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A new engine model has been developed for applications requiring run times shorter than a few seconds, such as

design optimization or control evaluation. A reduced-order model for mixing and combustion has been developed

that is based on nondimensional scaling of turbulent jets in crossflow and tabulated presumed probability

distribution function flamelet chemistry. The three-dimensional information from these models is then integrated

across cross-sectional planes so that a one-dimensional profile of the reaction rate of each species can be established.

Finally, the one-dimensional conservation equations are integrated along the downstream axial direction and the

longitudinal evolution of the flow can be computed. The reduced-order model accurately simulates real-gas effects

such as dissociation, recombination, and finite rate chemistry for geometries for which the main flow is nearly one-

dimensional. Thus, this approach may be applied to any flowpath in which this is the case; ramjets, scramjets, and

rockets are good candidates. Comparisons to computational fluid dynamics solutions and experimental data were

conducted to determine the validity of this approach.

I. Introduction

T HIS work addresses the need for an improved control-oriented
model of a dual-mode ramjet/scramjet propulsion system.

Improvements are needed to include more realistic estimates of the
losses of the propulsion efficiency due to shock wave interactions in
the inlet, as well as due to gas dissociation and incomplete combus-
tion in the combustor section. One problem is that previous lower-
order propulsion models [1–3] do not include the losses due to
multiple shock interactions, gas dissociation, and incomplete
combustion caused byfinite rate chemistry. This is a serious problem,
because the main advantage of a scramjet engine over a ramjet is that
the scramjet reduces losses due to internal shock waves and gas
dissociation [4]. That is, the scramjet eliminates the need for strong
internal shockwaves to decelerate the gas to subsonic conditions and
maintains lower static temperatures than a ramjet, which reduces the
dissociation losses. The present effort addresses previous short-
comings by including both of these types of losses into a code called
MASIV. MASIV consists of several reduced-order models (ROMs).
One is an inlet ROM that computes losses due to multiple shock/
expansion wave interactions; this ROM is described elsewhere [5].
The other is a fuel/air mixing/combustion ROM that is the focus of
the present paper. MASIV has been incorporated into a larger
hypersonic vehicle (HSV) code, which is available without charge
and without International Traffic in Arms Regulations restrictions.

Since computational fluid dynamics (CFD) codes takemany hours
to reach solutions for reacting flows, they are difficult to apply to
problems in which a large number of solutions are required. A tool
that can solve these configurations in a short time to acceptable
accuracy is highly desirable for control and design applications, such
as control evaluation, and multidisciplinary optimization (MDO).
The proposed one-dimensional method [6–10] solves for the heat
release distribution for both subsonic and supersonic internal flows.

Most control evaluation codes and someMDO routines use ROMs
in some capacity in order to provide solutions in a reasonable amount
of time. ROMs are typically based on approaches employing
dimensional reductions inwhich detailed or high-fidelity simulations
are approximated through a set of basis functions or lookup tables
[11]. ROMs usually do not compete with CFD, elementary
combustion, finite element, or other high-fidelity simulations, but
instead use these high-fidelity solutions at run time. While these
types of ROMs provide a rapid way to generate solutions, they are
confined to the fixed geometry and the limited range of validity for
which the tabulated results were generated. The accuracy and range
of validity of each ROM must be carefully quantified by making
comparisons to high-fidelity CFD or experimental findings.

The present work treats the problem differently from the proper
orthogonal decomposition (POD) approach; it reduces the dimen-
sionality of the physics retained in the problem so that the entire code
can be run in a short time. This makes it possible to solve the entire
flowfield, rather than fully relying on pretabulated solutions, and it
means that run conditions are not constrained to be between the
bounds of pretabulated cases for the physics of the simulation to be
accurate, since the conservation laws are solved directly. They are not
reduced into an interpolation or a regression scheme.

The combustor code solves a set of differential and algebraic
equations in space [12], marching axially through the combustion
duct. Since combustion inmost engines is mixing-limited rather than
reaction-rate-limited, 3-D jet mixing must be computed. However,
since we only allow differential equations containing derivatives
with respect to the axial distance coordinate, we use an algebraic jet
spreading scaling relation [13]. This amounts to using a ROM for jet
spreading characteristics, but the solution is based on flowfield
similarity rather than a lookup table, so it is valid for a wide range of
flow conditions that have jet-wake-stabilized flames.

The combustion model considers finite rate chemistry within the
steady laminar flamelet model (SLFM) [14], which considers each
point in the flame and maps to it the solution of a corresponding
counterflow flame. To account for the turbulence/chemistry inter-
action, this SLFM formulation employs a presumed probability
distribution function (PDF) closure model. The SLFM includes the
effects of strain rate, species diffusion, andmomentumdiffusionwith
changing duct velocity and fuel jet velocity. The PDF closure
accounts for the effect of turbulence. This allows us to generate a
three-dimensional reaction-rate field, which we then spatially
average over transverse planes to create a one-dimensional reaction-
rate profile.

In this work, we compare results of the MASIV ROM to CFD
solutions from the commercially available FLUENT [15] code and to
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profiles of wall pressure and heat release rates measured by Micka
et al. [16]. The results shown are from the current version ofMASIV,
which simulates either scram mode combustion or ram mode and
uses an ad hoc method to jump over the singularity at Mach 1. The
ram-scram transition was not considered, although the equations that
govern this transition have been previously described by the authors
[7] and will be implemented in future versions of the code.

