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Control-oriented models of hypersonic vehicle propulsion systems require a reduced-order model of the scramjet
inlet that is accurate to within 10% but requires less than a few seconds of computational time. To achieve this
goal, a reduced-order model is presented, which predicts the solution of a steady two-dimensional supersonic flow
through an inlet or around any other two-dimensional geometry. The model assumes that the flow is supersonic
everywhere except in boundary layers and the regions near blunted leading edges. Expansion fans are modeled
as a sequence of discrete waves instead of a continuous pressure change. Of critical importance to the model
is the ability to predict the results of multiple wave interactions rapidly. The rounded detached shock near a
blunt leading edge is discretized and replaced with three linear shocks. Boundary layers are approximated by
displacing the flow by an empirical estimate of the displacement thickness. A scramjet inlet is considered as an
example application. The predicted results are compared to two-dimensional CFD solutions and experimental

results.

Nomenclature

local soundspeed [m/s]
specific heat [J/kg-K]
specific enthalpy [J/kg]
length normal to flow [m]
Mach number

number of a given quantity
length tangent to flow [m]
pressure [Pa]

Prandtl number

radius [m]

normalized gas constant [J/kg-K]
8314.47 J/kmol-K
temperature [K]

velocity magnitude [m/s]
molecular weight [kg/kmol]
forward body-frame coordinate [m]
mass fraction

vertical body-frame coordinate [m]
shock angle

ratio of specific heats
thickness of layer [m]

ratio

flowpath angle

dynamic viscosity [kg/m-s]
Inpo/p

v—pu—A+m/2

VM? -1

sin”™! 1/M, Mach angle
Prandtl-Meyer function
density [kg/m?]

wave angle

flux of subscripted quantity
reference angle
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Subscripts

A,B,... = region label

a,b,... = point label

e = value at edge of boundary layer
i = species index

j = index of expansion discretization
k = region index

p = constant pressure

w = wall value

s = constant entropy

bs = curved portion of bow shock

cl = property of inlet cowl

ex = expansion

le = leading edge

sp = pertaining to species

0 = stagnation value

1 = index for inlet portion of flow

2 = index for inlet outflow

0 = freestream

Superscripts

* = value at Mach number of 1

+ = reference value for boundary layer

L

The ability to estimate quickly the properties of a supersonic flow is
critical for the design of a control-oriented model of a hypersonic vehi-
cle. For example, a control algorithm must rapidly compute the thrust
along a vehicle trajectory as the flight Mach number and angle of attack
continuously change. The algorithm must also calculate the thrust for
any perturbations to the design trajectory. While simple tools such as
Newtonian impact theory and piston theory can be used to estimate lift
and drag, estimating the performance of a dual-mode scramjet requires
accurate information about the properties of the fluid flow as it leaves
the inlet and enters the isolator. The use of high-fidelity CFD can be
employed to determine the flow through the inlet accurately, but this
solution requires too much computational time to be viable for control-
oriented modeling. On the other hand, very simple models have been
used by Bogar et al. [1], Bolender and Doman [2], Brown et al. [3],
Chavez and Schmidt [4], Smart [5], and others to estimate the flow
conditions in the inlet. These models ignore the effects of wave in-
teractions and assume that the flow is uniform throughout the internal
portion of the inlet. While these assumptions may be valid for a par-
ticular design under certain flight conditions, they become inaccurate
when modeling flight at off-design Mach numbers and angles of attack.

A satisfactory approach must require a relatively small amount of
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computational time and still yield a relatively accurate solution for the
inlet flow. Instead of solving directly for the flow conditions at each
point in the flow (as is done in CFD), the method presented here solves
for the positions of the relevant waves, which separate regions in which
the flow properties are uniform. The proposed method rapidly provides
solutions for the locations of the shock waves and expansions using es-
tablished two-dimensional supersonic theory. To make this possible in
a digital computing environment, expansion fans are approximated as
a number of discrete isentropic waves, and curved surfaces are mod-
eled as a number of straight sections. After determining the locations
at which two or more waves intersect, the program solves the inter-
actions among the waves as a two-dimensional Riemann problem. In
many ways this is a generalized and automated version of the method
of characteristics.

To account for blunted leading edges, the oblique shock is dis-
placed a vertical distance from the leading edge to match the empirical
shape of the detached shock given by Billig [6]. The wall boundary
layer is approximated by displacing the flow by a distance equal to the
boundary layer displacement thickness, which is given by established
empirical formulas.

An example scramjet inlet geometry, shown in Fig. 1, is used for
validation throughout the paper. The coordinates of the vertices of this
geometry are shown in Table 1. The fourth shock is designed to turn
the flow back to horizontal, and it exactly intersects the shoulder in
the upper surface of the inlet. Therefore there are no additional shocks
downstream of this fourth shock. Under these flight conditions, the
compression ratio of the inlet is p»/p. = 30.61, and the pressure re-
covery factor is pos/poc = 0.6841.

This geometry is selected to have exactly four shocks and no
spillage for flight Mach number of M. = 8.0 and angle of attack of
a = 0 assuming a sharp-nosed vehicle in an inviscid, calorically perfect
(constant c,) flow. The ideal shock waves for this condition are shown
in light gray in Fig. 1. An example of the inviscid flow for a non-
ideal flight condition is shown in Fig. 2. When this inlet is operated
at off-design Mach numbers, additional waves are formed, as shown
in Fig. 2a. The expansion at the convex corner at station 1d, which is
often called the shoulder, is modeled as two waves to highlight the dis-
crete nature of the shock/expansion interaction in this model. The red
box in Fig. 2a illustrates the region shown in Fig. 2b, and the red box in
Fig. 2b illustrates a region in which a wave interaction problem occurs,
which is solved as a Riemann problem. About 100 wave interactions
occur in the inlet shown in Fig. 2, which took 0.8 seconds to compute.

