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S. Görtz†
· T. M. Kier∗

Received: date / Accepted: date

Abstract This article gives an overview of reduced order modeling work performed in the DLR project Digital-
X. Parametric aerodynamic reduced order models (ROMs) are used to predict surface pressure distributions
based on high-fidelity computational fluid dynamics (CFD), but at lower evaluation time and storage than the
original CFD model. ROMs for steady aerodynamic applications are built using proper orthogonal decomposition
(POD) and Isomap, a manifold learning method. Approximate solutions in the so obtained low-dimensional
representations of the data are found with interpolation techniques, or by minimizing the corresponding steady
flow-solver residual. The latter approach produces physics-based ROMs driven by the governing equations. The
steady ROMs are used to predict the static aeroelastic loads in a multidisciplinary design and optimization
(MDO) context, where the structural model is to be sized for the (aerodynamic) loads. They are also used
in a process where an a priori identification of the critical load cases is of interest and the sheer number of
load cases to be considered does not lend itself to high-fidelity CFD. An approach to correct a linear loads
analysis model using steady CFD solutions at various Mach numbers and angles of attack and a ROM of the
corrected Aerodynamic Influence Coefficients (AICs) is also shown. This results in a complete loads analysis
model preserving aerodynamic nonlinearities while allowing fast evaluation across all model parameters. The
different ROM methods are applied to a 3D test case of a transonic wing-body transport aircraft configuration.

Keywords reduced order model · proper orthogonal decomposition · isomap · manifold learning ·
multidisciplinary design and optimization · aerodynamic influence coefficients · loads analysis · CFD

1 Introduction

The multidisciplinary design of a civil transport air-
craft is a highly iterative optimization process, each
design cycle requiring a large volume of computations
to analyse the current performance, handling quali-
ties and loads. For conventional aircraft a loads en-
velope may require on the order of 100.000 simula-
tions to find all critical load cases. For unconventional
aircraft, where little or no engineering experience is
available, up to 10 million computations may be re-
quired. The use of high-fidelity computational fluid
dynamics (CFD) in this context is at the horizon [1],
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but still too costly and time consuming to provide all
the required aerodynamic data [57], i.e., steady and
unsteady pressure and shear stress distributions on the
aircraft surface, at any point within this envelope [65].
This motivates procedures and techniques aimed at
reducing the computational cost and complexity of
high-fidelity simulations in order to provide accurate
but fast computations of, e.g., the aerodynamic loads
and aircraft performance [34].

A classical approach to reduce the numerical com-
plexity is to simplify the physics. An example of this
is the common use of linear potential flow equations
during loads analysis. However, such physical model
simplifications have the disadvantage of neglecting
significant effects such as transonic flow, stall and fric-
tion drag in the case of aerodynamics. This may be



acceptable early on in the design process, while more
detailed analysis may be applied at a later stage when
the design space has been narrowed down sufficiently.
As an alternative to simplifying the physical model,
reduced order modeling (ROM) provides another ap-
proach to reduce numerical complexity. In general the
various ROM methods realize such goal by identifying
a low-dimensional subspace or manifold based on an
ensemble of high fidelity solutions “snapshot” which
sample a certain parametric domain of interest. The
number of degrees of freedom (DoF) is then reduced
while retaining the problem’s physical fidelity, thus
allowing predictions of the required aerodynamic data
with lower evaluation time and storage than the origi-
nal CFD model.

This paper reports on reduced order modeling meth-
ods developed and employed within the context of
the Digital-X project [36]. Digital-X is a DLR-project
focusing on the development of numerical simulation
methods for the design of aircraft. One of the pri-
mary objective of the project is the development of
a software platform for multidisciplinary design and
optimization (MDO) of aircraft and helicopters based
on high-fidelity numerical methods.
The Digital-X MDO process chain is shown schemat-
ically in Fig. 1. It is a collaborative multi-level MDO
process including aerodynamics, structures, mass es-
timation, engine and flight performance, and other
disciplinary tools and processes contributed by several
DLR institutes [24]. The MDO chain iterates through
three successive levels of detail: the preliminary design
level, the dynamic level responsible for loads analy-
sis and initial structural sizing, and the detailed level
where performance is computed through high fidelity
analysis methods. These are controlled by a global
optimizer and use the Common Parametric Aircraft
Configuration Schema (CPACS) as a design data ex-
change format [74].