II. Model Description

The model is designed to simulate flowpaths that have a general
1-D character but contain regions where 3-Dmixing and combustion
occur. For example, in a dual-mode ramjet/scramjet, most of the flow
is nearly 1-D and can be realistically modeled by a set of ordinary
differential equations (ODEs) that represent the conservation
equations for a variable-area duct with friction and wall heat transfer.
However, the region surrounding the fuel jet near each injector is best
represented by the 3-D turbulent combustion of a jet in crossflow.We
developed a reduced-order modeling strategy that combines the
known 3-D scaling relations for a jet in crossflow with a set of
flamelet lookup tables. An assumed PDF approach is used to include
the appropriate 3-D turbulence properties in a statistical sense and the
local interaction of turbulence with finite rate chemistry. We then
spatially average the 3-D reaction rates over planes perpendicular to
themain flow direction, which gives us a lookup table of the resulting
1-D reaction rates. These values are inserted into the source terms in
the differential equations for species conservation in the solution of
the ODEs describing the main flow. Using this approach, the main
flow can be treated as a 1-D flow, but the local 3-D turbulent
combustion and mixing around each fuel jet can be computed, and
their influence on the overall heat release can be retained.

To develop a ROM formulation for computationally efficient
application in MDO, several modeling assumptions are introduced.
The main assumption arises from presenting the fuel injection and
flame structure through the self-similar solution of a jet in crossflow.
Currently, we only consider the perpendicular injection of fuel in a
crossflow, and the self-similar modeling constants are determined
from low-speed experiments. However, it is noted that thismodel can
be improved as further results for scaling relations under high-speed
flow conditions become available. Another potential model
limitation arises from the flamelet assumption, in which a two-
stream combustion process between fuel and oxidizer is considered.
Multistream systems that arise, for instance, by injecting different
fuels or the successive mixing of different reactants currently are not
considered. However, the flamelet model can be extended to account
for more complex information by considered multistream and
nonadiabatic processes [17,18]. In the present work, hydrogen/
oxygen combustion is considered. More complex mechanisms and
hydrocarbon combustion can be incorporated in a straightforward
way without increase in computational complexity of the ROM
formulation.

A. Conservation Equations

For the description of a stationary turbulent reacting flow, a
Reynolds-averaged approach is employed, inwhich an instantaneous
flowfield quantity �� ��t;x�, for x� �x; y; z�, is separated into
mean and fluctuating contributions:

�� ��� �0 with ���x� � 1

T

Z
t�T

t

��t;x� dt (1)

and a corresponding Favre-averaged quantity is evaluated as ~��
��= �� and �� ~�� �00.

For the 1-Dmodel, we assume that properties are homogeneous in
each y-z plane so that for each variable the value on that plane is equal
to the area average of the variable. Note that in this model, x is in the
downstream axial direction in the combustor, y is the upward
transverse direction, and z is the spanwise direction. The spatial
average is defined by the following equation:

hQi � 1

A

ZZ

A

Q dx dy (2)

where A is the cross-sectional area. In general, however, we will
refrain from writing the variables in angle brackets, h�i, to make
equations easier to read. Unless otherwise specified, it should be
assumed that variables are area-averaged.

MASIV solves for the 1-D evolutions of a set of ODEs for all
flowfield quantities describing the combustion process. The
derivation of these equations proceeds from well-known principles
[12,19], but some finer points deserve attention, so they are described
in Appendix A. First, we consider the spatial derivative of the
equation of state,

1
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to compute the pressure derivative, where p is the pressure, T is the
temperature, � is the density, and W is the molecular weight of the
mixture. Next, we employ the mass conservation equation,
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tofind the density derivative,where _m is the totalmassflow rate in the
duct, and u is the velocity. Next, we use the species conservation
equation,

dYi

dx
� _!i

�u
� 1
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d _mi

dx
� Yi

_m

d _m

dx
(5)

in order to account for mass addition to and reaction in the duct. In
Eq. (5) Yi is the mass fraction of each species, _!i is the volumetric
mass generation rate of each species, and d _mi=dx is the rate of mass
addition through the walls for each species. Next, we use the
momentum conservation equation,
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to find the derivative of axial velocity. A source term accounts for
momentum carried into the duct by mass added through the walls.
Here Cf is the wall friction coefficient and dSw=dx is the rate of
change of total wetted area with downstream distance. The direction
parameter " is uinj;x=u, where uinj;x is the x component of the injected
gas. Values of 1 and 0 correspond to parallel and perpendicular
injection, respectively. The second term on the right-hand side
represents friction forces and the third term represents momentum
added through the walls. Finally, we use the energy conservation
equation,
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tofind the rate of change of temperature in the duct. In Eq. (7)h0 is the
stagnation enthalpy of the flow and cp;i is the specific heat at constant
pressure of each species. Note that these equations consider all
sources of enthalpy including sensible and chemical. As required by
the Reynolds analogy, haw is the enthalpy of the gas at an adiabatic
wall and hw is the gas enthalpy at the wall temperature. Several
source terms describe the addition of energy to the duct by friction,
wall heat addition and chemical reaction. The left-hand side of the
equation represents the energy-normalized rate of change of
temperature. The third term on the right-hand side represents heat
lost to thewalls, which is computed using the Reynolds analogy. The
fourth term represents work done by wall friction. The fifth term
represents heat added by combustion and the sixth term represents
energy added to the volume by mass addition through the walls.

Equations (3–7) represent 4� n equations for 4� n unknowns
�p; �; Yi; u; T�, where n is the number of species considered. In the
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present implementation of theMASIVmodel, we have included nine
species, corresponding to H2/air chemistry with no nitrogen
products, although any chemistry set can be used in principle.