The most important utility of the proposed reduced-order model
is the estimation of the inlet performance over a wide range of flow
conditions. For this investigation, the freestream Mach numbers range
from 6 to 12, and angles of attack from —2° to +5°. Also of interest are
the effects such as blunt noses, boundary layers, and varying specific
heats. While the proposed methods should yield accurate solutions to
the inviscid flow problem, the greatly simplified viscous models are
included in this report mostly to show how they can be integrated with
the rest of the solution algorithm.

Although the analysis of scramjet inlets was the primary motiva-
tion to develop this solution method, it can be applied to any two-
dimensional geometry for which there are no subsonic regions except
for boundary layers and small subsonic regions in the near vicinity of
blunted noses. An example that demonstrates the flexibility of the pro-
gram is shown in Fig. 3. In this solution, the four expansion fans gen-
erated at vertices of the airfoils are modeled as twenty discrete waves.

Table 1. The scaled geometry of the vertices of the reference inlet are
tabulated. The physical scales are set by Hy = 2.573 m.
(xix — x12)/H, (21 — z1a)/H,

a 0 0

b 2.5759 0.1592

¢ 4.0457 0.3512

d 6.6416 0.8948

e 5.8824 1

X1a X1b X1¢ Xie Xid Xoa

Figure 1. A sketch of the coordinate system used for the sample inlet
geometry is shown. The x- and z-axes are shown on separate scales. The
inlet height is H; = zj. — z1a, and the height of the duct is H, = 21 — z14.

a) Inlet shoulder region

b) Interaction of shock and expansion

Figure 2. The discretized inviscid flow through the inlet for a flight Mach
number of M., = 12.0 and angle of attack of @ = 0. Darker shades of blue
represent regions of higher temperature; white represents freestream tem-
perature and black represents 7/T,, = 8. The expansion at the shoulder is
modeled as two discrete waves.

Figure 3. The inviscid flow over two diamond airfoils at an angle of attack
of @ = 0 and freestream Mach number of M., = 2 is shown. Darker shades
of blue represent regions of higher pressure while white corresponds to the
lowest pressure.

II. High-temperature Two-dimensional Wave Model

At the high static temperatures that occur in hypersonic flows, the as-
sumption of a calorically perfect gas, which is defined as one for which
¢, is constant, becomes inaccurate. The well-established theory for
two-dimensional shocks and expansions, therefore, is not applicable,
and new equations for oblique shocks and expansion fans are required.

Although there is a well-established theory for two-dimensional
shocks and expansions in a calorically perfect gas, the appropriate
equations for a calorically imperfect gas are rarely presented in text-
books. The Prandtl-Meyer expansion analysis presented here is similar
to that of Emanuel [7], Ismail [8], and Zebbiche [9], while the oblique
shock analysis is similar to that of Emanuel [7] and Tatum [10]. How-
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ever, none of these authors considered wave interactions, which is the
focus of the present work.

Two gas models are used with this proposed architecture for com-
parison. The first gas model is the calorically perfect gas model, in
which the well-established two-dimensional shock/expansion theory is
used. The second gas model assumes a calorically imperfect, non-
reacting gas, in which specific heats vary with temperature, but the
molecular composition of the gas is assumed to be constant. The equa-
tion of state p = pRT remains valid. For air, significant amounts of
oxygen begin to dissociate at static temperatures of 2500 K. In the flows
considered in this investigation, the flight Mach numbers ranged from
6.0 to 12.0 with freestream temperatures between 200 K and 300 K. In
these flows, gas dissociation does not play a major role, and the non-
reacting gas model is accurate. However, for higher-temperature flows,
a gas model that accounts for chemical reactions would be needed.

The following subsections describe the calorically imperfect gas
model that was used and how it was applied to model waves and wave
interactions. In addition, a method for splitting a continuous two-
dimensional expansion wave into discrete waves is discussed. The dis-
crete expansion waves must satisfy all of the conservation laws that are
satisfied by the continuous expansion.

A. Calorically Imperfect Gas Model

For a real gas with ng, species, the specific enthalpy as a function of

temperature is
Vlsp

h=>"hY, (1
i=1

where 4; is the specific enthalpy of species i, which is itself a non-
constant function of 7. For a non-reacting (frozen) gas, the specific
heat at constant pressure is

nsp

Cp = Z piYi 2
=1

where ¢,; = 0h;/dT is the specific heat of species i. The ratio of spe-
cific heats is

3

where
R=%Y 1 @
= W

is the normalized gas constant for the mixture.

The square of the soundspeed is equal to the derivative of the pres-
sure with respect to the density under conditions of constant entropy;
a* = (0p/dp),. For a non-reacting ideal gas, the result is

@ =2 —yRT. (5)
o

For a gas with a static temperature 7" and local velocity u, the stagnation
enthalpy is

ho = W(T) + %uz, (6)

and the stagnation temperature is then given by solving hy = h(Ty).
The stagnation pressure,which is the pressure that would be measured
if the flow is isentropically brought to rest, is

To
Do f Y dT)
2 —ex A (7)
p p( r y-1T

Then for two states A and B with the same stagnation pressure, the

pressure ratio is

P8 exp({(Ta) - {(T)) ®)
Pa

where {(Ty) = 0, and

d 1 c
40 - Y ___ 9 )
dT ~ 1-yT ~ RT

Since hy is constant, { can be calculated beforehand and used at any
point in the flow.

