by utilizing field observation data (Elsheikh et al. 2012,

2013). For example, Markov chain Monte Carlo (MCMC) method (and its variants) requires

a large number (in millions) of reservoir simulations to reach convergence and to avoid biased

posterior estimates of the model parameters.

Surrogate models can be used to overcome the computational burden of multi-query

tasks (e.g., uncertainty quantification, model-based optimization) governed by large-scale

PDEs (Frangos et al. 2010; Koziel and Leifsson 2013; He 2013; Elsheikh et al. 2014; Josset

et al. 2015; Bazargan et al. 2015). Surrogate models are computationally efficient mathe-

matical models that can effectively approximate the main characteristics of the full-order

model (full model) (Frangos et al. 2010). A number of surrogate modeling techniques have

been developed and could be broadly classified into three classes: simplified physics-based

models (Durlofsky and Chen 2012; Josset et al. 2015), data-fit black-box models (Frangos

et al. 2010; Li et al. 2017; Yeten et al. 2005), and projection-based reduced-order models

commonly referred to as reduced model (Berkooz et al. 1993; Lassila et al. 2014; Antoulas

et al. 2001; Fang et al. 2013). Physics-based surrogate models are derived from high-fidelity

models using approaches such as simplifying physics assumptions, using coarse grids, and/or

upscaling of the model parameters (Durlofsky and Chen 2012; Frangos et al. 2010; He 2013;

Babaei et al. 2013). Data-fit models are generated using the detailed simulation data to regress

the relation between the input and the corresponding output of interest (Frangos et al. 2010;

Yeten et al. 2005; Abdi-Khanghah et al. 2018; Wood 2018). For a complete review of various

surrogate modeling techniques, we refer the readers to the following papers by Asher et al.

(2015), Frangos et al. (2010), Koziel and Leifsson (2013) and Razavi et al. (2012).

In projection-based reduced-order models (utilized in this paper), the governing equations

of the full model are projected into a low-dimensional subspace spanned by a small set of

basis functions via Galerkin projection (Lassila et al. 2014; Antoulas et al. 2001). Projection-

based ROMs rely on the assumption that most of the information and characteristics of

the full model state variables can be efficiently represented by linear combinations of only

a small number of basis functions. This assumption enables reduced model to accurately

capture the input–output relationship of the full model with a significantly lower number of

unknowns (Frangos et al. 2010; Lassila et al. 2014; Antoulas et al. 2001). Projection-based

reduced-order models are broadly categorized into system-based methods and snapshot-based

methods. System-based methods like balanced truncation realization methods (Gugercin and

Antoulas 2004) and Krylov subspace methods (Freund 2003) use the characteristics of the

full model and have been developed mainly for linear time-invariant problems, although

much progress has been done on extensions of these methods to nonlinear problems (Lall
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et al. 2002). Snapshot-based methods such as reduced basis methods (Rozza et al. 2007)

and proper orthogonal decomposition (POD) (Sirovich 1987; Berkooz et al. 1993) derive the

projection bases from a set of full model solutions (the snapshots).

In this work, we employ POD-based reduced model to accelerate Monte Carlo simulation

of subsurface flow models. The basis functions obtained from the POD are optimal in the

sense that, for the same number of basis functions, no other bases can represent the given

snapshot set with lower least-squares error than the POD bases (Lassila et al. 2014; Sirovich

1987) (see Sect. 3 for further details). Lumley (1967) was the first to apply POD techniques

in fluid flow simulations. Since then, POD procedures have successfully been applied in a

number of application areas (e.g., Sirovich 1987; Zheng et al. 2002; Cao et al. 2006; Bui-

Thanh et al. 2004; Meyer and Matthies 2003; Astrid 2004; Jin and Durlofsky 2018).

In the context of fluid flow in porous media, Vermeulen et al. (2004) introduced POD in

the confined, groundwater flow problems (linear subsurface flow model). Vermeulen et al.

(2006) applied POD in gradient-based optimization problem involving groundwater flow

model. McPhee and Yeh (2008) employed POD to enhance the groundwater management

optimization problem. Siade et al. (2010) introduced a new methodology for the optimal selec-

tion of snapshots in such a way that the resulting POD basis functions account for the maximal

variance of the full model solution. Within the context of oil reservoir simulation, Heijn et al.

(2003) and Van Doren et al. (2006) applied POD to accelerate the optimization of a waterflood

process. Cardoso et al. (2009) incorporated a new snapshot clustering procedure to enhance

the standard POD for oil–water subsurface flow problems.

In the context of Monte Carlo simulations applied to stochastic subsurface flow problems,

POD-based ROMs were mainly employed only when the governing equation was linear (or

nearly linear) (Cardoso and Durlofsky 2010; Pasetto et al. 2011, 2013; Boyce and Yeh 2014).

Pasetto et al. (2011) employed POD-based reduced model to construct MC realizations of two-

dimensional steady-state confined groundwater flow subject to a spatially distributed random

recharge. Pasetto et al. (2013) applied POD to accelerate the MC simulations of transient

confined groundwater flow models with stochastic hydraulic conductivity. Baú (2012) derived

a set of POD ROMs for each MC realization of hydraulic conductivity to solve a stochastic,

multi-objective, confined groundwater management problem. Boyce and Yeh (2014) applied

a single parameter-independent POD reduced model to the deterministic inverse problem

and the Bayesian inverse problem involving linear groundwater flow model. In addition to

the limitation of using only linear flow models, the UQ tasks in the aforementioned literature

involve only low-dimensional uncertain parameters.

Within the context of nonlinear subsurface flow problems, the target application of POD

was mainly hydrocarbon production optimization, where POD ROMs were used mainly to

optimize well control parameters (e.g., bottomhole pressure) (Cardoso and Durlofsky 2010;

He et al. 2011; Trehan and Durlofsky 2016; Rousset et al. 2014; Jansen and Durlofsky 2017).

Recently, Jansen and Durlofsky (2017) has done an extensive review on the use of reduced-

order models in well control optimization. For the well control applications, POD achieved

reasonable levels of accuracy only when the well controls in test runs were relatively close to

those used in training runs. In the case where the test controls substantially differ from those

used in the initial training runs, additional computational steps were needed. For example,

refitting the POD basis functions was performed in Trehan and Durlofsky (2016), which

impose some additional computational overhead. Although POD combined with Galerkin

projection has been applied more frequently to nonlinear flow problems (Bui-Thanh et al.

2004; Berkooz et al. 1993; Rousset et al. 2014), the effectiveness of POD–Galerkin-based

model in handling nonlinear systems is limited mainly by two factors. The first factor is related

to the treatment of the nonlinear terms in the POD–Galerkin reduced model (Chaturantabut
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and Sorensen 2010; Rewienski and White 2003; Cardoso and Durlofsky 2010), and the second

factor is related to maintaining the overall stability of the resulting reduced model (Cardoso

and Durlofsky 2010; He 2010, 2013; Bui-Thanh et al. 2007; Wang et al. 2012).

