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Micro‑Electro‑Mechanical Systems revolutionized the consumer market for their small dimensions, 
high performances and low costs. In recent years, the evolution of the Internet of Things is posing new 
challenges to MEMS designers that have to deal with complex multiphysics systems experiencing 
highly nonlinear dynamic responses. To be able to simulate a priori and in real‑time the behavior of 
such systems it is thus becoming mandatory to understand the sources of nonlinearities and avoid 
them when harmful or exploit them for the design of innovative devices. In this work, we present 
the first numerical tool able to estimate a priori and in real‑time the complex nonlinear responses of 
MEMS devices without resorting to simplified theories. Moreover, the proposed tool predicts different 
working conditions without the need of ad‑hoc calibration procedures. It consists in a nonlinear Model 
Order Reduction Technique based on the Implicit Static Condensation that allows to condense the high 
fidelity FEM models into few degrees of freedom, thus greatly speeding‑up the solution phase and 
improving the design process of MEMS devices. In particular, the 1:2 internal resonance experienced 
in a MEMS gyroscope test‑structure fabricated with a commercial process is numerically investigated 
and an excellent agreement with experiments is found.

�e spread of Micro-Electro-Mechanical Systems (MEMS) in the consumer world triggered a revolution in 
gaming, mobile phones and navigation. Similarly, in the near future, the evolution of the Internet of �ings in its 
di�erent declinations will require new generations of sensors and actuators with improved performances, smaller 
dimensions and innovative working principles. As a consequence, MEMS designers more and more frequently 
will have to deal with complex mechanical structures exhibiting nonlinear dynamic  behaviors1,2.

Among others, MEMS gyroscopes represent a meaningful example of such a trend. �ey are electro-mechan-
ical systems able to measure the angular rate by exploiting the Coriolis force. To guarantee a correct function-
ing, where at least two modes are coupled through the Coriolis force, and to satisfy the strict requirements on 
the footprint, the mechanical structure is usually very complex, i.e. made by folded springs and rigid masses. 
Nonlinear phenomena o�en  arise3–8 but are di�cult to decipher.

Among the wide variety of nonlinear phenomena arising in MEMS devices, internal resonance, i.e. when two 
or more modes get nonlinearly coupled and exchange energy, is attracting increasing interest for its potential 
bene�ts on the performances of MEMS  devices2,9–12. It has been demonstrated that thanks to internal resonance 
it is indeed possible (i) to stabilize the oscillation frequency of non-linear self-sustaining micromechanical 
 resonators13, (ii) to redistribute and store mechanical energy among vibrational modes and coherently transfer 
it back to the principal one when the external excitation is  o�14 and (iii) to tune the quality factor Q of the driven 
mode over a wide  range15,16. Moreover, internal resonance has been recently employed in MEMS gyroscopes as a 
new and very promising detection technique of angular rate  signals17 and to design innovative MEMS bandpass 
 �lters18.
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In view of its high potentiality for the design of innovative and high-end MEMS devices, internal resonance 
has been analyzed  theoretically19 and experimentally veri�ed on a variety of simple MEMS  structures20–24, ranging 
from arch  resonators25–27 to micro-mirrors28. In most cases, the coe�cients of Reduced Order Models (ROMs) 
are obtained from simpli�ed electro-structural  theories26,29 or are calibrated on experimental  data23. Despite the 
great interest of the topic, a general a priori simulation tool that could predict in real-time the nonlinear dynamic 
behavior of complex MEMS structures like e.g. gyroscopes under di�erent actuation conditions, is still miss-
ing. Such a tool would also dramatically improve the design process and pave the way to a new class of sensors/
actuators experiencing complex nonlinear dynamic phenomena.

Numerical methods able to simulate the Full Order Model (FOM) have been proposed as a generalization of 
simpli�ed  appoaches30, but their computational cost remains a major issue especially if complex MEMS structures 
are considered. Dedicated Harmonic Balance techniques or shooting procedures are indeed overwhelmingly 
complex and time  consuming31,32.