B. Prandtl-Meyer Expansions

Prandtl-Meyer theory is used to predict the flow properties of an ex-
panding supersonic flow. To account for the varying ¢, of a calorically
imperfect gas, it is necessary to rewrite the equations for the Prandtl-
Meyer function. In addition to determining the conditions downstream,
Prandtl-Meyer theory can be used to predict the conditions along the
characteristics within the expansion fan. The geometry of this situation
is illustrated in Fig. 4.

Figure 4. Illustration of Prandtl-Meyer expansion wave

Assuming 6 < 64, the conditions downstream of a two-
dimensional expansion can be found using the equation

Ma
93—9A=f VM2 -1 @ (10)
Mg u

This expression comes from a geometric argument [11] that is indepen-
dent of the relationship between 4 and T'. This can also be written as a
characteristic equation as

VB + 6 = va + 04 (11)

where v is the Prandtl-Meyer angle. Because u = Ma, one can write

M
du = a + da (12)
u M a
for any gas model. Define three new expressions of
M da
k= VmMr-1=, (13)
1 a
A=V -1, (14)
1 1
P -1
= — =t —. 15
M = sin i an 1 (15)
Then Eqgs. (10)-(15) yield the expression
v=u+Ad+k—mn/2 (16)

for the Prandtl-Meyer angle.

In general, the differential element da cannot be written as a simple
function of M and y. Instead the strategy is to write both ¢ and M
as a function of 7. The derivative of the soundspeed with respect to
temperature is

d 1(1d 1
e an
dr  2\ydT T
and the local Mach number is
hy—h
M =2-"—— (18)
a

Although Eq. (13) appears at first to be a daunting expression, the
situation is not so difficult if the flow is adiabatic.

Since hg is constant, k can be calculated beforehand and used for
all the expansions in a flow. Taking the derivative of Eq. (13) gives the
differential equation

d«  1(ldy 1
ar ~ 2

;54—?) M? -1 (19)
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with the initial condition «(7*)=0. The critical temperature 7™ is the
temperature of the flow when isentropically decelerated to a Mach
number of 1. Once the downstream temperature has been calculated,
the corresponding flow velocity is

ug = y2 (ho — K(T)). (20)

The downstream pressure is given by equation (8). For a calorically
perfect gas, a useful result is

1 _1
Y an | @1)

which gives the traditional value for the Prandtl-Meyer function.

The angle of the first characteristic is s = pa, and the last char-
acteristic has an angle of o = up + 0. However, this does not resolve
the flow between the first and last characteristics. To find the Mach
number along a characteristic whose angle with the freestream velocity
is ¥, the characteristic equation is

va = V() + 0(). (22)

Since ¥ is a wave angle, it is the sum of the local flowpath angle and
the characteristic angle. Combining this fact with equation (22) yields
the expression

Y =va +pu@) —vy). (23)
For a calorically perfect gas, this equation has an explicit solution;
+1 -1 i
M = 1+ ;/T]tanz[ %(VA—MI‘F E)] (24)

The resolution within the expansion wave, given in equation (23)
provides a method to discretize the wave. By selecting a set of an-
gles for evaluation ¥4, . .., ¥, and wave angles , the wave can be split
into a set of regions within which the properties such as Mach number
are constant. The regions are separated by discrete waves, which have
angles of oy, . .., 0, . Then the approximation is

M) = M(y;) (25)

where o <Y < 0y
The current program selects values of ¢; according to the rules of
Gaussian quadrature, but any distribution of angles between o and

o is valid. Once the evaluation angles, ¥4, ..., ¥, , have been se-
lected, the intermediate temperatures, 77, ..., T,,, are calculated using
Eq. (23).

The wave angles are selected so that mass flux through the expan-
sion wave is conserved. This gives the result

sinf;_; — g;sin6; 26)

Smo; =

\/1 +&; = 2¢;c08(0; — 0;-1)

where £; = pju;/p;-1u;; is the ratio of nominal mass fluxes before and
after the jth discrete wave.

C. Oblique Shocks

It is necessary to rewrite the oblique shock equations to account for the
varying ¢, of a calorically imperfect gas. The present model is valid
for any gas that obeys the equation of state p = pRT and has a known
relationship between 4 and T'. The geometry for this problem is shown
in Fig. 5.
The post-shock flow must be tangent to the surface, so conservation
of mass implies
pausH = ppugHg. 27

The characteristic length scales Hx and Hy are determined by consid-
ering any point b on the shock in Fig. 5. Then

HB = LA tan(ﬁ - QB) (28)

and
Hp = La(sin 6 + tan(8 — 6g) cos 6g). 29)

Conservation of momentum in the direction tangent to the shock states
that the component of the velocity tangent to the shock is the same
upstream and downstream of the shock. Then

up cos B = ug cos(S — 6p). 30)

Define a compression ratio € = pa /pp. Because the post-shock density
will always be greater than the pre-shock density, & varies between 0
and 1. Eq. (27) then has the solution

1-¢ l-g \
t —0g) = - —e&. 31
an(5 ) 2 tan O (Ztan HB) € @D

(®)

Ha

Figure 5. Geometry for an attached oblique shock wave

Conservation of momentum in the direction normal to the shock
states that the sum of the static and dynamic pressures normal to the
shock is unaffected by the presence of the shock. Thus

P _ 2 )
— =1+yM,(1-¢g)sin"B. (32)
JN

Finally, conservation of energy requires that the stagnation enthalpy is
unaffected by the shock. Therefore

1m=m+%@a-§nwﬂ (33)
Egs. (31)-(33) represent three independent equations for the three un-
knowns, hg, pgp, and ug downstream of the shock.