In relation to computing reduced non-polynomial nonlinear functions, POD-based ROMs

are usually dependent on the full model state variables, and henceforth, the computational cost

of evaluating the reduced model is still a function of full model dimension. Several techniques

have been developed to reduce the computational cost of evaluating the nonlinear term in POD

ROMs including trajectory piecewise linearization (TPWL) (Rewienski and White 2003),

gappy POD technique (Willcox 2006), missing point estimation (MPE) (Barrault et al. 2004),

best point interpolation method (Nguyen et al. 2008), and discrete empirical interpolation

method (DEIM) (Barrault et al. 2004; Chaturantabut and Sorensen 2010). Among these

techniques, TPWL and DEIM are widely used for efficient treatment of nonlinearities in

multi-phase flow reservoir simulations (Ghasemi 2015; He 2010, 2013).

In TPWL method (Rewienski and White 2003), the nonlinear function is first approximated

by a piecewise linear function obtained by linearizing the full-order model at a predetermined

set of points in the time and the parameter space. Then, the nonlinear full model is replaced

by an adequately weighted sum of the selected linearized systems (Rewienski and White

2003). Finally, the reduced model can be obtained by projecting the resultant linearized full-

order system using standard techniques like POD (Rewienski and White 2003). The TPWL

method was first introduced in Rewienski and White (2003) for modeling nonlinear circuits

and micromachined devices. In the context of subsurface flow problems, TPWL procedures

were applied in Cardoso and Durlofsky (2010), He et al. (2011), Trehan and Durlofsky (2016)

and Rousset et al. (2014) to accelerate the solution of production optimization problems.

In DEIM, the nonlinear term in the full model is approximated by a linear combi-

nation of a set of basis vectors (Chaturantabut and Sorensen 2010). The coefficients of

expansion are determined by evaluating the nonlinear term only at a small number of

selected interpolation points (Chaturantabut and Sorensen 2010). DEIM was developed in

Chaturantabut and Sorensen (2010) for model reduction of general nonlinear system of

ordinary differential equations (ODEs) and has been used in several areas (Chaturantabut

and Sorensen 2012; Xiao et al. 2014; Buffoni and Willcox 2010). Within the context of

subsurface flow problems, Chaturantabut and Sorensen (2011) applied DEIM for model

reduction of viscous fingering problems of an incompressible fluid through a two-dimensional

homogeneous porous medium. Alghareeb and Williams (2013) combined DEIM with POD

procedures, and the resultant reduced model was applied in waterflood optimization problem.

Recently, Ghasemi (2015) applied POD with DEIM to an optimal control problem governed

by two-phase flow in a porous media. Next, Ghasemi (2015) used machine learning technique

to construct a number of POD–DEIM local reduced-order models. In that work, machine

learning technique was used to construct a number of POD–DEIM local reduced-order mod-

els and then a specific local reduced-order model was selected with respect to the current

state of the dynamical system during the gradient-based optimization task. Similarly, Yoon

et al. (2014) used multiple local DEIM approximations in POD reduced model framework

to reduce the computational costs of high-fidelity reservoir simulations.

The overall convergence and stability is another issue that limits the applicability of

POD–Galerkin-based ROMs. POD–Galerkin projection methods manage to decrease the

computational complexity by orders of magnitude as a result of state variable’s dimension

reduction. However, this reduction goes hand in hand with a loss in accuracy. Moreover,

slow convergence and in some cases model instabilities (Wang et al. 2012; He 2010; Bui-

Thanh et al. 2007) are observed as the errors in the reduced state variables are propagated in

time. More specifically, the performance of POD–Galerkin ROMs is directly influenced
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by the number of POD basis used in the POD–Galerkin projection. However, in many

applications involving nonlinear conservation laws (e.g., high Reynolds number fluid flow),

POD–Galerkin reduced-order models have shown poor performance even after retaining a

sufficient number of POD basis (Wang et al. 2012; Sirovich 1987; Berkooz et al. 1993).

Several stabilization techniques have been proposed in the recent literature to build a sta-

bilized POD-based reduced models. A notable stabilization technique relies on closing the

POD reduced model using a set of closure models similar to those adopted in turbulence

modeling (Berkooz et al. 1993; Wang et al. 2012). The objective of applying closure models

within POD-based reduced model is to include the effects of the discarded POD basis func-

tions in the extracted reduced model (Berkooz et al. 1993; Wang et al. 2012). Wang et al.

(2012) showed that POD–Galerkin reduced model yielded inaccurate and physically implau-

sible results when applied to the numerical simulation of a 3D turbulent flow past a cylinder

at Reynolds number of 1000. Wang et al. (2012) addressed the aforementioned accuracy and

stability issues of POD reduced model by various closure models, where artificial viscosity

was added to the real viscosity parameter to stabilize the POD-based reduced model.

Another major approach to enhance the stability of POD–Galerkin reduced model is

to compute a new set of optimal basis or to improve the POD basis vectors by solving a

constrained optimization problem. Bui-Thanh et al. (2007) determined a new set of optimal

basis vectors by formulating an optimization problem constrained by the equations of the

resultant reduced model and demonstrated the stability of the proposed approach on linear

dynamical systems. We note that POD–Galerkin reduced model orthogonally projects the

nonlinear residual into the subspace spanned by the POD basis vectors. Unlike POD–Galerkin

reduced model, Petrov–Galerkin projection scheme designs a different set of orthonormal

basis called left reduced-order basis into which the nonlinear residual is projected. Carlberg

et al. (2011) formulated stable Petrov–Galerkin reduced model in which the left reduced-

order basis vectors were computed from an optimization problem at every iteration of the

Gauss Newton method. He (2010) observed that poor spectral properties of the reduced

Jacobian matrix could cause numerical instabilities in POD–Galerkin TPWL reduced model.

Hence, He (2010) improved the stability of the POD-based reduced model by determining

the optimal dimension of the reduced model through an extensive search over a range of

integer numbers. We note that all the above-mentioned optimization procedures involve

computationally expensive procedures to maintain stability and in many cases, the stability

of the extracted reduced model is still not guaranteed (He 2010, 2013).

Recently, data-fit black-box models have been combined with POD (Xiao et al. 2017) to

develop non-intrusive POD-based ROMs, where the data-fit models are used to regress the

relationship between the input parameter and the reduced representation of the full model state

vector. Hence, non-intrusive ROMs do not require any knowledge of the full-order model and

are mainly developed to circumvent the shortcomings in accessing the governing equations

of the full model (Xiao et al. 2017). However, it can also be used to address the stability and

nonlinearity issues of POD-based ROMs. Wang et al. (2017) developed a non-intrusive POD

reduced model using recurrent neural network (RNN) as a data-fit model and presented two

fluid dynamics test cases namely, flow past a cylinder and a simplified wind-driven ocean gyre.

RNN is a class of artificial neural network (Pascanu et al. 2013a; Mikolov et al. 2014) which

has at least one feedback connection in addition to the feedforward connections (Pascanu et al.

2013a, b; Irsoy and Cardie 2014). In the context of data-fit models, RNN has been successfully

applied to various sequence modeling tasks such as automatic speech recognition and system

identification of time series data (Hermans and Schrauwen 2013; He et al. 2015; Hinton et al.

2012; Graves 2013). Additionally, RNN has been applied to emulate the evolution of nonlinear

dynamical systems in a number of applications (Zimmermann et al. 2012; Bailer-Jones et al.

123



718 J. Nagoor Kani, A. H. Elsheikh

1998) and henceforth has large potential in building reduced-order models. However, the

applicability of non-intrusive ROMs is severely undermined in many real-world problems,

where increasing the dimensionality of the input parameter space increases the complexity

and training time of the data-fit model.