As a consequence, the focus has been set on the generation of nonlinear ROMs starting e.g. from large FEM 
models that might reshape the governing equations into a nonlinear, dynamical system featuring a much lower 
dimensionality, yet able to capture the physical features of the  problem29,33–35. �e Sti�ness Evaluation Procedure 
(STEP) in its various  variants33 assumes a trial subspace spanned by a set of linear modes which however must 
also include all the coupled high-frequency modes that are o�en di�cult to  identify36,37. �e Proper Orthogonal 
Decomposition (POD)38 is also based on a linear trial space but this is generated from a set of FOM snapshots 
employing Singular Value Decomposition, thus allowing to identify all the relevant contributions automatically. 
A di�erent approach is taken by the implicit condensation and expansion (ICE)  method39–41 which de�nes a small 
set of master modes and assumes a quasi-static coupling with the high frequency contributions (slave modes). 
Also modal derivatives (MD)42–44 have been introduced with the aim of accounting for the amplitude depend-
ence of modes. ICE and MD are indeed very accurate when a slow/fast separation between the frequencies of 
the master and slave modes  exist45,46. Recently, Nonlinear Normal Modes (NNMs) have received considerable 
attention as a technique for generating ROMs. Initially de�ned as a vibration in unison of the  system47–49, they 
have been later extended by the notion of invariant  manifold50 and of spectral submanifold (SSM)51,52. However, 
only very recently e�cient approaches have been proposed for the computation of invariant manifolds for large 
FEM  models53,54, but applications have been limited so far to mechanical structures with geometrical nonlineari-
ties and no multiphysics coupling.

In this work, we elaborate on the Implicit Condensation approach based on static modal loadings recently 
tailored by the authors for simple MEMS  structures41. In particular, the ICE applies to structures which undergo 
transformations which are no-longer in�nitesimal, but still moderate. �e approach has been veri�ed on a 
double-ended tuning fork resonator experiencing both geometric, electrostatic and damping  nonlinearities55, 
and represents a fast a priori multiphysics simulation tool able to reproduce the nonlinear dynamics caused 
by the interaction of two modes of a complex MEMS gyroscope test-structure without the need of calibration 
procedures. To the authors best knowledge this represents the �rst fast numerical predictive tool able to simu-
late a priori the internal resonance phenomenon including bifurcations of the periodic response in a complex 
structure and in general, the nonlinear dynamic behavior of MEMS devices. Numerical results are compared 
with experimental data and an excellent agreement is achieved for di�erent actuation conditions, thus proving 
the versatility and the predictivity of the proposed tool.

Results
MEMS gyroscope test‑structure. A schematic view of the MEMS gyroscope test-structure employed 
in this work is reported in Fig. 1a, close-up views and geometrical dimensions are also reported in the Supple-
mentary Information for the sake of clarity. �e mechanical structure is constituted by four masses and several 
folded springs that provide the suspension of the device and the coupling of the masses with a central auxiliary 
component. �e gyroscope test-structure is fabricated through the �elma process of STMicroelectronics in 
polysilicon (E = 167 GPa, υ = 0.22, ρ = 2330 kg/m3) and has an overall footprint of 1.5 mm × 1.3 mm × 24 µm. 
Comb �ngers and parallel plate electrodes allow for the in-plane actuation/readout, while electrodes located on 
the substrate are employed for the out-of-plane actuation/readout. In Fig. 1b,c, two modes of the MEMS gyro-
scope test-structure are reported: they will be referred to in the following as roll mode (Fig. 1b) and spurious roll 
mode (Fig. 1c). �eir natural frequencies are computed through a FEM modal analysis and read f1 = 22,522 Hz 
and f2 = 43,386 Hz, respectively.

1:2 internal resonance between the two modes can be triggered by driving the roll mode through the elec-
trodes on the substrate. �e two linear natural frequencies have an initial ratio of 1.926, which evolves to almost 
exactly 2 as the applied electrostatic bias increases and due to the electrostatic nonlinearities given by the parallel-
plate electrostatic  scheme55.