For a calorically perfect gas, T = hg/c), and the equations can be
reduced to functions of 3, 0z, and M, only. For an other gas model,
hg = h(Tp) must be solved iteratively. As with the calorically perfect
gas, the compression ratio is not a function of the pre-shock pressure.
However, the initial absolute temperature now plays a significant role.

D. Two-dimensional Riemann Problem

Consider the case of two interacting waves, which are shown on the left
side of Fig. 6. The important parameters are the gas properties in re-
gions A and D. The flow pattern on the right side of Fig. 6 is called the
Riemann problem. It describes the situation in steady two-dimensional
compressible flow in which two uniform regions are in contact with
each other. At the point of interaction, there are two inconsistent flow
conditions. To rectify this situation, the gas in both regions must pass
through a wave, as shown in Fig. 6.

The physical solution must have the property that the regions that
are not separated by a shock or expansion must have equal pressures
and flow in the same direction. Thus

ps =pc and 6 =60c. 34

A simple, though inefficient, solution method is to combine the results
of sections B and C into a single pressure-deflection function

pe = p(A, 0 —6r) (35)

which takes as input all information about state A and a deflection an-
gle O — 4, and returns a post-wave pressure as output. If 6 < 64,
the expansion relations of section B are used, while if g > 65, the
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Figure 6. Geometry for a wave interaction with a shock and an expansion.
The region of flow in the graphic is the region of the red box in Fig. 2. In
the general Riemann problem, both waves could be either a shock or an
expansion. The combination of waves here indicates pp > pa.

shock relations of section C are used. The same function can be used
to determine pc using the formula

pc = p(D, 0 —6c). (36)

Opposite signs are used for the lower shock because the wave separat-
ing regions C and D is of the opposite family as the wave separating
regions A and B. Combining this pressure-deflection function with the
constraints of equation (34) gives an equation

p(A, 05 = 0,5) = p(D, 0p — 6g) (37

which is satisfied only by the correct value of 6g.

In order to reduce the number of waves present in a flow solution,
it is advantageous to ignore waves that cause a negligible change in
conditions. For example, if T5/7Ts is very close to unity, the wave
separating regions A and B plays a very minor role. In the proposed
method, therefore, any of the three waves resulting from a wave inter-
action is ignored if the temperature jump across it is below a certain
tolerance.

III. Proposed Method of Supersonic Flow Discretization

The proposed reduced-order model is primarily concerned with the
lines that separate regions of the flow that are considered to have uni-
form properties. These lines can be shock waves, discretized expansion
waves, or solid surfaces, and they are referred to as paths in the follow-
ing description. As a result the output of the program is a list of poly-
gons and corresponding lists that give the pressure, density, etc. in each
polygon. This is very similar to the output of a two-dimensional finite-
volume code, only the grid is very coarse in most of the flow. However,
since the polygons are assembled during the flow computation, there is
no need to assemble a grid a priori.

In addition to the wave theory of Sec. II, models are constructed
for regions of the flow in which the local Mach number is less than
one. Because information can travel upstream in these regions, they
are somewhat incompatible with the rest of the solution. The simple
models presented here provide an architecture that allows them to be
integrated with the otherwise supersonic flow.

A. Description of the Proposed Algorithm

The input to the program consists of two parts. The first part determines
the geometry of the flow, and it requires a list of polygons that specify
the solid surfaces in the flow. For example the reference inlet shown in
Fig. | has two input polygons: a list of six vertices for the inlet ramp
section and a list of three vertices for the cowl. The second part of the
input is the initial conditions. These are the conditions upstream of the

input polygons. For example, in Fig. 3, the initial conditions specify
the flow along the left edge of the image.

Once the flow geometry and initial conditions have been speci-
fied, the program proceeds by marching downstream and searching for
wave interactions or vertices of the input geometry. In order to ac-
complish this, the program begins its analysis at the farthest upstream
x-coordinate, xn,x, and proceeds downstream toward the right-hand x-
coordinate, x,. As the program proceeds downstream, it tracks the
positions of all the straight lines in the flow, which includes waves, the
surfaces of the input geometry, and the boundaries of the flow domain.
Within the program each of these straight lines is tracked as a path that
consists of a point and a propagation angle. The program keeps track
of all of the paths that intersect the vertical line corresponding to the
current x-coordinate.

With the set of paths at a given x-coordinate given, a list of pos-
sible intersection points can be determined. Suppose the current x-
coordinate is x;, and the paths are listed by ascending z-coordinates.
Then two paths with coordinates z; and z;,; have a downstream inter-
section point of

Xej= X+ L ST (38)
tano",»ﬂ —tan g

provided that o"; < o ;1. Then the x-coordinate of the next interaction
point, x4 is the minimum of all the x, ; and all of the vertices of the
input polygons that are downstream of x;.