B. Assumed-Mixing Model

We developed a mixing ROM in order to compute the chemical
reaction rates ( _!i) for each species, which are required in Eq. (5). The
ROM simulates the 3-D mixing and 3-D turbulent combustion
processes for a fuel jet that is injected perpendicular to an air
crossflow. Then it reduces the 3-D local reaction rates to 1-D
reaction-rate profiles by spatially averaging the computed 3-D
reaction rates over each y-z plane. This preserves the 3-D mixing/
combustion information and is an improvement over previous
studies [6,7,12,19,20] that have unrealistically simulated the
chemical reactions and mixing to be 1-D processes. At each spatial
(x) location, the mean chemical reaction rate of each species is
computed by combining the mixture fraction and fluctuation
information with flamelet lookup tables.

In general, there are two ways to represent combustion: either as a
reaction-rate-limited process (premixed), or as a mixing-limited
process. Previous work [6,7,12,19,20] has assumed that scramjet
combustion is a reaction-limited process; this assumption is only
realistic if fuel ismixed far upstream of the combustion region, which
often does not occur in practical devices. In reality, the conditions in a
scramjet are mixing-limited. That is, fuel and air are not homo-
geneously mixed, but instead there is a stoichiometric contour that
surrounds any 3-D fuel jet, and the combustion actually occurs near
this stoichiometric contour.

To account for this mixing-limited condition, we assume that the
flow around the injectors is well-approximated by a 3-D jet in
crossflow. Turbulent mixing properties are generated using gradient
information from the assumed jet profile, which then allows us to
compute the local reaction rate for each species.We spatially average
the resulting reaction-rate field to get h _!ii once the local reaction
rates (including turbulent effects) have been modeled.

The first step is to compute the jet mixing profiles. Rather than
store CFD information directly in lookup tables or POD basis
functions, we use physical self-similarity arguments to rapidly create
a solution. These scaling relations are algebraic relations that were
determined experimentally by Hasselbrink and Mungal [21]. They
represent the 3-D mean mixture-fraction field as function of x and
give scaling relations for the other variables as functions of the mean
mixture-fraction field. Note that although this scaling law is simple, it
provides reasonable agreement for jet shape for a wide variety of
conditions. The constants used in this study are from experiments on
fully subsonic jets, but recent investigations [22] have examined
transonic flows and found similar relations (although different values
for some constants). Note that subsonic and supersonic mixing
relations are similar, because the jet centerline and mixing-rate
parameters are based on simple conservation arguments. However,
we are ignoring certain dynamics such as barrel shocks in the
injectant and shocks in the crossflow caused by injection, which
some authors have identified [23].

The jet centerline penetration and spreading can be computed for
each point using the jet scaling relationships [13]. This relationship is
valid for momentum ratio ru � 1, where ru is defined as

ru �
�
�inj

�

�
uinj

u

�
2
�
1=2

(8)

and the injection density �inj and velocity uinj are known. The jet
centerline path relationship

yCL

dinj
� c1

�
xCL

dinj

�
c2

r
2=3
u (9)

then traces the centerline path of the fuel jet. We assume that the fuel
injector is choked, so the stagnation pressure and temperature of the
fuel line are sufficient to compute conditions at the injector. The
coordinates xCL and yCL define the centerline of the jet, and dinj is the
injector diameter.

The normalized concentration of injected fuel is given by another
scaling relationship [21],

�� c3

�
�inj

�

�
uinj

u

��1�xCL
dinj

��2�1=3
(10)

where � is the ratio of the mole fractions of the streams. The mean

mixture fraction ~fCL is assumed to be 1 in the injected gas stream
(pure fuel) and 0 in the crossflow (pure oxidizer):

rw �
Winj

W
(11)

~f CL �
�rw

1� �rw � 1�� (12)

where rw is the ratio of molecular weights of the injectant and
crossflow.

The mixture fraction at a given point is determined by the center-
line mixture fraction corresponding to that point, the jet spreading
distance (b), which is a function of distance from the injector along
jet centerline (s), and the distance from the jet centerline (n):

~f�s; n� � ~fCL exp

�
�n2

2b2

�
(13)

Values of n and b are computed using the following equations:

n2 � �x � xCL�2 � �y � yCL�2 � z2 (14)

b

dinj

� c4r
2=3
u

�
xCL

dinj

�
c2

(15)

Note that the orientation of the �s; n� frame compared to the �x; y; z�
frame is shown in Fig. 1. Thus, by computing the shortest perpen-
dicular distance from a given point to the jet centerline, the mixture
fraction can be computed.

Three Quarter View
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Top View

Side View

y
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b
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Fig. 1 Schematic of the spreading profile for a jet in crossflow.
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The mixture-fraction variance ff002 is computed using the Prandtl
mixing-length argument. Measurements indicate that mixture-
fraction variance is essentially a function of the gradient of the mean
mixture fraction, so that

�������
ff002

q
� c5

c4
bjr ~fj (16)

which is analogous to the mixing-length concept for velocity
fluctuations [24]:

�������
fu002

q
� bjr ~uj (17)

The constants c1–c5 are experimentally determined. Their values in
MASIV are given in Table 1. Note that we set c3 in order to fit the
experimental data as shown in Sec. IV. This is because the data of
Hasselbrink and Mungal [13,21] were measured in low-speed jets
where diffusive effects are maximized, but the case in question is a
high-speed ram case. In high-speed flows, especially transonic ones,
some mixing is suppressed due to the speed and the shock pattern
involved. Initial estimates based on more recent work on transonic
(ram) cases [22] show values for c3 that may be as high as 1.24.