Currently, within the industrial context, the predic-
tion of the critical loads is done with low-fidelity meth-
ods, but it is in the vision of the Digital-X project to do
that with high-fidelity computations. Therefore, given
the previously stated large number of simulations re-
quired to find the critical loads, reduced order models
(ROMs) are needed to make this process feasible.

Different architectures (i.e. models, coupling strate-
gies, solution methods, frameworks and tool integra-
tion) [2, 47, 63] have been developed in research in-
stitutes/universities for the high-fidelity multidisci-
plinary optimization of the complete aircraft [33, 11],
at the conceptual [13, 31, 55, 39, 45] as well as pre-

Fig. 1 The Multidisciplinary Design Optimization Pro-
cess Chain as used in the Digital-X project [36]

liminary [37, 35, 66] design level. These architectures
exploit often surrogate models [62, 50, 18, 27, 73, 42]
(e.g. response surfaces, Kriging models, artificial neu-
ral networks, support-vector machines, radial basis
functions and metamodels) in order to reduce the com-
putational effort of the design. Such surrogate models
are mainly based on some changes of the reference
model, and provide estimations of the aerodynamic in-
tegral quantities (e.g. the lift and moment coefficients)
or cost functions related to the flight performances.

The Digital-X project aims to extend the use of
high-fidelity computations up to the estimation of the
sizing loads, therefore moving the high-fidelity MDO
towards the detailed design level [52]. Moreover, it
advances the state-of-the art by making use (besides
of surrogates models) of physical-based ROMs replac-
ing the CFD-based disciplines and providing predic-
tions of the pressure distribution, which are used to
include aerodynamic nonlinearities in comprehensive
aeroservoelastic models for loads computations due to
maneuvers and gusts.

In Digital-X, several methods have been employed
to obtain reduced order models (ROMs) for the pre-
diction of steady and unsteady aerodynamic flows
using low-dimension linear subspaces [75, 76, 68, 77]
as well as nonlinear manifolds [22]. The performance
has been further improved improved [69] in other
projects by applying sampling techniques and hyper-
reduction procedures [78] (e.g. empirical interpolation
method [7, 15] and missing point estimation [4, 5]).



These techniques and methods, together with others
Kriging-based surrogate modelling techniques [26, 25,
27], are implemented in the DLR’s SMARTy toolbox.

The paper is organized as follows. Section 3 gives
a general description of DLR’s ROM methods. Then,
section 4 describes methods which are part of the
“High-Fidelity AeroStructural MDA & Sizing” process
in Fig. 1. Section 5 describes an application of a ROM
for the loads analysis and sizing process comprizing
the dynamic level in Fig. 1, bridging the gap between
CFD based methods and classical loads analysis.

2 Reference Aircraft Description

A long-range transport aircraft configuration is used
as the reference geometry in the following to demon-
strate the capabilities of the different ROM methods
in an MDO context. The model is a generic wide-body
research aircraft. Figure 2 shows the baseline geometry

Fig. 2 The generic long-range transport aircraft used as
a baseline for MDO

of the research aircraft, featuring a wing/fuselage/tail
configuration. It was specified consistently in CPACS
format including a simplified 8,000 nm mission con-
sisting of climb, cruise, descent and landing as well as
a flight to an alternate airport (200 nm). The Top-Level
Aircraft Requirements (TLARs) are given in Table 1.
The TLAR were validated by performing a simulation
of a reference long-range mission with DLR’s prelim-
inary design tools, showing good agreement with ref-
erence data for this mission.
Note that for proprietary reasons, in all following fig-
ures and plots no absolute values and absolute scales
are displayed.