Once an interaction point is found, a three-step process takes place.
First, the nature of the interaction is determined, and the local flow
problem is solved. This consists of determining the state (pressure,
flowpath angle, etc.) above and below the interaction point. If one of
the paths is a surface boundary, the downstream conditions are deter-
mined by either a shock or an expansion. Otherwise, the solution is de-
termined by a Riemann problem as described in Sec. II.D. The second
step is to add the coordinates of the interaction point to the polygons of
the interacting regions. Finally, the list of waves and their propagation
angles at the current x-coordinate are updated so that the coordinates
of the next interaction point can be determined.

B. Downstream Averaging Model

At the downstream boundary of the reference inlet geometry, it is use-
ful to define the spatially averaged gas properties, which can be input
into a one-dimensional isolator or combustor model. With the proposed
inlet model, gas properties are not uniform at the downstream bound-
ary of the inlet because of the possible presence of waves separating
regions of different gas properties. The proposed method to determine
spatially-averaged properties is to require that the total fluxes of mass,
momentum, and stagnation enthalpy are constant through the x = xy,
plane. The geometry of this scheme is shown in Fig. 7.

/

Gy —
() Qg —

—>»

Figure 7. The geometry of the averaging plane at x = x,, is demonstrated
in this figure, which shows only the duct portion of the inlet. The black
lines represent waves from a solution to the flow through the reference inlet.
Region 1k is the lowest region that has a boundary along the averaging
plane; region 1k; is the region above that; efc. In this example there are
ny = 6 regions that contact the averaging plane.

Mass flux into the averaging plane is

@, = pyur Hy, (39)
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and the mass flux into the mixing plane is

@, = Zplk;ulk;Hlkl cos Oy, (40)

i=1
where H\y, is the height of region 1k; at its downstream edge. Similarly,
the momentum flux out of the inlet is

(I)u :pzuéHz, (41)

while the momentum flux into the averaging plane is

ny
@, = Zplki iy, Hi, 08” Oy, 42)
i=1

i
Finally, the flux of stagnation enthalpy is
@), = prus Hoho o, (43)

and the flux into the plane is

n
D, = Zplk;ulk;ho,lk;Hlk[ cos Oy, - (44)

i=1

Once the fluxes into the averaging plane have been calculated, the
state variables for the flow out of the inlet can be determined. The
density is u, = ®,/®,, the stagnation enthalpy is /iy, = ©,/®,, and the
density is

)

P
= . 45
P2 A (45)

Then |
hy = ho,z - E"%» (46)

and the pressure can be calculated from the equation of state.

C. Blunted Leading Edges

Because a real leading edge will not be infinitely sharp, a model is
needed to account for the curved bow shock around the leading edge.
The geometry of this problem is shown in Fig. 8. To minimize com-
putational time, the model must be relatively simple. Billig reports [6]
that the shock shape is approximately

Xp — Xps Obs
(—b +1+ —b)taHZO' =
Ne e

2
Tos \/1+(Mtana) ~1 (47)
Fe Tbs

where (xus, Zps) are the coordinates of a point on the bow shock, 7 is the
nose radius, 7 is the radius of curvature of the shock along the stag-
nation streamline, dy is the standoff distance between the shock and
the stagnation point, and o is the angle of the oblique shock that would
be generated by the sharp nose with the same deflection angle. This
expression results from the assumption that the shock shape should be
a hyperbola, and that far away from the leading edge, the shock should
be oblique with the same shock angle as a sharp leading edge would
generate. A suggested correlation for the shock radius of curvature
is [6]

Tps 18
— =1.386 —, 48
e exp((MA - 1)0-75) @
and the standoff distance is
Obs 4.67
= =0.386 exp(—z). (49)
Te MA

These results are obtained from experimental results in which the de-
flection angles are large, and there is evidence that they are not accurate
when the deflection angles are small [3]. When (zps — z)/7 1S large,
Eq. (47) asymptotically converges to an oblique shock that connects
points h and f or points i and g in Fig. 8a depending on which value of
o is used.

a) Comparison of sharp and blunted leading edges. Points are
labeled to clarify the calculations in Section C.

b) Regions associated with model for blunt leading edge. Regions
E and F have a higher entropy than regions B and C, respectively,
as a result of passing through the bow shock between points f and

g.

Figure 8. Graphical description of model for blunt leading edges. The
dashed lines represent the sharp leading edge and the oblique shocks at-
tached to it, and the hashed bold line represents the blunted leading edge.
The thick bold curve is the bow shock around the blunted leading edge, and
the gray line connecting points f, h, i, and g is the path of the shock used in
the model.
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Consider a general case in which the leading edge is situated so that
the pre-shock state above the leading edge is state A, and the pre-shock
state below the leading edge is D as marked in Fig. 8. In most cases
states A and D are identical. In the case of a sharp nose, the upper
downstream state, B, is calculated using the standard oblique shock
relations with a deflection angle g — 65. In the blunt-leading-edge
model, states B and C are calculated in the same way as in the sharp-
leading-edge model, but the oblique shock is displaced some distance
in the z-direction. This creates extra regions E and F, which must be
calculated in some other manner.