Finally, we determine the mean scalar dissipation rate, ~� using the
formula

~�� 2DT jr ~fj2 (18)

whereD is themolecular diffusion coefficient andDT is the turbulent
scalar diffusion coefficient. In the following, we model DT as [26]

DT �
�T

ScT
(19)

where uinjdinj=�T � 45. Here, the value of uinjdinj=�T is taken to be a
tunable parameter, and the value 45was found to give best agreement
with the experimental results. Peters [26] suggests a value between
60 and 70 and Schlichting [27] suggests a value of 61; however, both
of these are for low-speed jets, so the lower value we have chosen
represents somemixing suppression due to the high speed of theflow
in question. The turbulent Schmidt number is ScT � 0:7.

Figure 2 illustrates some profiles of mean mixture fraction,
mixture-fraction variance, and reaction rate for the experimental
conditions examined in this work. Note that the reaction rate depends
on both the mean mixture fraction and the variance, indicating the
roles of both fuel concentration and turbulentmixing on the reaction-
rate profile. Also, the meanmixture fraction and themixture-fraction
variance are low, because these planes are relatively far downstream
from the injector.

C. Flamelet Combustion Model for Diffusion Flames

In the flamelet model, a turbulent diffusion flame is considered to
be an ensemble of laminar flamelets [14,26]. At sufficiently large
Damköhler number or sufficiently high activation energy, chemical

reactions and heat transfer occur in thin layers. If the characteristic
length scale of these layers is smaller than that of the surrounding
turbulence, the turbulent structures are unable to penetrate the
reaction zone and are unable to destroy the flame structure. The effect
of turbulence in this so-called flamelet regime results in a
deformation and stretching of the flame sheet. With this notion, a

Table 1 Experimental constants for jet mixing model

Constant Experimental range MASIV value

c1 1.2 to 2.6 [21] 1.6
c2 0.28 to 0.34 [21] 1

3

c3 0.68–0.95 [25] 1.3
c4 0.76 [21] 0.76
c5 0.0084–0.0093 [25] 0.009

0.38 0.4 0.42 0.44 0.46 0.48

0

0.005

0.01

0.015

0.02

0.025
0 0.005 0.01

a) Mean mixture fraction, f computed by MASIV

0.38 0.4 0.42 0.44 0.46 0.48

0
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0.01

0.015
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0.025
0 10 1 x 10

−4

b) Mixture fraction RMS fluctuation, f 2 computed by MASIV

0.38 0.4 0.42 0.44 0.46 0.48

0

0.005

0.01

0.015
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0.025
0510

c) Production rate H2 ωH
2
, in k, g/m3/s

.

Fig. 2 MASIV computed profiles of mean mixture fraction, mixture-

fraction fluctuation and local rate of generation ofH2 in the jet centerline

x-y plane. The x locations shown are those marked in Fig. 4.

Table 2 Conditions at station 2a for experiment, FLUENT, and MASIV, with overall equivalence ratio �� 0:27

T0 p0 T p u Composition

Vitiated-air crossflow 1370 K 333 kPa 1280 K 261 kPa 458 m=s YO2
� 0:251, YN2

� 0:611, YH2O
� 0:138

Fuel jet 298 K 829 kPa 248 K 438 kPa 1200 m=s YH2
� 1

Table 3 Constant parameters

used in the simulation

Parameter Value

Pr 0.71
Tw 1100 K
Cf 0.003
ru 1.96
dinj 2.49 mm
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flamelet can be considered as a thin reaction zone surrounded by a
molecular transport layer, which, in turn, is embedded with a
turbulent flow [28]. The structure of the flame in the flamelet regime
can be described by the steady flamelet equations [14]:

� �

2

@2 

@f2
� _! (20)

These equations can be derived from an asymptotic analysis of the
conservation equations for species and energy, which are here
denoted by the vector  � �Y; h�T, and _! is the vector of the
corresponding source terms. The scalar dissipation rate, appearing in
Eq. (20), is modeled from the solution of a counterflow diffusion
flame [29] and is expressed in terms of its value at stoichiometric
mixture fraction and an analytical expression [29,30]:

�� �stF�f� (21)

The solution of the steady flamelet equations can be represented by
the so-called S-shaped curve [29], and all thermochemical quantities,
collectively denoted by the vector �� ��; _!; . . .�T, can then be
parameterized in terms ofmixture fraction and scalar dissipation rate,
viz.,

� � ��f; �st� (22)

This state-space parameterization represents the instantaneous
thermochemical quantities and does not account for turbulence/
chemistry interaction.

To account for the turbulence/chemistry interaction, the state
relation (22) must be formulated for Favre-averaged quantities.
These quantities are computed by employing a presumed joint PDF
for mixture fraction and stoichiometric scalar dissipation rate:

~��
Z 1

0

Z
1

0

��f; �st� ~P�f�P��st� df d�st (23)

where it is assumed that f and �st are statistically independent.
The marginal PDF of mixture fraction is modeled by a beta

distribution [29], whose shape is fully characterized by the mean and
variance of the mixture fraction. To model the distribution of the
stoichiometric scalar dissipation rate, a log-normal distribution
function is employed, which is presented as

P��st� �
1

�st�
������
2�

p exp

�
� 1

2�2

�
ln

�
�st

~�st

�
� �2

2

�
2
�

(24)

inwhich� is the standard deviation of the PDFand is set to unity [31],
and � is related to the stoichiometric scalar dissipation rate via

�2 � ln

 
1�

f�002
st

f�2
st

!
(25)

With this, the Favre-averaged thermochemical state-space quantities
can be expressed in terms of the first two moments of the mixture
fraction and the mean stoichiometric scalar dissipation rate:

~�� ~�� ~f;ff002; ~�st� (26)

This gives _!� ~f;ff002; ~�st�, which is mapped to �x; y; z� space. Note
that aminor inconsistency is introduced here, and the values obtained
for species mass fractions in the 1-D integration will not necessarily
correspond to the values obtained for local mass fractions in this step.
To impose continuity and atom conservation on the flow, only the
area-averaged reaction rates are used in the 1-D integration and not
the local mass fractions as computed by the flamelet. Hence, the
inconsistency is eliminated after the jet mixing and flamelet lookup
step.