In summary, among many surrogate modeling techniques, POD–Galerkin reduced model

is a viable option for accelerating multi-query tasks like UQ. Generally, POD–Galerkin

reduced model is well established for linear systems, and for nonlinear systems with para-

metric dependence, POD could be either combined with TPWL or with DEIM for modeling

subsurface flow systems (Cardoso and Durlofsky 2010; He et al. 2011; Trehan and Durlofsky

2016; Ghasemi 2015). However, POD reduced model does not preserve the stability prop-

erties of the corresponding full-order model, and current state-of-the-art POD stabilization

techniques (Wang et al. 2012; He 2010, 2013) are not cost-effective and ultimately do not

guarantee stability of the extracted reduced-order models.

In this paper, we use DR-RNN (Nagoor Kani and Elsheikh 2017) to alleviate the poten-

tial limitations of POD–Galerkin reduced models. More specifically, we combine DR-RNN

with POD–Galerkin and DEIM methods to derive an accurate and computationally effective

reduced model for uncertainty quantification (UQ) tasks. The architecture of DR-RNN is

inspired by the iterative line search methods where the parameters of the DR-RNN are opti-

mized such that the residual of the numerically discretized PDEs is minimized (Bertsekas

1999; Tieleman and Hinton 2012; Nagoor Kani and Elsheikh 2017). Unlike the standard

RNN which is very generic, DR-RNN (Nagoor Kani and Elsheikh 2017) uses the residual

of the discretized differential equation. In addition, the parameters of the DR-RNN are fitted

such that the computed DR-RNN output optimally minimizes the residual of the targeted

equation. In this context, DR-RNN is a physics-aware RNN as it is tailored to leverage the

physics embedded in the targeted dynamical system (i.e., residual of the equation or reduced

residual in the current manuscript).

The resultant reduced model obtained from DR-RNN combined with POD–Galerkin and

DEIM algorithm has a number of salient features. First, the dynamics of DR-RNN is explicit

in time with superior convergence and stability properties for large time steps that violate the

numerical stability conditions (Nagoor Kani and Elsheikh 2017; Pletcher et al. 2012). Second,

as the dynamics modeled in DR-RNN are explicit in time, there is a reduction in the com-

putational complexity of the extracted reduced model from O(r3) corresponding to implicit

POD–DEIM reduced-order models, to O(r2), where r is the size of the reduced model. Third,

DR-RNN requires only very few training samples (obtained by solving the full model) to

optimize the parameters of the DR-RNN as it accounts for the physics of the full model within

the RNN architecture (via the reduced residual). This is a major advantage when compared

to pure data-driven algorithms (e.g., standard RNN architectures). Moreover, DR-RNN can

effectively emulate the parameterized nonlinear dynamical system with a significantly lower

number of parameters in comparison with standard RNN architectures (Nagoor Kani and

Elsheikh 2017).

In this work, we demonstrate the superior properties of DR-RNN in accelerating UQ tasks

for subsurface reservoir models using Monte Carlo method. As far as we are aware, the use

of a single parameter-independent POD–Galerkin reduced model in Monte Carlo method

involving nonlinear subsurface flow with high-dimensional stochastic permeability field has

not been previously explored. The reason is that the resultant reduced model might require

significantly more basis functions to reconstruct stable solutions (Cardoso and Durlofsky

2010; He et al. 2011; Boyce and Yeh 2014; Ghasemi 2015). However, only a single set of

small number of POD basis functions would be sufficient to reconstruct the solution with

reasonable accuracy using least-squares (see Sect. 3.2 for more details). Hence, the aim
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of this paper is to illustrate how DR-RNN could be used to reconstruct stable solutions

emulating the full model dynamics using only a small set of POD basis functions. The

proposed DR-RNN technique is validated on two forward uncertainty quantification problems

involving two-phase flow in subsurface porous media. The two flow problems are commonly

known within the reservoir simulation community as the quarter five spot problem and the

uniform flow problem (Aarnes et al. 2007). In these two numerical examples, the permeability

field is modeled as log-normal distribution. The obtained results demonstrate that DR-RNN

combined with POD–DEIM provides an accurate and stable reduced-order model with a

drastic reduction in the computational cost. The reason for selecting simplified flow problems

is to illustrate the potential benefit of DR-RNN to formulate an accurate and computationally

effective POD–DEIM reduced model for flow problems where the standard POD–Galerkin

reduced models are inaccurate and possibly unstable. We also note that DR-RNN architecture

is generic and could be used to emulate any well-posed nonlinear dynamical system (Nagoor

Kani and Elsheikh 2017) including subsurface flow problems while accounting for capillary

pressure effects, gravity effects, and compressibility.

The outline of the rest of this manuscript is as follows: In Sect. 2, we present the formula-

tion of multi-phase flow problem in a porous media. In Sect. 3, we introduce POD–Galerkin

method for model reduction followed by a discussion of DEIM for handling nonlinear sys-

tems. In Sect. 4, we describe the architecture of DR-RNN, and in Sect. 5, we evaluate the

reduced model derived by combining DR-RNN with POD–DEIM on two uncertainty quan-

tification test cases. Finally, in Sect. 6, we present the conclusions of this manuscript.

2 Problem Formulation

The equations governing two-phase flow of a wetting phase (water) and non-wetting phase

(e.g., oil) in a porous media are the conservation of mass (continuity) equation and Darcy’s

law for each phase (Aarnes et al. 2007; He 2013; Chen et al. 2006; Bastian 1999). The

continuity equation for each phase α takes the form

∂(φραsα)

∂t
− ∇ · (ραλαK (∇ pα − ραg∇h)) + qα = 0 (1)

where the subscript α = w denotes the water phase, the subscript α = o denotes the oil

phase, K is the absolute permeability tensor, λα = krα/μα is the phase mobility, with krα the

relative permeability to phase α and μα the viscosity of phase α, pα is the phase pressure, ρα

is the density of phase α, g is the gravitational acceleration, h is the depth, φ is the porosity,

sα is the saturation of the phase α and qα is the phase source and sink terms (Aarnes et al.

2007; Chen et al. 2006). Further, the phase saturations are constrained by sw + so = 1, since

the oil and the water jointly fill the void space (Aarnes et al. 2007; He 2013).

The phase velocities are modeled by the multi-phase Darcy’s law to relate the phase

velocities to the phase pressures and take the form

vα = −Kλα∇ (pα − ραgh) (2)

where vα is the phase velocity. The phase relative permeabilities krα and the capillary pressure

(pcow = po − pw) are usually modeled as functions of the phase saturations (Aarnes et al.

2007). Neglecting the capillary pressure, the compressibility effects, the gravitational effects,

and assuming the density ratio to be equal to one, the continuity equations [Eq. (1)] can be

combined with the Darcy’s law [Eq. (2)] to derive a global pressure equation and the saturation

equation for water phase (Aarnes et al. 2007; He 2013; Bastian 1999). The simplified global
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pressure equation takes the form

∇ · Kλ ∇ p = q (3)

where p = po = pw is the global pressure, λ = λw + λo is the total mobility, q = qw + qo

is the source and sink term. The saturation equation for the water phase takes the following

form

φ
∂s

∂t
+ v · ∇ fw = qw

ρw

(4)

where fw = λw/(λw + λo) is a function of saturation termed as the fractional flow function

for the water phase, v = −Kλ ∇ p is the total velocity vector, and s = sw is the water

saturation (Aarnes et al. 2007; Chen et al. 2006). In the rest of the paper, we write the water

phase saturation as s = sw for simplicity. Coupled equations Eqs. (3) and (4) could then be

solved for the evolution of the saturation by providing the appropriate initial and boundary

conditions. Equations (3) and (4) are continuous (in space and time) form of the full model.