Assuming that 0 and —6¢ are not necessarily the same angle, the
center of the circle that forms the blunt leading edge is located at

1
Xa =X _ Cf)S ?(9B+9C) (50)
Ne s 5(9]3 - HC)
and
L — sin (65 + 6¢)
Za— 2 == ? B C ) 51)
e sim E(HB - GC)
Then the z-coordinate of point h is
h — 2 o — Xp + Obs
LT cotog = TaZ o O gy s o2 OB, (52)
Te Ne Ne

and the z-coordinate of point i is found using the same formula only
replacing o with oc. The vertical displacement distances are Hg =
Zh — Zy and Hg = gj — 2,.

The remaining task is to estimate the conditions in regions E and F.
These regions will not be uniform in an actual flow because fluid passes
through different points on a curved shock. The streamline passing
through point f in Fig. 8a has the same post-shock conditions as re-
gion B, while the streamline that intersects the shock at point d passes
through a normal shock and thus has a significantly higher entropy.
However, far away from the leading edge, region E has a uniform pres-
sure. The model further assumes that temperature and velocity are also
uniform throughout region E. In order to calculate 7T and ug, consider
the conservation of mass flux through the line connecting points a and
h. Then

Pala COSOx = pgug cos g, (53)

which can be used to iteratively solve for Tk assuming there is a rela-
tionship between Ty and ug For an adiabatic nose,

1 1
ha + Euj =hg + Eué. (54)

D. Simple Boundary Layer Model

The boundary layer properties at the outflow of a scramjet inlet can
have a significant impact on the performance of the combustion cham-
ber. In addition, boundary layers tend to interact with and strengthen
a shock near a leading edge. For these reasons an effort was made
to include a model for a boundary layer. A displacement thickness is
calculated, and the edge of the boundary layer is considered to be the
actual surface of the vehicle. The displacement thickness, which is de-
noted ¢, is calculated using Eckert’s reference temperature method. For
a turbulent boundary layer, the reference temperature is

T" = %(Te +T,) + VPri (T, - To) (55)

where T, is the temperature at the edge of the boundary layer, and 7,
is the temperature of the wall. The edge conditions are taken from the
entropy layer at a leading edge or whatever region is adjacent to the
vertex in general.

To simplify the model further, the shape of the boundary layer is
assumed to be a straight line connecting current vertex and the edge of
the boundary at the next downstream vertex. Consider a surface that
connects two vertices a and b of a polygon that represents an object
in the flow. The total distance along the polygon boundary from the
leading edge to the current vertex is L,, and the total distance from the

leading edge to point b is L,. According to White [12], the change in
displacement thickness for a turbulent boundary layer is approximately

n* 6/7
8, — 6, = 0.14R (Lb -L8"). (56)

Because the boundary layer edge is considered to be a surface in
this model, there is no flow across this surface. This means that the
oblique wave must account for the increased area of the surface. Be-
cause the growth of the boundary layer is dependent on the conditions
behind the shock or expansion, this creates a feedback between the
strength of the wave in the inviscid region and the shape of the bound-
ary layer. The current viscous model solves this system iteratively at
each surface vertex that is not a trailing edge.

IV. Results

For validation the proposed method is applied to a hypersonic inlet ge-
ometry that is a two-dimensional projection of an experimental geome-
try investigated be Emami et al. [13]. Experimental data were obtained
for this configuration with a freestream Mach number of 4.0 for a range
of cowl angles. Section A compares this data to the results predicted
by the two-dimensional reduced-order model.

The remaining results were obtained for an inlet geometry shown
in Fig. 1, which has the dimensions listed in Table 1. Fig. 11 shows the
results of the proposed method for the reference geometry at several
flight conditions. For the reference inlet, the current implementation of
the algorithm requires between 0.03 and 0.4 seconds assuming a calor-
ically perfect gas. For the calorically imperfect gas model, the time
required is between 0.8 and 6.5 seconds using MATHEMATICA. The
current Matlab implementation requires about half the computational
time, and further reductions can be expected using Fortran or C++.

A. Comparison to Experiment

A sample geometry of the experiment of Emami et al. [13] is shown
in Fig. 9. The inlet with the opposite vertical orientation of the inlet
in Fig. 1 to be consistent with the experimental apparatus and keep it
clearly separate from the three-ramp inlet used elsewhere in the paper.

The relevant dimensions of the inlet are shown in Table 2. In Fig. 9,
the angle between horizontal and the bottom surface of the cowl leading
edge is denoted 6. The hinge for this rotation is directly above (has
the same x-coordinate) as the inlet shoulder. In the experimental data,
6. was allowed to vary between 0° and 11°. However, small values of
6,1 cause the inlet to unstart.

Figure 9. Reduced-order solution for the Emami et al.geometry with 6. =
6.5°. Darker shades of blue represent regions of higher pressure; white
represents freestream pressure and black represents p/p., = 40.

Table 2. The relevant lengths for the experimental inlet of Emami et al..
The inlet ramp has an 11° incline.

Surface Length

Inlet ramp (horizontal) 24.816 cm
Inlet ramp (vertical) 4.8260 cm
Isolator height 1.0160 cm
Forward cowl length 11.176 cm

The experiment of Emami et al.had pressure taps, which can mea-
sure static pressure along a surface, at many points along the centerline
of the geometry. Three pressure taps downstream of the cowl leading
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Figure 10. Comparison of experiment and reduced-order model. The blue
dots are data from Emami et al., and the solid line shows the prediction of
the reduced-order model.

edge are used to compare the experimental results with the reduced-
order model results. The first pressure tap is along the bottom surface
of the cowl 5.84 cm downstream of the cowl leading edge. The second
pressure tap is on the bottom surface of the cowl 10.3 cm downstream
of the cowl leading edge. The third pressure tap is on the inlet ramp
0.23 cm upstream of the shoulder. These pressures were recorded for a
range of ;. For comparison, the pressures were calculated at the same
points using the sharp-edged viscous version of the proposed reduced-
order model. The combined results are shown in Fig. 10.