Next, we integrate _!�x; y; z� to determine the one-dimensional
rate of reaction of each species [recall Eq. (2)]:

h ~_!ii�x� �
1

A

ZZ
~_!i�x; y; z� dy dz (27)

These functions are tabulated for a given chemistry before the
simulation.

III. Solution Procedure

We begin by considering the conservation equations and the
equation of state [Eqs. (3–9)], solving them in the following manner.
We avoid formulating the problem in terms of cp and directly use the
enthalpy curve fits, which are available from NASA CEA [32,33].
We recommend the use of NASA CEA, because it uses many
sources for its chemistry information and has current and extensive
information.

Similarly, the sound speed a for a reacting flow is defined as
a2 � �@p=@��s, which produces different results for equilibrium and
frozen flows [34]. This is because the variation of species mass
fractions provides multiple paths for the state variables to follow.We
avoid this difficulty by formulating the problem in terms of velocity
rather than Mach number. This is what Heiser and Pratt [4] call
enthalpy-kinetic energy (H-K) space. It is more convenient than the
typical temperature-Mach number (T-M) space (which would
require both cp and a to be computed at solution time) and results in a
simpler set of equations.We computea andM in postprocessing after
the solution has been found.

Other quantities indicated in Eqs. (3–7), which are required to
solve the system, include the area profile A�x� and its derivative
dA=dx. The mass addition profile �d _mi=dx��x� must also be given
and can be summed to give

X

i

d _mi

dx
� d _m

dx
�x�

the total mass addition profile. For the integration step the reaction
rates are pretabulated using themethod described in Sec. II.C to yield
_!�x�.We also assume a Prandtl numberPr, a skin-friction coefficient
Cf, and a wall temperature Tw.

Intermediate quantities are computed at each step:

_m� �uA (28)

dW

dx
��W2

X

i

�
1

Wi

dYi

dx

�
(29)

dSw

dx
�

������������������������������
16A�

�
dA

dx

�
2

s
(30)

d _m

dx
�
X

i

d _mi

dx
(31)

hi � hi�T� (32)

h�
X

i

Yihi (33)

h0 � h� u2

2
(34)

hw � h�Tw� (35)
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haw � h�
������
Pr

p u2

2
(36)

Once we have determined _!�x�, we have enough information to
solve Eqs. (3–7). A stiff solver is required due to the rapid reaction
rates. We used MATLAB’s ode23tb because it is capable of
handling stiff equations.

IV. Assessment of the Model

To assess the accuracy of theMASIVmodel, we compared results
to experimental data and to high-fidelity CFD solutions of the same
configuration. We chose this approach because the three different
results offer different insights and different levels of accuracy for
certain parts of the flow. Not all quantities can be measured in the
experiment, so althoughwe treat it as a truth solution, not all variables
of interest can be surveyed. The CFD model provides detailed
information about all flow variables at all locations in the flow, but
because some modeling of turbulence and chemistry is required, the
simulation results can be skewed depending on modeling choices.
Finally, the 1-D model can provide the most basic types of insights
into conservation, jet mixing, and chemistry results in the duct.
Differences between the methods are discussed below. We have
attempted to match the simulations and the experimental results
without tuning the models to the extent that their applicability to
other problems is compromised. The nominal boundary conditions at
the beginning of the duct for all three results are shown in Table 2.
Note that these values are estimated from the experimental results.

A. Experiment

Previous supersonic combustion experiments were performed in a
dual-mode ramjet/scramjet combustor [16]. This facility (shown in
Fig. 3) supplies 21% O2 mole-fraction vitiated air at stagnation
temperatures T0 up to 1500 K. The test section is made of stainless
steel and is shown in Fig. 1. A two-dimensional Mach 2.2 nozzle
exits into a constant-area isolator with a cross section of 25.4 by
38.1 mm. The constant-area isolator is followed by a wall-cavity
flameholder and a nozzle section with a 4 deg divergence angle.
Room-temperature gaseous fuel was injected sonically through a
single 2.49-mm-diam port located on the test-section centerline
44.5 mm upstream of the cavity leading edge. Additional details on

the facility and test section are available from Micka and Driscoll
[35].

There are wall static pressure ports at 16 locations throughout the
combustor and isolator. Estimates of the heat release distribution in
the combustor were acquired using images of the OH* luminosity
[35]. Chemiluminescence is often used as amarker of the heat release
in flames, and OH* is proportional to the heat release rate in many
cases [36]. The luminosity from OH* was imaged using an Andor
Istar intensified camera with a 310	 10 nm bandpass interference
filter.

B. CFD Simulations

The FLUENT boundary conditions are based on stagnation
conditions in the air and fuel streams. Because of this, there is a
discrepancy between the boundary conditions for FLUENT and
MASIV, which corresponds to the difference between FLUENT’s
predictions of friction (and hence isolator performance) in the duct
and the 1-D estimate of conditions from the experiment based on
Heiser and Pratt’s [4] isolator performance relationships.