The discrete form of the full model is obtained by dividing the problem domain into n

grid blocks and then applying the finite-volume method to discretize the spatial derivatives

of Eqs. (3) and (4). The discretized pressure equation takes the form

A yp = b (5)

where A ∈ R
n×n , b ∈ R

n , and yp ∈ R
n is the pressure vector in which each component ypi

of yp represent the pressure value at the i th grid block. Similarly, the spatially discretized

saturation equation takes the form

dys

dt
+ B(v) fw(ys) = d (6)

where B ∈ R
n×n , d ∈ R

n , v is the total velocity vector, and ys ∈ R
n is the saturation vector

in which each component ysi of ys is the saturation value at the i th grid block.

Equations (5) and (6) are the discrete form of the full model for multi-phase flow problem

under consideration. These two equations exhibit two way coupling from the dependence

of the matrix A on the mobilities λ(ys(t)) in the pressure full model [Eq. (5)] and from the

dependence of the matrix B on the velocity vector v(yp) in the saturation full model [Eq. (6)].

In this paper, we adopt an implicit sequential splitting method to solve the full model [Eqs. (5)

and (6)]. In this method, the saturation vector ys(t) from the present time step is used to

assemble the matrix A in Eq. (5) and then the pressure full model [Eq. (5)] is solved for the

pressure vector yp . Following that, the velocity vector v (computed from the pressure vector

yp) is used to assemble the matrix B in Eq. (6) and then the saturation full model [Eq. (6)] is

solved implicitly in time for the saturation at the next time step. In the following section, we

formulate a Galerkin projection-based reduced model to reduce the computational effort for

multi-query tasks (e.g., uncertainty quantification) involving repeated solutions of Eqs. (5)

and (6), when n (the number of grid block) is large (Chaturantabut and Sorensen 2010;

Ghasemi 2015).

3 Reduced-Order Model Formulation

In this section, we formulate the POD–Galerkin reduced model (POD reduced model) and

POD-DEIM reduced model where POD–Galerkin is combined with DEIM for handling the
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nonlinear terms. Both methods are introduced to reduce the computational effort associated

with solving the full model [Eqs. (5) and (6)].

3.1 POD Basis

As stated in Sect. 1, POD-based reduced model is a projection-based reduced-order model

in which the governing equations are projected onto an optimal low-dimensional subspace

U spanned by a small set of r basis vectors. Galerkin projection reduced model is based

on the assumption that most of the system information and characteristics can be efficiently

represented by linear combinations of only a small number of basis vectors (Rewienski and

White 2003).

The optimal basis vectors {ui }r
i=1 in POD are computed by singular value decomposition

(SVD) of the solution snapshot matrix X. The solution snapshot matrix X is obtained from a

set of solution vectors of size ns obtained by solving the full model at selected points in the

input parameter space. The SVD of X is expressed as

X = U Σ W (7)

where X ∈ R
n×ns , U = [u1 u2 u3 · · · un] ∈ R

n×n is the left singular matrix and Σ =
diag(σ1 > σ2 > σ3 > · · · σns ≥ 0) is the diagonal matrix containing the singular values

σi of the snapshot matrix X in descending order. The dominant left singular vectors {ui }r
i=1

corresponding to the first r largest singular values represent the basis vectors to span the

optimal subspace U of POD-based reduced model. Thus, the first step in deriving the POD-

based reduced model is to express the state vector y of the full-order model by a linear

combination of r basis vectors as follows:

y ≈ Ur ỹ (8)

where ỹ ∈ R
r is the reduced state vector representation of full-dimensional state vector y,

and Ur = [u1 · · · ur ] ∈ R
n×r is the matrix that contains r orthonormal basis vectors in its

columns.

By following this step, for example, the optimal basis vectors for the saturation

state vector ys are obtained from the SVD of the saturation snapshot matrix Xs =
(

(ys1 . . . ysT
)1 . . . (ys1 . . . ysT

)L
)

, where T is the number of time steps and L is the number

of samples of input parameter used to build the snapshot matrix. The SVD of Xs is expressed

as

Xs = Us Σs Ws (9)

where Us ∈ R
n×n is the left singular matrix, and Σs is the diagonal matrix containing the

singular values of the snapshot matrix Xs in descending order. The saturation state vector ys

is optimally expressed as

ys ≈ Ur
s ỹs (10)

where ỹs ∈ R
r is the reduced state vector representation of ys , and Ur

s ∈ R
n×r is the matrix

that contains r orthonormal basis vectors in its columns. Similarly, we can represent the

pressure state vector yp from its reduced state vector representation ỹp using optimal basis

matrix Up obtained from the SVD of the pressure snapshot matrix Xp .
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3.2 Least-Squares Approximation

The capacity of a set of basis functions to represent a new solution vector could be tested using

least-squares fitting (Eldén 2007; Trefethen and Bau III 1997). For example, the least-squares

solution for approximating a saturation state vector y∗
s ∈ R

n is defined as

y∗
s ≈ Ur

s ỹs = Ur
s (Ur

s
⊤

ys) (11)

The associated error termed as least-squares errors in approximating ys by y∗
s using only r

basis vectors is given by

εs = ‖ys − y∗
s ‖2 (12)

The least-squares error εs [Eq. (12)] is equivalent to the omitted energy Ωs =
∑n

i=r+1 σsi

(Lucia et al. 2004; Berkooz et al. 1993). In practice, r is commonly chosen as the smallest

integer such that the relative omitted energy ν is less than a preset value (e.g., 0.01), where

the omitted energy is defined by the following equation

ν = 1 −
∑n

i=r+1 σsi
∑n

i=1 σsi

(13)

Similar expressions mentioned in Eqs. (11), (12), and (13) can be obtained for the pressure

state vector as well. We note that least-squares errors are not necessarily equivalent to the

omitted energy for state vectors not included in the snapshot matrix or for the state vector

solved at a new point in the input parameter space as these new vectors might not fall within

the span of the snapshot matrix (Frangos et al. 2010; Lucia et al. 2004). The least-squares

solution is the best approximation of the state variables in the sense that, for the chosen low-

dimensional subspace U , no other low-dimensional approximation can represent the given

snapshot set with a lower least-squares error (Lassila et al. 2014; Sirovich 1987; Berkooz

et al. 1993). In this paper, we use the best approximation of the state variables to assess the

quality of the approximation obtained from different reduced-order models in the numerical

examples presented in Sect. 5.

3.3 POD–Galerkin

Once the POD basis vectors are obtained, the reduced representation of the pressure vector

yp is substituted into the pressure full model [Eq. (5)], followed by Galerkin projection of

the pressure equation into the subspace spanned by Ur
p . The resulting POD-based reduced

model for the pressure equation then takes the following form

Ã ỹp = b̃ (14)

where Ã = Ur
p
⊤ A Ur

p ∈ R
r×r and b̃ = Ur

p
⊤ b ∈ R

r . Similarly, POD-based reduced model

for the saturation equation [Eq. (6)] takes the form

dỹs

dt
+ Ur

s
⊤

B(v) fw(Ur
s ỹs) = d̃, (15)

where d̃ = Ur
s
⊤ d and d̃ ∈ R

r .