The internal section of the experimental inlet was only 5.08 cm
wide, meaning that the aspect ratio of the isolator was 5.0. Al-
though higher aspect ratios would better justify the assumption of a
two-dimensional flow (which is explicit in the proposed reduced-order
model), the predicted results are quite similar to the experimental data.
There is a 10% under-prediction of the pressure at station 1, which is

likely due to a pressure increase caused by a bow shock at the very
slightly rounded cowl leading edge. This is also a possible cause of
the under-predicted pressures at the other two stations for low values
of 8,. There is also a disagreement about shock positions. The evi-
dence of a shock can be readily seen at stations 1 and 2 in both the
experimental and modeled data sets. However, the two data sets dis-
agree about the value of 6, that causes the shock to pass over each
station. This is most likely due to unmodeled shock/boundary layer
interactions. The present reduced-order viscous model only models
shock/boundary layer interactions at leading edges and other corners
of the inlet surface, and Fig. 9 clearly shows that the cowl shock in-
teracts with the boundary layer of the inlet ramp upstream of the inlet
shoulder. As a result, the present reduced-order model under-predicts
the angle of the reflected shock by about 1°.

At other locations, however, the predicted pressure matches
closely. Except for the incorrect shock position in state 1, all errors
are bounded to 10%. The remaining errors could be reduced by us-
ing the model for a blunted leading edge. The edges were assumed to
be infinitely sharp in this comparison because no data for the edge ra-
dius of the experimental setup was provided. This provides a measure
of experimental validation for the proposed method. A comparison to
experimental values of p,/p. and pg,/pow, as defined in Section B,
would be better, but that would be difficult data to obtain experimen-
tally.

B. Comparison to CFD

a) M, =6.0

b) M. =8.0

¢) Mo =10.0

d) M, =120

Figure 11.  Reduced-order model results for various flight freestream
Mach numbers at an angle of attack of o = 0. Darker shades of blue repre-
sent regions of higher pressure; white represents freestream pressure and
black represents p/p., = 90. The expansion at the shoulder is modeled
using nex = 20 in each case.

CFD was used to compute the viscous flow over the reference inlet
at a flight Mach number of M., = 10 and angle of attack of @ = 0. The
reference inlet was recreated by a two-dimensional grid consisting of
approximately 1.3 million triangular cells. This grid was constructed
such that special attention was given to capturing the correct boundary
layer effects along the length of the inlet ramps, as well as providing
for resolving appropriate oblique shock thicknesses inside the engine
intake.

The steady viscous simulation of the inlet was created using the
commercial CFD package CFD++, operating across a parallel cluster
of 8 AMD 64-bit Opteron processors, each with a minimum of 2 GB
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Figure 12. The high-fidelity viscous flow solution as computed by CFD++.
The flight Mach number is M., = 10, and the angle of attack is = 0. The
color scale is the same as Fig. 11.
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Figure 13. The normalized temperature along the z-axis of the inlet outflow
plane is shown for both the calorically imperfect inviscid inlet model and a
two-dimensional CFD result.

of RAM. This arrangement allowed for a total simulation time of ap-
proximately four days, consisting of just over 30,000 solver iterations,
in which a normalized convergence on the order of 10™* was reached.
The turbulence in the flow was modeled using a standard k-& scheme.

The results of this CFD computation are shown in Fig. 12. The
CFD result appears very similar to that of Fig. 11lc, which is the
reduced-order simulation of the same flight conditions. As a quantifica-
tion of this similarity, Fig. 13 shows the non-dimensional temperature
along the downstream boundary of the inlet. Each vertical segment
of the result from the proposed inviscid calorically imperfect model
represents the temperature of one polygon of the flow solution. The
two results have the same trend, and the average temperature, T, is ac-
curate to within 1.16%. The spatially averaged properties from both
solution methods are listed in Table 3. This comparison shows that
the calorically imperfect inviscid model can be expected to predict the
thermodynamic properties to within 10%.

Table 3. Averaged outflow properties of CFD and calorically imperfect
inviscid model.

CFD  proposed model  relative error

p2lpe 3470 3539 0.0199
T,/T.  3.603 3.645 0.0156
wr i 0.9289 0.9302 0.0013

Po2/Pos  0.3331 0.3552 0.0664

C. Resolution of Discrete Expansion Fans

One of the key parameters directly affecting the amount of computa-
tion time required in this model is the number of discrete waves in an
expansion fan, n.. Therefore determining an appropriate value of nx
is crucial for maximizing the efficiency of the code. Fig. 14 shows the
relative error associated with using small values of n. for one flight

fion of the reference inlet. The three quantities considered are

acceptable con51der1ng that the error asso .
dimensional flow is at least as large Therefore the results of the fol—
lowing sections are obtained using ne, = 2.

025}
0.20}

0.5}

relative error

0.10}
0.05f

0.00}

Figure 14. The relative errors in po/po.« (thick line with circles), p>/pe
(dashed line with squares), and M, (gray line with diamonds) are plotted
against the expansion discretization parameter, 7., for the reference inlet
at a flight condition of M., = 10.0 and @ = 0. The reference values were
obtained using n.x = 40.