ROM based on implicit static condensation. A numerical FOM made by discretizing the geometry of 
the MEMS gyroscopes test-structure with quadratic pentahedrons, properly distributed so as to have at least two 
elements in the spring thickness, consists of around 2.5 millions of degrees of freedom which become 17 mil-
lions if electro-mechanical coupling is considered. �is makes any direct numerical simulation computationally 
una�ordable especially if complex nonlinear dynamic phenomena such as the 1:2 internal resonance are inves-
tigated. As an example, we estimate that the simulation of the nonlinear dynamic response of the MEMS quad-
mass structure through a fully coupled time domain analyses in COMSOL Multiphysics v.5.6, would require 
approximatively one year on a standard workstation (AMD Ryzen 9 5950X, 16 Cores, 128 Gb RAM).

�e implicit static condensation method validated by the authors on simple  structures41,55 is here applied 
to reduce the system to two degrees of freedom (i.e. the amplitudes of the two master roll and spurious-roll 
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modes), thus dramatically reducing the computational e�ort without losing accuracy and physical meaning 
(see “Methods” section).

By considering a constant Direct Current (DC) voltage VDC on the MEMS gyroscope test-structure proof 
masses and an Alternate Current (AC) signal VAC ≪ VDC at an angular frequency ω close to the one of the roll 
mode on the electrodes on the substrate, the resulting nonlinear system describing the dynamics of the device 
reads:

where ǫ0 is the vacuum permittivity, qi is the modal coordinate, Qi is the quality factor, ω0i = 2π fi is the natural 
pulsation, βi(q1, q2) is the nonlinear mechanical force and F̌e1i (q1, q2) is a time independent nonlinear electro-
static force for the i-th mode, with i = 1 for the roll mode and i = 2 for the spurious roll mode. F̌e21(q1, q2) is the 
time dependent nonlinear electrostatic force that acts on the driven roll mode. In the following, Q1 = 2400 and 
Q2 = 3480 according to the simpli�ed numerical  tool56 proposed by the authors to compute �uid damping in 
MEMS resonant structures working in low pressure conditions such as in this case. Note that a nonlinear quality 
factor can in principle be also considered in the case of very large displacements of the proof mass with respect 
to the air gap between it and the �xed  electrodes55.

For the sake of simplicity, we approximate βi(q1, q2) , F̌e1i (q1, q2) and F̌e21(q1, q2) with a complete third order 
polynomial whose coe�cients are reported in the Supplementary Information. Once the voltage levels are �xed, 
Eqs. (1) and (2) are solved through numerical continuation, using the package  MANLAB57 that implements a 
combination of Harmonic Balance (HB) with an asymptotic numerical method (ANM) for path-following. 
�e nonlinear frequency response of the roll mode in terms of amplitude and phase is reported in continuous 
light blue line in Fig. 2 for a  VDC = 4.28 V and a  VAC = 3.16 mV. For this actuation condition, the model correctly 
reproduces the activated 1:2 internal resonance as demonstrated by the characteristic shape of the frequency 
response made with two peaks and by the presence of a quasi-periodic/chaotic region (see green path in Fig. 2a of 
Supplementary Information) delimited by Neimark–Sacker bifurcations (dark blue stars in Fig. 2) in the central 
region of the  spectrum58. Red stars represent the Saddle–Node bifurcations predicted by the ROM model and 
delimit the unstable part of the solution branch (see red path in Fig. 2a of Supplementary Information). To fur-
ther validate the adequacy of the proposed ROM, in the Supplementary Information we report the comparison 
between the curves obtained through the full ROM here proposed and the ones analytically derived through 
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ω01
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q̇1 + β1(q1, q2) − F̌e11(q1, q2)ǫ0V
2
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(2)q̈2 +
ω02

Q2
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2
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Figure 1.  (a) Schematic view of the MEMS gyroscope test-structure. (b) Roll (f1 = 22,522 Hz) and (c) spurious 
roll (f2 = 43,386 Hz) modes. �e contour plot of the displacement �eld is shown in color.
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the Multiple Scale  Method58 from a simpli�ed ROM based on the coe�cients numerically extracted through 
the Implicit Condensation Method.