The POD-based reduced model formulated by Eqs. (14) and (15) is of the reduced dimen-

sion r . However, the nonlinear function fw in Eq. (15) is still of the order of full dimension n.

Moreover, the reduced Jacobian matrix J̃ = Ĩ − Ur
s
⊤B J f (fw(Ur

s ỹs))U
r
s ∈ R

r×r needed for

Newton-like iterations to solve this nonlinear equation is also of order n (Chaturantabut and

123



Reduced-Order Modeling of Subsurface Multi-phase Flow Models… 723

Sorensen 2010) as it relies on evaluating the full-order nonlinear function fw . Therefore, for

problems with general nonlinear functions involved in POD-based reduced model, the com-

putational cost of solving the reduced system is still a function of the full system dimension

n.

3.4 DEIM

Discrete empirical interpolation method (DEIM) was introduced in Chaturantabut and

Sorensen (2010) to approximate the nonlinear terms in POD-based reduced model using

a limited number of points that are independent of the full system dimension n. Similar to

POD, the first step of DEIM is to approximate the nonlinear function fw in Eq. (15) using a

separate set of basis vectors Vm = [v1 v2 v3 . . . vm] as

fw = Vm f̃ (16)

where f̃ is the coefficient of expansion of the nonlinear function fw in the reduced subspace

spanned by {vi }m
i=1, Vm ∈ R

n×m is the matrix containing the first m columns of the left

singular matrix V ∈ R
n×n obtained from the SVD of the snapshot matrix X f of the nonlinear

function fw . We note that no additional computational costs are associated with collecting the

snapshot matrix of the nonlinear terms X f as it is already evaluated during the computation

of the state snapshot vectors. The nonlinear term in Eq. (15) can then be expressed as

Ur
s
⊤

B fw = (Ur
s
⊤

B Vm) f̃ = (Ur
s
⊤

B Vm) · (Vm⊤
fw) (17)

The matrix factor (Ur
s
⊤ B Vm) ∈ R

r×m in Eq. (17) is precomputed before solving Eq. (15).

The overdetermined system f̃ = Vm⊤ fw is approximated using the DEIM algorithm intro-

duced in Chaturantabut and Sorensen (2010) by first computing a matrix P ∈ R
n×m that

selects m rows of the matrix Vm to obtain f̃ as follows:

P⊤ fw = P⊤ Vm f̃ → f̃ = (P⊤ Vm)−1 P⊤ fw (18)

Using this expression of f̃ to approximate the nonlinear function in Eq. (17), we obtain a

nonlinear term that is independent of n that takes the form

Ur
s
⊤

B fw ≈ D fw(P⊤ Ur
s ỹs) (19)

where the matrix D = Ur
s
⊤ B Vm (P⊤ Vm)−1 ∈ R

r×m termed as the DEIM matrix. Similarly,

the Jacobian of the nonlinear term in Eq. (15) is approximated using DEIM as follows:

J̃ = Ĩ − (Ur
s
⊤

BVm(P⊤ Vm)−1) Ĵ f (fw(P⊤ Ur
s ỹs)) (P⊤Ur

s ) (20)

where Ĵ f (fw(P⊤ Ur
s ỹs)) ∈ R

m×m is the Jacobian matrix computed using the m components

of fw evaluated by the DEIM algorithm (Chaturantabut and Sorensen 2010; Rewienski and

White 2003; Nagoor Kani and Elsheikh 2017). Finally, the POD–DEIM-based reduced model

takes the form
dỹs

dt
+ D fw(P⊤ Ur

s ỹs) = d̃ (21)

We note that POD–DEIM formulation is independent of the full model dimension n and that

the DEIM procedure exploits the structure of the nonlinear function fw as component-wise

operation at Ur
s ỹs (Chaturantabut and Sorensen 2010).
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4 Deep Residual RNN

POD–DEIM reduced-order models, as introduced in the last chapter, could be used to per-

form parametric UQ tasks. However, the POD–DEIM formulation is nonlinear and relies on

using Newton method at each time step to solve the resulting system of nonlinear equations.

The computational efficiency of the Newton iteration depends on the method employed to

assemble the Jacobian matrix and more importantly on the conditioning of the reduced Jaco-

bian matrix. It also depends on the method used to solve the resulting linear system at each

iteration of the Newton step, and generally, it takes O(r3) operations for each saturation

update (Nagoor Kani and Elsheikh 2017; Bertsekas 1999). Moreover, previous studies (He

2010, 2013) pointed to the loss of stability of POD–Galerkin reduced model in several cases,

and it was attributed to ill-conditioning and poor spectral properties of the reduced Jacobian

matrix.

In this paper, we build on the recently introduced DR-RNN (Nagoor Kani and Elsheikh

2017) and formulate an accurate POD–DEIM reduced-order models. DR-RNN is a deep

RNN architecture (Nagoor Kani and Elsheikh 2017), constructed by stacking K physics-

aware network layers. DR-RNN could be applied to any nonlinear dynamical system of the

form
dy

dt
= A y + F(y) (22)

where y(a, t) ∈ R
n is the state variable at time t , a ∈ R

d is a system parameter vector, the

matrix A ∈ R
n×n is the linear part of the dynamical system, and the vector F(y) ∈ R

n is the

nonlinear term (Nagoor Kani and Elsheikh 2017). The state variable y(t) at different time

steps is obtained by solving the nonlinear residual equation defined as

rt+1 = yt+1 − yt − �t A yt+1 − �t F(yt+1) (23)

where r(t) is termed as the residual vector at time step t and y(t + 1) is the approximate

solution of Eq. (22) at time step t + 1 obtained by using implicit Euler time integration

method. DR-RNN (Nagoor Kani and Elsheikh 2017) approximates the solution of Eq. (22)

using the following iterative update equations

y
(k)
t+1 = y

(k−1)
t+1 − w ◦ φh(U r

(k)
t+1) for k = 1,

y
(k)
t+1 = y

(k−1)
t+1 − ηk√

Gk+ǫ
r
(k)
t+1 for k > 1,

(24)

where U, w, ηk are the training parameters of DR-RNN, φh is the tanh activation function,

◦ is an element-wise multiplication operator, r
(k)
t+1 is the residual in layer k obtained by

substituting yt+1 = y
(k−1)
t+1 into Eq. (23), and Gk is an exponentially decaying squared norm

of the residual defined by

Gk = γ ‖r
(k)
t+1‖2 + ζ Gk−1 (25)

where γ, ζ are fraction factors and ǫ is a smoothing term to avoid divisions by zero (Nagoor

Kani and Elsheikh 2017). In this formulation, we set y
(k=0)
t+1 = yt . The architecture of

DR-RNN is inspired by the rmsprop algorithm (Tieleman and Hinton 2012) which is a

variant of the steepest descent method. The DR-RNN output at each time step is defined as

y
(RNN)
t+1 = yK

t+1 (26)

The formulation of DR-RNN is explicit in time and has a fixed number of iterations K

per time step. However, the dimension of the DR-RNN system depends on the dimension

of the residual. For example, DR-RNN [Eq. (24)] can be derived from the POD–DEIM
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reduced model residual (r̃t+1 = −ỹst+1 + ỹst + D fw(P⊤ Ur
s ỹst+1) + d̃). In such setting,

the DR-RNN dynamics has a fixed computational budget of O(r2) for each time step. In

addition, DR-RNN has the prospect of employing large time step violating the numerical

stability constraint (Nagoor Kani and Elsheikh 2017). Furthermore, DR-RNN does not rely

on the reduced Jacobian matrix to approximate the solution of POD–DEIM reduced model.