The FLUENT CFD geometry (shown in Fig. 4) is identical to that
of the dual-mode combustor experiment described in the previous
section. The meshed region includes the combustion and diverging-
area sections of the experimental apparatus only, including only as
much of the isolator section as required to contain the flow stagnation
point upstream of the fuel injection port, and to allow for fuel
diffusion upstream of the injector. The mesh is more densely
clustered near the fuel injector to capture the physics of the fuel/air
mixing as accurately as possible. The mesh also is denser near the
leading and trailing edges of the stabilization cavity to capture their
influence on the downstream thermal choke point created by heat
addition to the subsonic flow. Symmetry about the vertical center
plane allows us to reduce the computational requirement so that there
are approximately 400,000 tetrahedral finite elements for half the
combustor.

We used the pressure-based solver in FLUENT, which solves the
steady second-order upstream equations including viscosity and the
energy equation; turbulence is modeled using the realizable k-�
model with standard wall functions. The mixture fraction and scalar
dissipation rate are assumed to be statistically independent in the

FLUENT implementation, so the joint PDF ~P�f; �st� is set equal to
~P�f�P��st�. The PDF of the mixture fraction is assumed to be a beta
function. Fluctuations in the scalar dissipation rate are ignored, so the

Fig. 3 Dual-mode combustor.

25.4 mm2a 4a 4b
5a

358 mm 349 mm

802 mm

internal nozzlecombustorisolator

constant area section

4°

diverging section

3a

fuel injector
12.7 mm

cross-section A B C D

x

Fig. 4 Duct geometry for simulation. Note that only the experiment and FLUENT simulations include the cavity. MASIV simulations do not include

cavity to avoid reversed-flow regions.
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PDF of � becomes a delta function: P� 	��st � ~�st�. The mean

scalar dissipation rate is modeled as ~�st � 2 "
k
~f
02
, where �f02 is the

mean mixture-fraction variance [15]. Real-gas models are included
to describe the compressible behavior of each of the species
contained in the mixture. We used the nonpremixed, diabatic steady
flamelet model including compressibility effects. A standard
CHEMKIN [37] mechanism for H2/air combustion dictates that the
chemistry and H, O, OH, H2O, H2O2, and HO2 are the product
species. The software-normalized residuals of the simulations were
allowed to converge to values below 10�4 to ensure that the
simulation has reached steady state.

C. One-Dimensional Run Details

The MASIV simulations use the same duct geometry (shown in
Fig. 4) and initial conditions as were estimated from the experiment,
except that the MASIV geometry uses a modified area profile that
does not include the cavity, since a 1-D formulation cannot include
regions of reversed flow. The values of the simulation constants in
MASIVare shown in Table 3.

V. Results

Figures 5–12 provide a comparison of results from MASIV,
FLUENT CFD, and experimental data. We used three different
metrics to tune themodel. First, we looked at the jet spreading, which
can be determined by examining cross-sectional (y-z) planes, and
compared the spreading characteristics of each of the three sources
qualitatively. Second, looked at the flame length in the axial plane by
comparing luminosity images from experiment to heat release

images from the two numerical routines to ensure that the MASIV
prediction is realistic. In these images we compared the shapes of the
flame boundaries and total flame length. Third, we compared the
axial 1-D luminosity from experiment to the 1-D heat release
distributions predicted by the two codes. We expect the total heat
release (area under the curve) to be similar among all three.

Contours of the heat release rate in various y-z planes are shown in
Fig. 5. It is possible that differences between FLUENT and MASIV
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Fig. 5 Contours of heat release rate in y-z cross sections at various x locations. Each image is normalized by its own maximum value. Contours

correspond to 25, 50, and 75% of the maximum value in each image. Locations of cross sections are marked in 4. The fuel injector is at x� 0:358 m, and

the x locations are as follows. a–c) x� 0:402 m, d–f) x� 0:427 m, and g–i) x� 0:448 m.
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Fig. 6 Volumetric heat release rate for experiment, FLUENT, and
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are due to the simplified nature of the scaling relations (8–16) and
(18). However, there are some important considerations in evaluating
the results. First, we note that the FLUENTresults cannot necessarily
be interpreted as a truth model, because they do not represent all
aspects of the experimental flowfield accurately. We compare the
results of FLUENTandMASIV, because they offer different insights
into the problem, and we expect them to converge as modeling
techniques used in each are improved.

Second, we note that each of the images is normalized to its own
maximum, so they are only comparable to each other in a qualitative
sense. The figure of merit for these images is that the loci of

maximum reaction rate occur at approximately the same radial
distances from the jet centerlines. This means that jet spreading
computed by MASIV bears qualitative resemblance to the experi-
ment and CFD cases, although the reaction rate it predicts is
necessarily smeared annularly around the jet centerline due to the
RANS formulation. Confinement has an effect on the centerline
penetration and spreading of the jet, which is not included in the
scaling relations of Hasselbrink and Mungal [13,21]. Experimental
results suggest that the walls may prevent the jet from penetrating as
far as it would otherwise.

The cross-sectional views are important because they give us a
qualitative way to evaluate the model. We do not expect MASIV to
reproduce the detailed structures seen in the experimental results, but
we do expect the reaction contours to be approximately in the same
area (and they appear to at least have the same trend) between the
different models andwe expect the regions of strongest reaction to be
concentrated at the same distance away from the jet centerline. The
FLUENT results at downstream locations are smaller in area than
those of the experiment or MASIV, because FLUENT predicts some
small regions of very high reaction rate toward the end of the duct.

Figure 6 shows that the MASIV model predicts stronger heat
release very near the injector than does FLUENT. This is most likely
because of the simplicity of themixingmodel used inMASIV, which
cannot truly predict the compressive effects of a high-speed
crossflow impinging on a jet. This changes the mixing flowfield on
the front side of the jet, and the resulting compression of the flame
causes smaller heat release values.