D. Effects of Varying Flight Conditions on Reference Inlet

One of the most important benefits of this solution method is the ability
to estimate the performance of a scramjet inlet over a wide range of
flight conditions. Figs. 15 and 17 show plots of pressure recovery factor
and T, respectively, for the reference inlet assuming either a constant
angle of attack or constant freestream Mach number. For the cases
requiring blunted leading edges, nose radii of 7. = 5 mm are assumed.
For comparison the results of a further simplified model is shown as a
dotted line in Figs. 15 and 17. In this model there are only four shocks,
which are assumed to have the locations shown Fig. 1 regardless of
flight conditions. In this model there are no shock interactions, and the
inlet outflow is always uniform.

For the calorically perfect gas model, the flow can be parameter-
ized entirely by M., and @. On the other hand, the thermally perfect
gas model also requires a stagnation enthalpy. In order to determine
hy, a constant dynamic pressure of 97.8 kPa is assumed. The dynamic
pressure and Mach number uniquely define a static pressure. With the
freestream pressure known, the freestream temperature is determined
using a standard atmosphere model.

Fig. 15, which shows the effects of real gas considerations and
wave interactions on pressure recovery factor for the reference inlet,
shows that the simplified model predicts performance accurately near
the design condition of M, = 8.0, @ = 0. At higher Mach numbers, the
more realistic pressure recovery factor estimate is much lower, i.e. both
the solid lines in Fig. 15 lie well below the dotted line except at the de-
sign point. This can be explained by the strong shocks that continue to
reflect in the internal portion of the inlet. For lower angles of attack,
the simplified model actually predicts a lower pressure recovery factor.
This is because of the expansion at the inlet shoulder, which is not con-
sidered in the simplified model. Thus the increased pressure recovery
factor is obtained at the cost of a lower static pressure.

For lower flight Mach numbers, the blunted leading edge has a very
significant effect. This happens because the blunted leading edge of the
cowl pushes the interaction of the cowl shock even further upstream of
the shoulder as shown in Fig. 16. Because the cowl shock has moved
upstream, it does not interact with the expansion at the shoulder before




DALLE, FOTIA, AND DRISCOLL 554

08f~~ _
IR design point
07h ~. s
0.6
8

£ o5t o

S -
041
0.3F blunted leading edges
0.2 r ‘ ‘ ‘ ‘ ‘ :

6 7 8 9 10 11 12
Mg,
a)a=0
09¢ no interactions - -
08} -7
g
g
=~
-2 -1 0 1 2 3 4 5
« (degrees)
b) M., = 8.0
Figure 15.  The pressure recovery factor, po2/po,, is plotted for the

reference inlet at various flight conditions. The design flight condition of
M., = 8.0 and a = 0 is marked.

—

a) sharp leading edges

b) blunted leading edges

Figure 16. The inviscid flow for the internal portion of the inlet is shown
for a flight condition of M, = 7.0 and ¢ = 0. Darker shades of blue
represent regions of higher pressure; white represents freestream pressure
and black represents p/p., = 90. The expansion at the shoulder is modeled
using nex = 2 in each case.

reflecting off the inlet body. Similar effects occur when the angle of
attack is increased above the design condition, resulting in sharp dis-
continuity in pressure recovery factor near @ = 0.6°. Increasing angle
of attack has an effect similar to decreasing Mach number because the
initial bow shock must turn the flow through a greater angle, which
increases the strength of the shock. Thus if the pre-shock Mach num-
ber is held constant, the post-shock Mach number will decrease as the
angle of attack increases.

45
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; [
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251 _ -7 nointeractions
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Figure 17. The averaged inlet outflow temperature is plotted for the ref-
erence at various flight conditions. The design flight condition of M, = 8.0
and « = 0 is marked.

The predictions of the calorically perfect and calorically imper-
fect gas models are compared in Fig. 17. For a given enthalpy, the
calorically imperfect model will predict a lower temperature. Thus it
is possible for the temperature estimate to be significantly changed by
the choice of the gas model while the pressure and density are rela-
tively unaffected. In addition, the wave angles will be slightly different
for each model, and so the conditions at which the cowl shock moves
upstream of the shoulder will be changed. This explains the differing
locations of the discontinuities in Fig. 17.

V. Conclusions

The present work shows that it is possible to use the proposed reduced-
order model to compute the spatially averaged properties on the output
plane of a supersonic inlet to an accuracy of 3% with a computational
time of less than a few seconds. The proposed method includes the
effects of multiple wave interactions and a calorically imperfect gas
model necessary for the high temperatures in hypersonic flows. The re-
sults were compared to experimental data, and the model inaccuracies
were found to be limited to 10%. Furthermore, possible improvements
were made visible. An architecture is also introduced that allows for
the modeling of blunted leading edges.

The computational savings relative to CFD are immense, and there
is also no need to assemble a grid beforehand. The method can be
applied to a geometry under a wide range of supersonic conditions.
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For a control-oriented model, these properties are essential. Scram-
jet inlets are a particularly useful application of this algorithm. A
control-oriented model of the scramjet isolator, combustor, and nozzle
requires an accurate estimate of the thermodynamic properties at the
downstream boundary of the inlet. Comparison to CFD shows that the
averaged thermodynamic properties at the end of a scramjet inlet can
be estimated, and the proposed model can be used in a control-oriented
model of a scramjet vehicle.
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