The DR-RNN parameters θ = {U, w, ηk} are fitted by minimizing the mean square error

(mse) defined by

JMSE(θ) = 1

L

L
∑

ℓ=1

T
∑

t=1

(

yt − y
(RNN)
t

)2
, (27)

where JMSE (mse) is the average distance between the reference solution yt and the

RNN output yRNN
t across a number of samples L with time-dependent observations (t =

1 . . . T and ℓ = 1 . . . L) (Nagoor Kani and Elsheikh 2017; Pascanu et al. 2013b). The set

of parameters θ is commonly estimated by a technique called backpropagation through time

(BPTT) (Werbos 1990; Rumelhart et al. 1986; Pascanu et al. 2013a; Mikolov et al. 2014),

which backpropagates the gradient of the loss function JMSE with respect to θ in time over

the length of the simulation.

5 Numerical Experiments

In this section, we evaluate the performance of the reduced-order models based on DR-RNN

against the standard implementation of POD–Galerkin reduced model. Specifically, we

develop two POD–Galerkin-based reduced model using DR-RNN architecture namely,

DR-RNNp (DR-RNN combined with POD–Galerkin) and DR-RNNpd (DR-RNN combined

with POD–Galerkin and DEIM). The numerical evaluations are performed using two uncer-

tainty quantification tasks involving subsurface flow models. We did not include standard

POD–DEIM reduced model implementation as we expect that the standard POD reduced

model results to be far superior (Chaturantabut and Sorensen 2010; Nagoor Kani and Elsheikh

2017; Chaturantabut and Sorensen 2010).

The outline of this section is as follows: In Sect. 5.1, we present the description of the flow

problem, followed by a brief description of the finite-volume approach employed for obtaining

the full-order model solution. Following that, in Sect. 5.2, we outline the specific details to

formulate POD reduced model. Then, we list the settings adopted to model the DR-RNN

ROMs (i.e., number of layers, optimization settings, etc) in the Sect. 5.3. In Sect. 5.4, we

provide a set of error metrics utilized to evaluate the performance of the different ROMs. In

Sect. 5.5, we present the numerical results for the quarter five spot model followed by results

for the uniform flow model in the Sect. 5.6.

5.1 Full-Order Model Setup

We consider a two-phase (oil and water) porous media flow problem over the two-dimensional

domain [0 1]×[0 1] m. The equations governing the two-phase flow are the pressure equation

[Eq. (3)] and the saturation equation [Eq. (4)]. The relative permeability is defined as a

function of saturation using Corey’s model krw(s) = s∗2, kro = (1 − s∗)2, where s∗ =
(s − swc)/(1 − sor − swc), swc is the irreducible water saturation, and sor is the residual oil

saturation (Aarnes et al. 2007). We set sor = 0.2 and swc = 0.2. We set the initial water
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−3.5

0.0
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Fig. 1 Plots of log values of random permeability field modeled by log-normal probability distribution. The

unit of the permeability field is m2

saturation over the domain to the irreducible water saturation swc = 0.2. The water and oil

viscosities are 1 and 1.5 centipoise, respectively. The porosity is assumed to be a constant

value of 0.2 over the entire problem domain. The uncertain permeability field is modeled as

a log-normal distribution function with zero mean and exponential covariance kernel of the

form

Cov = σk exp

[

−|x1 − x2|
Lk

]

(28)

where σk is the variance, Lk is the correlation length. In all test cases, we set σk to 1 and the

correlation length Lk to 0.1 m. Figure 1 shows several realizations of the log-permeability

values. For solving the full-order model, the problem domain is discretized using a uniform

grid of 64×64 blocks. The pressure equation is discretized using simple finite-volume method

(aka. two-point flux approximation) (Aarnes et al. 2007), and an upwind finite-volume scheme

is used to discretized the saturation equation. For the time discretization, an implicit backward

Euler method combined with Newton–Raphson iterative method is used to solve the resulting

system of nonlinear equations. We set the time step size to 0.015, and the total number of

time steps is set to 160. We note that, the time is measured in a non-dimensional quantity

called pore volumes injected (PVI). PVI defines the net volume of water injected as a fraction

of the total pore volume. As the pressure changes at much slower rate than the saturation,

the pressure equation (and hence the velocity) is solved at every eighth saturation time step.

For reference solutions, this system of equations is solved for 2000 random permeability

realizations to estimate an ensemble-based statistics using Monte Carlo method (Ibrahima

2016).

5.2 POD–Galerkin-Based ReducedModel Setup

The first step in formulating POD reduced model is to compute the optimal POD basis matri-

ces Ur
p and Ur

s . In order to obtain these basis matrices, we initially preformed a realization

clustering algorithm to enforce the diversity of the collected snapshots and clustered the

2000 random permeability realizations into 45 clusters (Ghasemi 2015). Then, we randomly

selected a single permeability realization from each cluster (total 45 random samples of the

permeability field). The full system is then solved for each of the 45 realizations, and the

solution vectors are collected to build the snapshot matrices (pressure, saturation, nonlin-
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ear function). Finally, we compute the POD basis matrices from the SVD of the collected

snapshot matrices.

Following that, the obtained basis vectors are used to build POD reduced model (as detailed

in the Sect. 3). We then employ the same sequential implicit technique settings adopted for

obtaining the full model solutions to solve the resultant POD reduced model. For numerical

evaluations, we solve the POD reduced model for the same 2000 permeability realizations

to estimate an ensemble-based statistics in the engineering quantities of interest.

5.3 DR-RNN Setup

In all the numerical test cases, we utilize DR-RNN with six layers [K = 6 in Eq. (24)].

We evaluate DR-RNNp and DR-RNNpd for different number of POD basis; however, we

fix the number of DEIM basis to 35. The PyTorch framework (Paszke et al. 2017), a deep

learning python package using Torch library as a backend, is used to implement the DR-RNN.

Further, we optimize the DR-RNN model parameters using rmsprop algorithm (Tieleman and

Hinton 2012; Paszke et al. 2017) as implemented in PyTorch, where we set the weighted

average parameter to 0.9 and the learning rate to 0.001. The weight matrix U in Eq. (24)

is initialized randomly from the uniform distribution function U[0.01,0.02]. The vector

training parameter w in Eq. (24) is initialized randomly from the uniform distribution function

U[0.1,0.5]. The scalar training parameters ηk in Eq. (24) are initialized randomly from the

uniform distribution U[0.1,0.4]. We set the hyperparameters ζ and γ in Eq. (25) to 0.9

and 0.1, respectively. The formulated DR-RNNp and DR-RNNpd are trained to approximate

the reduced state vector representation obtained from least-squares fits. Specifically, we

collect a set of best reduced state vector representation ỹ∗
s of the saturation state vector using

ỹ∗
s = Ur

s
⊤ ys . The collected set of reduced state vectors is then used to train the parameters

of the DR-RNN by minimizing the loss function defined in Eq. (27).