Table 1 Reconstructed TLAR (selection)

TLAR Value

Design range [nm] 5600
Max. range @ MTOW [nm] ≥ 8000
Cruise alt [ft] 35000
Cruise Mach number 0.83
PAX # 353
Max. payload [103 kg] ≥ 48
Max. take-off thrust/engine [kN] 334.7
Take-off field length ≤ 2700 m

3 Reduced-Order Modeling

Reduced-order models for aerodynamic applications
operate on parametrically generated data, the so called
snapshots, represented by either surface quantities (e.g.
surface pressure and shear stress) or volume quantities
(e.g. the primitive variables). The DLR TAU code [60,
38] is utilized as CFD solver, employing hybrid un-
structured grids, to obtain the aerodynamic data snap-
shots. The parameters can be related to the flow (e.g.
the angle of attack, the Mach number), the geometry
(e.g. wing span, taper ratio, and sweep angle), the
structure (e.g. Young’s and shear modulus of the beam
representation of the wing box) and the flight condi-
tion (e.g. load factor, altitude).
The model order reduction techniques used within the
DLR Digital-X project are hereafter briefly described,
and their application within the MDO framework for
loads prediction, critical loads cases selection, struc-
tural sizing and correction of low-fidelity aerodynamic
methods is shown in the following sections.

3.1 POD-based ROM

A widely used tool for reduced order modeling is
proper orthogonal decomposition (POD) [29, 67, 59],
also known as principal component analysis (PCA) [61]
and Karhunen Loéve expansion. POD is well estab-
lished and used in diverse fields such as image pro-
cessing, signal analysis, data compression, process iden-
tification and control in chemical engineering [40]. In
fluid dynamics, it is applied to steady problems and
unsteady problems in the time as well as frequency
domain. The POD method generates a sequence of
orthogonal basis functions through modal analysis of
an ensemble of snapshot flow solutions, which span
an optimal linear subspace for the corresponding solu-
tion space. By choosing a subset of modes the method



seeks to isolate the few main structures whose linear
combination represents the system in an optimal way.
Several variants of POD based methods have been
developed which primarily differ in the way how they
connect the retained modes to the parameter space of
the snapshot distribution. The POD may be embedded
in a Galerkin projection framework [43, Sect. 2.2.4],
it may be combined with a CFD flux residual mini-
mization scheme [40, 76], or it may be coupled to an
interpolation method (POD+I) [12, 20].

These POD methods may be categorized as either
intrusive or non-intrusive [19]. Galerkin projection is
an example of an intrusive method. It projects the un-
derlying spatially discretized partial differential equa-
tions (PDEs) onto the POD subspace to obtain a sys-
tem of ordinary differential equations (ODEs). Within
the DLR Digital-X project, the ROM predicted solu-
tion is conversely determined by directly interpolat-
ing the coefficients of the POD modes, without the
need to solve the ODE system. This method is referred
to as POD+I and is a non-intrusive method as the
interpolation technique does not require any details
on the underlying governing equations. It generally
establishes a multi-dimensional relationship between
the modal coefficients or amplitudes and the param-
eter space, e.g., by fitting a radial basis function in
the modal space to the set of snapshot points in the
parameter space. This has the advantage of simplic-
ity of implementation and independence of the com-
plexity of the system and source of the modes being
processed, which allows for application to multidis-
ciplinary problems and the combination of different
data sources such as CFD and experimental test re-
sults.
The main disadvantage of non-intrusive POD meth-
ods stems from their reliance on interpolation tech-
niques to accurately reproduce the possibly very non-
linear response surfaces of the modal coefficients. In-
trusive POD methods do better in this respect. Within
the DLR project Digital-X, this is done by solving an
optimization problem for the modal coefficients mini-
mizing the steady flow-solver residual of the govern-
ing equations. In the following, such approach will be
referred to as POD+LSQ.