Figure 7 shows that the pressure plots of numerical results differ
from the experiment in the combustor region. They show that the
computed pressure drops more rapidly than observed in reality. This
is most likely due to heat being lost to the walls of the duct, or to
momentum losses due to wall friction. The agreement between
MASIV and experiment is probably somewhat coincidental, given

Fig. 8 Normalized temperature versus distance for FLUENT and

MASIV.
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Fig. 7 Normalized pressure versus distance for experiment, FLUENT,
andMASIV. Circles shown for the experiment represent measurements

at individual pressure taps.
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that both FLUENTand MASIVoverpredict the pressure drop due to
combustion from x� 0:35 to x� 0:44. One possible reason for the
agreement of MASIV with experimental results in the aft section of
the duct is that MASIV predicts that almost all of the reaction will
occur inside the longest contour shown in Fig. 12c. The extra blobs of
reaction predicted by FLUENT are accompanied by heat release,
which will then drive down the pressure in that section. There may
also be heat loss effects in this section of the combustor.

No experimental data were available for the temperature of the
duct walls or wall friction, which has a strong effect on the result.
Cold walls can remove a great deal of enthalpy from the flow, as can
friction work. Experience suggests that the walls of the experiment
will be slightly cooler than the vitiated-air stagnation temperature,
since they will not have enough time to reach equilibrium with the
flow. This means that the extra drop in pressure predicted by both
codes is probably related to the fact that the heat loss to the walls is
underpredicted.

Figure 8 shows the predicted temperature in the flow for FLUENT
and MASIV. Again, heat loss to the walls can have a large effect on
temperature, as well as differences in the predicted compositions of
the flow. A small difference in predicted reaction rate can cause extra
heat to be released due to additional burning of fuel or to
recombination of radicals. Also, themore radicals in theflow (and the
lower the molecular weight), the lower the temperature will be for a
given enthalpy.

Figure 9 shows the velocity evolutions for FLUENTand MASIV.
It is important to note that almost exactly the same trend is predicted
by each model. However, the FLUENT code predicts a lower
velocity than MASIV, because it predicts that heavier species make
up a greater mass fraction thanMASIV does. This, in turn, requires a
greater velocity to satisfy continuity. Similarly, theMach numbers in
Fig. 10 follows the same trend, although the difference in predicted
sound speed (again due to differences in predicted flow composition)
brings the plots closer together than in Fig. 9. The predicted thermal
throat location is almost identical for the two models.

Figure 11 shows the MASIV-predicted mass fraction of several
species of interest. It may be noted that the code predicts that much of
the fuel will remain dissociated (which ties up combustion enthalpy)
through the end of the duct. At these relatively low speeds this effect
cannot be replicated with a finite-rate-limited (rather than mixing-
limited, as here) solver.

fuel
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Fig. 12 Heat release results. The contours show isoclines containing 90, 75, 50, 25, 10, and 5% of the total heat release due to reaction in the duct.
Comparison of corresponding isoclines of the three images shows predicted flame length from each. Bold contours show equivalent amounts of heat

release, which are expected to have nearly the same length.
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The heat release distributions shown in Fig. 12 show strong
similarity between the flame shapes predicted by both codes. Since
MASIVonly includes turbulent effects in a statistical sense, none of
the blobs of high combustion rate seen in the FLUENT result are
present (Figs. 12b and 12c). However, the lengths of the various
contours are similar in shape and length between the two models.
Differences between simulation and experiment are most likely due
to larger unsteady effects in the experiment, short experimental run
time, diffusion and persistence of luminosity, and the high gains
necessary to register the image.

Note that the MASIV model underpredicts the flame length, most
likely due to the fuel being consumed so quickly near the injector.
This is because the only way for the flame to be extinguished in the
diffusion-flame model is for the strain rate to be excessively large
and, as noted above, the strain on the front side of the jet is difficult to
predict. In the experiment, the fuel not consumed on the front side of
the jet convects downstream and burns there, contributing to the
longer flame length. Figure 13 shows the influence of scalar dissi-
pation rate on the flame. Since the fuel only has a high probability of
burning at or very near to the stoichiometric contour, the strain rate at
the stoichiometric contour is of primary importance. Note that the top
front of the stoichiometric contour has very large strain rates, which
correspond to incomplete combustion of the fuel.

The effect of scalar dissipation rate on the flamelet can be seen
clearly in Fig. 14. This figure indicates that a large number of points
in the flame react at conditions close to those of the �� 10 s�1

flamelet, which explains why not all the fuel is consumed.

VI. Conclusions

The MASIV control-oriented propulsion code was found to agree
with experimental heat release distribution measurements with
accuracy comparable to that of the FLUENTCFD code. TheMASIV
code overpredicts the amount of reaction near injectors. This result is
acceptable for control evaluation and MDO-type applications, be-
cause the overall behavior of the code is correct, even though there
are some errors due to the simplified mixing model. Based on
pressure values (the only variable that can be quantitatively
compared for all 3 results) FLUENT gives a root-mean-square
deviation of 25% from the experimentally measured pressures.
MASIV gives an rms deviation of 18% from the experimentally
measured pressures although it should be noted that the good
agreement between MASIVand experiment in the diverging section
is probably due to fortuitous choice of conditions and the balancing
effect on pressure of simplified reaction contours due to the
simplifiedmixingmodel and heat loss towalls. A typicalMASIV run
requires �1 s of run time on a dual-core 32-bit computer.