5.4 EvaluationMetrics

We evaluate the performance of DR-RNNp and DR-RNNpd using two time specific error

metrics defined by

L2l,t
= ‖

(

yt − y
(RM)
t

)l

‖2

L∞l,t
= ‖

(

yt − y
(RM)
t

)l

‖∞
(29)

where l is the realization index, and y
(RM)
t is computed from the reduced model. Additionally,

we utilize two relative error metrics defined as

L rel
2 = 1

L×T

∑L
ℓ=1

∑T
t=1

∥

∥

∥

∥

∥

(

yt −y
(RM)
t

yt

)l
∥

∥

∥

∥

∥

2

L rel
2,max = max

l,t=1 to L,T

∥

∥

∥

∥

∥

(

yt −y
(RM)
t

yt

)l
∥

∥

∥

∥

∥

2

(30)

where all the time snapshots of saturation vectors in all realizations are used.
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Fig. 2 Top Left: Computational porous media domain in test case 1. The blue dot in the lower left corresponds

to the injector well, and the blue dot in the upper right corner corresponds to the production well. The red dots

represented in numbers from 1 to 5 correspond to the locations where the PDF and the water saturation are

investigated. Top Right: Singular values of the pressure snapshot matrix Xp . Bottom Left: Singular values of

the saturation snapshot matrix Xs . Bottom Right: Singular values of the nonlinear function snapshot matrix

X f

5.5 Numerical Test Case 1

In this test case, water is injected at the lower left corner (0, 0) of the domain and a mixture

of oil and water is produced at the top right corner of the domain (1, 1). We set the injection

rate q = 0.05 at (0, 0) and q = −0.05 at (1, 1) as defined in Eq. (4). We impose a no flow

boundary condition in all the four sides of the domain. We fix the number of pressure POD

basis to 5 and obtain all the ROMs for a set of different number of saturation POD basis

functions (r = 10, 20). The configuration of the problem domain is shown in top left panel

of Fig. 2, where the blue spot in the lower left corner (0, 0) corresponds to the injector well

and the blue spot in the upper right corner (1, 1) corresponds to the production well. Figure 2

shows the singular values of the pressure snapshot matrix Xp in the top right panel, the

saturation snapshot matrix Xs in the bottom left panel, and the nonlinear function snapshot

matrix X f in the bottom right panel.

The mean water saturation plots over the simulation time are shown in Fig. 3, where the

results in the top row correspond to using 10 POD basis and the results in the bottom row

correspond to using 20 POD basis. The subplots in Fig. 3 are arranged from left to right

following the numbering of the spatial points shown in Fig. 2. From these results, it is clear

that DR-DR-RNNp and DR-RNNpd results are very close to the least-square solutions (LS

fit). In Fig. 3, POD–Galerkin reduced model yields extremely inaccurate and unstable results.
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Fig. 3 Time plots of mean water saturation obtained from all the ROMs and the full-order model for test case

1. Top Row: number of POD basis used = 10. Bottom Row: number of POD basis used = 20. The plots in

each row are arranged as per the numerical notation of the spatial points plotted in Fig. 2 (top left panel)

Fig. 4 Comparison of mean water saturation field at time = 0.3 PVI for test case 1. Top Row: number of POD

basis used = 10. Bottom Row: number of POD basis used = 20

We attribute the small errors in DR-RNNp and DR-RNNpd results to the insufficient number

of POD basis vectors, and we note that the error magnitude is equivalent to the optimal values

obtained by least-squares projection.

Figures 4, 5, and 6 show the results for the first (mean) and second (standard deviation)

moments of the saturation field at time = 0.3 PVI obtained from the full model and from

the various ROMs. In these Figs. 4, 5, and 6, results for 10 POD basis are shown in the top

row and results for 20 POD basis are shown in the bottom row. As shown in Fig. 4, the mean

saturation obtained from DR-RNN ROMs is almost indistinguishable from the reference
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Fig. 5 Comparison of standard deviation of the water saturation field at time = 0.3 PVI for test case 1. Top

Row: number of POD basis used = 10. Bottom Row: number of POD basis used = 20
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Fig. 6 Plot of saturation mean and standard deviation of the water saturation field at time = 0.3 PVI obtained

from the POD reduced model for test case 1. Left: saturation mean. Right: standard deviation. Top Row:

number of POD basis used = 10. Bottom Row: number of POD basis used = 20

results. However, the mean saturation field obtained from POD reduced model (left panels

of Fig. 6) deviates significantly from the reference mean saturation.

In Fig. 5, we observe small discrepancy of standard deviation results obtained in the

DR-RNN ROMs in comparison with the full model results especially near the location of

the mean water saturation front. Figure 6 (right panels) shows the standard deviation results

obtained by POD reduced model which show significant inaccuracies that could be indicative

to instabilities of the obtained solutions. We note that the white spots in Fig. 6 correspond to

out of limits shown in colorbar.
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Fig. 7 Comparison of kernel density estimated probability density function (PDF) at time = 0.3 PVI for test

case 1. Top Row: number of POD basis used = 10. Bottom Row: number of POD basis used = 20. The plots

in each row are arranged as per the numerical notation of the spatial points plotted in Fig. 2 (top left panel)

Fig. 8 Comparison of log(L2l,t
) and log(L∞l,t

) error estimators [Eq. (29)] at time = 0.3 PVI for test case 1.

The number of POD basis used = 10
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Fig. 9 Comparison of log(L2l,t
) and log(L∞l,t

) error estimators [Eq. (29)] at time = 0.3 PVI for test case 1.

The number of POD basis used = 20

Figure 7 compares the saturation PDF estimated from the ensemble of numerical solutions

(ROMs and the full model). Figure 7 settings are similar to the one adopted in Fig. 3.

In Fig. 7, we can see that all the plots obtained from DR-DR-RNNp and DR-RNNpd are

indistinguishable from the plots obtained from the LS fit (the best approximation). Further,

we observe that the saturation PDF obtained from DR-DR-RNNp and DR-RNNpd follows

nearly the same trend of saturation PDF obtained from the full model when the reference

distribution is unimodal. However, we observe some discrepancy when the distributions are

multimodal. Please note that similar discrepancy is also observed in the PDF obtained from LS

fit. Hence, we postulate that these discrepancies are attributed to the limited number of POD

basis vectors utilized. In Fig. 7, POD reduced model yields very inaccurate approximation

of the saturation PDF irrespective of the number of POD basis.

Figures 8 and 9 display samples of log(L2l,t
) and log(L∞l,t

) errors at time 0.3 PVI obtained

from all the ROMs. All the ROMs use 10 POD basis to display the errors in Fig. 8 and

likewise 20 POD basis to display the errors in Fig. 9. From these figures, we can see that

the POD reduced model approximation errors are at least an order of magnitude more than

the least-squares solution errors [Eq. (11)], whereas the errors obtained from DR-RNNp and

DR-RNNpd are nearly indistinguishable from the least-squares projection errors.

We further list in Table 1, the L rel
2 and L rel

2,max errors for the saturation field. From Table 1,

we can see that the approximation errors obtained from DR-RNNp and DR-RNNpd have the

same order of magnitude as the least-squares (best approximation) errors. Further, in Table 1,

the approximation errors obtained from all ROMs except POD reduced model decrease when

we increase the number of POD basis. These results conform with the decay of singular values
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Table 1 Performance chart of all

the ROMs employed for test case

1. Lrel
2 and Lrel

2,max error

estimators are defined in Eq. (30).