In Fig. 2, numerical curves in terms of displacements obtained by integrating Eqs. (1) and (2) are converted 
in terms of current as detailed in Zega et al.55 to simplify the comparison with experimental data.

Experimental results. In order to validate the proposed simulation tool, the experimental frequency 
response of the MEMS gyroscope test-structure is measured in the same actuation condition previously con-
sidered for the theoretical model:  VDC = 4.28 V and  VAC = 3.16 mV. Experimental curves are reported in orange 
dashed lines in Fig. 2 and well agree with the numerical predictions. Note that the jumps of the experimental 
upward frequency sweep shown in Fig. 2a,c are in a satisfactory agreement with the Saddle–Node bifurcations 
(red stars) predicted by the models (see Fig. 2a of Supplementary Information). Moreover, in the close-up views 
of Fig. 2b,d, it is evident that the Neimark–Sacker bifurcations predicted by the ROM correctly delimit the 
experimental quasi-periodic region, thus further proving the accuracy of the proposed a priori simulation tool.

Additional experimental curves measured for a  VAC = 3.16 mV and di�erent levels of  VDC are reported in 
dashed-lines in Fig. 3 together with corresponding numerical predictions. Only experimental upward frequency 
sweeps are reported for the sake of clarity and all the curves, both numerical and experimental, are normalized 
with the maximum amplitude of the hardening peak of the experimental curve obtained for  VDC = 4.28 V and 
 VAC = 3.16 mV. �is value corresponds to an out-of-plane maximum displacement of the proof masses of 71 nm. 
�e maximum displacement experienced by the proof masses in this experimental campaign is then in the order 
of a couple of hundreds of nanometers (i.e. orange curve in Fig. 3a), which is fully compatible with a stable 
operation of the device far from pull-in instabilities (the gap between the masses and the underlying electrodes 
is of 1.2 µm) and with the assumption of moderate transformations required by the proposed ICE method. In 
the inset of Fig. 3b, the evolution of the resonant frequency of the roll mode for di�erent  VDC is reported and 
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Figure 2.  Frequency response of the MEMS gyroscope test-structure for a  VAC = 3.16 mV and a  VDC = 4.28 V 
in terms of (a) amplitude and (c) phase. Close-up views of the quasi-periodic region in the frequency response 
in terms of amplitude and phase are shown in (b)–(d). Numerical predictions are plotted with continuous blue 
lines, and experimental data with orange dashed lines. Stars mark theoretical Neimark–Sacker (dark blue) and 
Saddle–Node (red) bifurcations that delimit the quasi-periodic regime region and the unstable paths of the 
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compared with half the resonant frequency of the spurious roll mode, highlighting the strong link between the 
nonlinear dynamic behavior of the structure under study and the ratio between the resonant frequencies of the 
two coupled modes.

A good agreement in terms of amplitude and phase is found for all the DC-voltage levels, thus proving the 
predictive ability of the simulation tool. It should be recalled that experiments are run in frequency control and 
frequency upward sweep. As a consequence they cannot follow unstable branches and display jumps in proximity 
of the Saddle–Node bifurcations predicted by the MOR (see Fig. 2a of Supplementary Information). It is worth 
noting that the proposed ROM is able to catch the nonlinear dynamic response of the MEMS gyroscope test 
structure under di�erent actuating conditions without any need of ad-hoc calibration of the coe�cients. �is 
make this simulation approach extremily versatile and general.

Discussion
�e proposed ROM based on implicit static condensation is able to accurately and ab-initio reproduce the 
complex nonlinear dynamics of a MEMS gyroscope test-structure undergoing 1:2 internal resonance including 
bifurcations of the periodic response. �e obtained two degrees of freedom model accounts for the multi-physics 
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resonant frequency of the spurious roll mode (f2/2) are reported in the inset for di�erent  VDC.
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nature of the problem and does not require any calibration of the parameters: nonlinear coe�cients come indeed 
exclusively from numerical simulations and can be estimated without the need of experimental data. Moreover, 
thanks to the reduction of the number of degrees of freedom of the system, simulations run almost real-time 
and are thus very helpful for design purposes and experimental data post-processing.