While MASIV requires only a few seconds of run time on a
modern personal computer to compute values of thrust and moments
that agree with high-fidelity CFD results, it has several limitations.
Currently, it is limited to 2-D steady (i.e., time-averaged) conditions.
Fuel must be injected as a jet that is perpendicular to a crossflow of
air. Our current implementation is limited to H2 fuel at one pressure
and temperature for flamelet chemistry and ethylene (C2H4) or
methane (CH4) chemistry for premixed finite rate chemistry. These
limitations can easily be avoided in the future by creating additional
flamelet lookup tables for different fuels and different reaction
pressures and temperatures. To consider different injection angles,
we would need experimentally verified scaling relations for jets
injected at arbitrary angles into crossflows. Previously, we have
computed the sensitivity of the thrust to the vehicle angle of attack, as
well as the poles and zeros of the transfer functions that relate control
inputs of fuel setting, elevator, and canard to 2-D airplane stability
[7,9]. In the future, wewill apply theMASIV code to optimization of
proposed hypersonic vehicle configurations, in order to develop rules
for creating stable and operable designs [10].

Appendix A: Derivation of Conservation Equations

The conservation equations for a 1-D flow in a variable-area duct
have been derived many times in the literature [12,19]. We present

here some points that require attention in order to calculate the effect
of heat release andwall friction, aswell as compute theMach number
of a reacting flow.

Figure A1 shows the canonical geometry of a duct control volume
differential element. � in the figure represents a state variable of
interest. The possible modes for addition of mass, momentum and
energy are represented by arrows entering and leaving the control
volume.

I. Speed of Sound

The two limits on sound speed are frozen and equilibrium.
Beginning from Law’s result [34] we obtain the following frozen
sound-speed equation:

a2 � RT

P
i

Yicp;i
P
i

Yicp;i � R
(A1)

This is identical to the sound speed that can be found using the mass-
weighted average cp and the mixture R. These in turn are found by
the NASA CEA coefficients method as described above.

Here, the definition of cp corresponds to the frozen-flow case. We
have found that using the frozen flow cp gives good results for
prediction of the sonic point due to thermal choking, although it is
unclear how much error is incurred by neglecting the effect of
reaction at points other than the sonic point. The sonic point predicted
using this method corresponds to within computer precision to the
point at which the equations become extremely stiff, so it is useful for
this purpose.Most likely, this is because any reaction-rate effects due
tofinite rate reactionswill have derivatives that are small compared to
the large derivatives of the state quantities near the sonic point. The
specific heat cp of the mixture is not required for any other purpose,
so the frozen-flow approximation is sufficient for the needs of the
proposed algorithm.

II. Molecular Weight

1
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Wi

(A2)
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��W2
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Wi

dYi

dx

�
(A3)

III. Evolution of Species

We write a general form equation for the evolution of species
allowing both creation of species in the volume due to reaction and
addition of species through walls. This equation must be consistent
with conservation of atoms, but Eq. (A5) does not guarantee this, so
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Fig. A1 Differential element for one-dimensional fluid flow; � is the

flux of any quantity across the open system boundaries.
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the reaction rates _!i must themselves conserve atoms. Equation (A5)
is consistent with conservation of mass and, indeed, the mass of each
species is conservedwhen reactions that generate or consume species
are considered:
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ZZ
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Z

	x

_!A dx� _mi (A4)
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d _mi

dx
� Yi

_m

d _m

dx
(A5)

IV. Conservation of Momentum

We begin with the control volume form of the momentum con-
servation equation, considering only steady solutions, neglecting
body forces, and allowing momentum addition through the walls
(assuming the added mass brings some momentum along with it).
This results in the momentum equation (A7).

With the assumption that the wall friction is based on a constant
coefficient of friction Cf , the wall shear stress can be represented as


w 
 Cf�u
2=2 (A6)

The final momentum equation is then

1
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dx
�� 1

�u2
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dx
�
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� �1 � "�

_m

d _m

dx
(A7)

Here, " is the ratio of the axial velocity of the added mass to the axial
velocity of the free stream.

One basic approximation for the wetted area Sw is to consider
square cross sections:

d Sw �

������������������������������
16A�

�
dA

dx

�
2

s
(A8)

For anythingmore complex than that, it is best to simply record the
wetted area at each point and to use it as a parameter, as with cross-
sectional area or mass addition.

V. Conservation of Energy

Total enthalpy of a gas mixture is the sum of the component
enthalpies and the square of the velocity, assuming that all species
have the same velocity:
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We assume that heat addition per unit area is uniform and constant
in the duct:

_Q� _Q00
Pwdx (A13)

_Q� _Q00
Sw (A14)

d _Q� _Q00dSw (A15)

If we suppose that the heat transfer is uniform and make use of the
Reynolds analogy, assuming that cp of the gas mixture is uniform in
each cross section,
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�u�haw � hw�
(A16)

CH �
Cf

2Pr2=3
(A17)

d _Q

dx
�

�uCf�haw � hw�
2Pr2=3

dSw

dx
(A18)

The required enthalpies can be computed by the approximations

haw � h� Pr
u2

2
(A19)

hw � h�Tw� (A20)

After some rearrangement to solve for the derivative of
temperature, we obtain
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Note that the rate of change ofwall area, dSw=dx, can be computed
using Eq. (A8) or some other method.

VI. Ratio of Specific Heats

Although it does not appear in the above equations, sometimes the
ratio of specific heats is desired. Since R and ĉp can be computed
using quantities known at the time of solution via Eq. (A2), this
results in a value of � that can be computed after the simulation is
complete. Or, defining

ĉ p �
X

i

Yicp;i

we can make an approximation for �.

� �
cp

cp � R
(A22)

This is notable simply because it allows the ratio of specific heats
to be computed as a function of the local state of the gas. A simpler
approachwill not give an accurate number because of the variation of
cp with x.
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