The number of POD basis used

= 10 and 20

Error #Basis Reduced-order models

LS fit POD DR-RNNp DR-RNNpd

Lrel
2 10 0.13 0.56 0.14 0.15

20 0.10 2.7 0.11 0.13

Lrel
2,max 10 0.20 1.8 0.20 0.27

20 0.17 5.8 0.19 0.26

Fig. 10 Top Left: Computational porous media domain in test case 2. The blue arrows in the left side correspond

to the injection of water, and the brown arrows in the right side correspond to the production of oil and water.

The red dots represented in numbers from 1 to 5 correspond to the locations where the PDF and the water

saturation are investigated. Top Right: Singular values of the pressure snapshot matrix Xp . Bottom Left:

Singular values of the saturation snapshot matrix Xs . Bottom Right: Singular values of the nonlinear function

snapshot matrix X f

of the saturation snapshot matrix. In Table 1, the approximation errors obtained from POD

reduced model are at least an order of magnitude larger than other methods. Also, we observe

that POD reduced model results might be worst when we include more basis functions. These

results conform with the results presented in He (2010), where it was shown that selecting

large number of basis vectors based on singular values may not lead to stable POD–Galerkin

reduced model. Further, it was presented in He (2010) that the relation between the stability

property of POD–Galerkin reduced model and the number of basis vectors used in POD–

Galerkin projection is somewhat random and that the use of more POD basis vectors do not

necessarily lead to improved stability.
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Fig. 11 Time plots of mean water saturation obtained from all the ROMs and the full-order model in test case

2. Top Row: number of POD basis used = 10. Bottom Row: number of POD basis used = 20. The plots in

each row are arranged as per the numerical notation of the spatial points plotted in Fig. 10

5.6 Numerical Test Case 2

In this test case, the boundary conditions are set to no flow boundary conditions on the two

sides aligned in the horizontal direction (top and bottom). Water is injected from the left

side of the domain boundary, and fluids are produced from the right side boundary of the

domain. The total inflow rate from the left side is set to 0.05 and the total outflow rate from

the right side to 0.05 as the problem is incompressible. Similar to test case 1, we evaluate

all the ROMs for two different number of saturation POD basis functions (r = 10, 20).

Also, we fix the number of POD basis for the pressure state vector to 5. Figure 10 shows the

setup for test case 2 and the corresponding singular values of the snapshot matrices Xp , Xs ,

and X f .

Figure 11 shows the time plot of mean water saturation obtained from all the ROMs

and from the full model. The display settings in Fig. 11 are the same as defined in

Fig. 3. In Fig. 11, we can see that all the results obtained from DR-RNNp, DR-RNNpd,

and the LS fit (the best approximation) closely approximate the full model whereas POD

reduced model yields extremely inaccurate results regardless of the number of utilized POD

basis.

Figures 12, 13, and 14 show the results for the mean and standard deviation of the sat-

uration field at 0.4 PVI. From these figures, we can conclude that all the plots obtained

from DR-RNN ROMs are almost indistinguishable from the LS fit (the best approximation)

results, whereas the plots obtained from POD reduced model (Fig. 14) exhibit significant dis-

crepancy when compared to the plots shown in Fig. 12. Again, we note that the white spots

displayed in Fig. 14 are the regions whose values are out of the limits marked in the respective

colorbar.
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Fig. 12 Comparison of mean water saturation field at time = 0.4 PVI for test case 2. Top Row: number of

POD basis used = 10. Bottom Row: number of POD basis used = 20

Fig. 13 Comparison of standard deviation of the water saturation field at time = 0.4 PVI for test case 2. Top

Row: number of POD basis used = 10. Bottom Row: number of POD basis used = 20

Figure 15 compares the saturation PDF estimated from the ensemble of numerical solu-

tions obtained from all the ROMs and the full model. The plotted results show that DR-RNNp,

DR-RNNpd predictions are nearly indistinguishable from the plots obtained from the full

model and are very close to the best possible approximation using LS fit. Further, Fig. 15

shows that all the saturation PDFs obtained from full model are unimodal distribution. Similar

to test case 1, POD reduced model yields inaccurate approximation of the saturation PDFs.

We further list in Table 2, the error metrics L rel
2 and L rel

2,max for the saturation fields. From

Table 2, we can see that the approximation errors obtained from DR-RNNp and DR-RNNpd

are almost close to the least-squares (best approximation) approximation errors. However,

the POD reduced model yields very inaccurate results due to numerical instabilities.
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Fig. 14 Plot of saturation mean and standard deviation of the water saturation field at time = 0.4 PVI obtained

from the POD reduced model for test case 2. Left: saturation mean. Right: standard deviation. Top Row:

number of POD basis used = 10. Bottom Row: number of POD basis used = 20

Fig. 15 Comparison of kernel density estimated probability density function (PDF) at time = 0.4 PVI obtained

from all ROMs w.r.t. true PDF obtained from the full-order model for test case 2. Top Row: number of POD

basis used = 10. Bottom Row: number of POD basis used = 20. The plots in each row are arranged as per

the numerical notation of the spatial points plotted in Fig. 10
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Table 2 Performance chart of all

the ROMs employed for test case

2. Lrel
2 and Lrel

2,max error

estimators are defined in Eq. (30).

The number of POD basis used

= 10 and 20

Error #Basis Reduced-order models

LS fit POD DR-RNNp DR-RNNpd

Lrel
2 10 0.09 1.30 0.10 0.12

20 0.07 2.05 0.08 0.10

Lrel
2, max 10 0.19 3.5 0.21 0.22

20 0.16 6.2 0.18 0.22

6 Conclusion

In this work, we extended the DR-RNN introduced in Nagoor Kani and Elsheikh (2017) into

nonlinear multi-phase flow problem with distributed uncertain parameters. In this extended

formulation, DR-RNN based on the reduced residual obtained from POD–DEIM reduced

model is used to construct the reduced-order model termed DR-RNNpd. We evaluated the

proposed DR-RNNpd on two forward uncertainty quantification problems involving two-

phase flow in subsurface porous media. The uncertainty parameter is the permeability field

modeled as log-normal distribution. In the two test cases, full-order model and ROMs are

solved for 2000 random permeability realizations to estimate an ensemble-based statistics

using Monte Carlo method. Full model and POD reduced model used implicit time stepping

method as the time step size violates the numerical stability condition. However, DR-RNNpd

architecture employs explicit time stepping procedure for the same step size used in full

model and POD reduced model. Hence, DR-RNNpd had a limited computational complexity

O(K × r2) instead of O(p × r3) per saturation update, where r is the dimension of the

POD reduced model, K ≪ p is the number of stacked network layers in DR-RNN and

p is the average number of Newton iterations used in the standard POD–DEIM reduced

model. The obtained numerical results show that DR-RNNpd provides accurate and stable

approximations of the full model in comparison with the standard POD reduced model.

Future work should consider the development of accurate and stable DR-RNNpd for UQ

tasks involving subsurface flow simulations with the additional effects including the capillary

pressure, compressibility, and the gravitational effects. In addition, it will be of interest to

explore the applicability of DR-RNNpd for UQ tasks with the permeability fields that has

randomly oriented channels or barriers. The use of DR-RNNpd for history matching (Elsheikh

et al. 2012, 2013), where we minimize the mismatch between simulated and field observation

data by adjusting the geological model parameters, is also expected to show significant

reduction of the computational cost.
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