�is technique represents, to the authors’ best knowledge, the �rst tool able to estimate a priori and in real-
time the nonlinear dynamics of a complex multiphysics system like a MEMS gyroscope test-structure under 
di�erent actuation conditions.

MEMS designers and the MEMS industry in general, will strongly bene�t of such tool since it will simplify 
the understanding of experimental data and the design process of complex nonlinear MEMS devices.

Methods
Implicit static condensation. �e implicit static condensation is based on the assumption that it is possi-
ble to describe the steady state non-linear oscillation of a resonator as a combination of few master modes (MM). 
�e dynamics of the ROM is described by a stress manifold obtained by implicitely condensing the e�ects of 
higher order modes that locally modify the internal forces and thus the global sti�ness of the  system42. For the 
case under study where two modes interact through the internal resonance, this method allows to formulate a 
ROM where the active degrees of freedom are the modal coordinates qi of the roll and the spurious roll modes 
associated to the maximum out-of-plane displacement of the proof masses. Let ψi(x) denote the displacement 
�eld of the i-th MM, mass normalized, the non-linear elastic force manifold is evaluated by statically forcing the 
structure with suitable body forces F which are proportional to ψ1(x) and ψ2(x) : F = β1ψ1(x) + β2ψ2(x) . �e 
motivation for this choice, apart from simplicity, is that these loads are a very good approximation of inertia 
forces occurring during the steady state oscillation. Once the body forces are de�ned, a series of static non-linear 
analyses are run spanning the (β1, β2) space. �e range of the load-multipliers (β1, β2) is prescribed so as to 
cover the expected displacements of the structure, e.g. maximum out-of-plane displacements allowed by the 
gap between the proof masses and the underlying substrate. Let (q1(β1, β2),q2(β1, β2)) denote the solution for 
a given (β1, β2) , we invert such relations and we obtain the terms (β1(q1, q2),β2(q1, q2)) of Eqs. (1) and (2).

A similar procedure is adopted to determine the electrostatic nonlinear manifold of the ROM. �is represents 
a quasi-static approach which assumes that the dynamics of electromagnetic forces is much faster than the fre-
quency of oscillation of the resonators, which is veri�ed in the case of the MEMS under consideration. We then 
suppose that the gyroscope vibrates according to a combination of the two main modes, i.e. roll and spurious roll 
modes, and we update the coordinates of the conductor surfaces, i.e. surfaces of the proof masses of the gyroscope 
test-structure that face the underlying electrodes employed for actuation/readout, as x + ψ1q1 + ψ2q2 , being x 
the initial position of the conductor surfaces. �e map of the charge surface density σ(x, q1, q2) caused by the 
interaction between the conductor surfaces with the underlying electrodes, is then computed as a function of 
(q1, q2) through integral equations accelerated with fast multipole  methods59. Once the charge surface density is 
available, the nonlinear load participation factor is computed as:
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Figure 4.  Set-up employed to measure experimental frequency responses.
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where ψni = ψi · n is the projection of the modal shape function ψi along the outward unit normal vector on 
the conductor surface and S is the surface portion of the proof masses that faces the underlying electrodes. An 
analogous  procedure55 allows us to determine the nonlinear amplitude of the forcing term F̌e21(q1, q2) in Eqs. 
(1) and (2).

Experimental set‑up. �e MEMS is bonded to a ceramic carrier and then connected to a Plastic Circuit 
Board (PCB) as shown in Fig. 4a. Electrostatic actuation of the roll mode is provided through two power sup-
pliers (Fig. 4b,c): the Agilent E3631A provides the DC voltage while AC signal is generated through the Agi-
lent AG4395A. �e output current measured on the electrodes on the substrate is ampli�ed through the Signal 
ampli�er SRS model SR570 (Fig. 4d) and read in the frequency domain through the Agilent AG4395A (Fig. 4c). 
A LabView script (Fig. 4e) acquires the output and corrects the AC signal to guarantee a close-loop control of 
the circuit.
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