3.2 Isomap-based ROM

The linear nature of the POD makes the method at-
tractive but also is the source of its restriction. Highly
non-linear flow phenomena, such as shocks, are often
insufficiently reproduced, because of the underlying
assumption that the full-order CFD flow solution lie

in a low-dimensional linear subspace. An approach to
improve the fidelity of linear ROMs is to substitute
the POD with a nonlinear manifold learning (ML) [14,
44, 49, 9], or, more generally, dimensionality reduction
(DR) technique, which assumes that full-order data
lies on a nonlinear manifold of low-dimension. The
manifold can be approximated by sampling the full-
order model. Within the DLR Digital-X project, the
Isomap [64] method, which is a nonlinear DR method
based on multi-dimensional scaling (MDS) [46], is em-
ployed to extract low-dimensional structures hidden
in a given high-dimensional data set.

The Isomap method only provides a mapping from
the high-dimensional input space onto a lower-dimen-
sional embedding space for a fixed finite set of given
snapshots. For any ROM of the Navier-Stokes equa-
tions, however, it is an essential requirement that the
approximate reduced-order flow solutions are of the
same type and dimension as the full-order CFD snap-
shots. Hence, once the set of low-dimensional vectors
is obtained, a back-mapping from the reduced-order
embedding to the high-dimensional solution space is
mandatory.
Coupled with an interpolation model formulated be-
tween the parameter space and the low-dimensional
space, a ROM is obtained which is capable of predict-
ing full-order solutions at untried parameter combina-
tions. This method will be referred to as Isomap+I.
Furthermore, another back-mapping from the low-
dimensional space to the high-dimensional space may
be performed based on the residual optimization. Its
objective is to obtain a CFD-enhanced prediction by
minimizing the discretized flux residual of the inter-
polated solution. This method will be referred to as
Isomap+LSQ.

4 Reduced-Order Models for Static Aeroelastic

Loads

In this section we present a reduced order modeling
process for computing static aeroelastic loads, to be
used in the framework of high-fidelity MDO [52] and
sizing process as shown in Fig. 3. The method consists
of building a ROM from static aeroelastic solutions
computed for different sets of parameters. Such so-
lutions are collected in a snapshot matrix, to which
POD [12] or Isomap [64] is applied in order to obtain
low-dimensional representation of the given data. A
reduced order model, either POD-based or Isomap-
based, is built from static aeroelastic solutions com-
puted for different sets of parameters like, e.g., flight
conditions (altitude, number of Mach, load factor),



flight configurations (payload mass, fuel mass), ge-
ometrical parameters (wing planform parameters as
aspect ratio, taper ratio, swept angle, and the twist
angle for selected airfoil sections) and structural prop-
erties (wing-box stiffness and mass). The parameter
space is sampled using Design of Experiment (DoE)
techniques [17].

However, the integrated nature of the MDO pro-
cess involves complex interactions between the differ-
ent disciplines, which are difficult to be represented
with a single global ROM, if not at the expense of a
costly sampling of the whole paramater design space
with multidisciplinary high-fidelity simulations. Tak-
ing note that such a global ROM may be devised and
sought in future works and projects, hereafter an ef-
ficient approach to manage this complexity is shown.
This approach exploits a divide-and-conquer strategy
and the MDO is decomposed in sub-processes, for
which small parametric ROMs can be easily generated
separately and used for fast system-level analysis.

First, section 4.1 describes how to construct a ROM
of coupled, static aeroelastic solutions for a given (flex-
ible) aero-structural configuration and different load
cases (in Fig. 3, ROM of the Aeroelastic Model block,
w/o Sizing Process, and parameters the flight condi-
tions). Then section 4.2 describes how to select crit-
ical load cases based on an aeroelastic ROM built
for a given aerodynamic shape, but structure sized
over different load cases (in Fig. 3, ROM of the Aeroe-
lastic Model block, with Sizing Process, and param-
eters the load cases). Section 4.3 shows a ROM for
steady aerodynamic loads predictions of a rigid model
of the generic transport aircraft configuration subject
to geometry variations (in Fig. 3, ROM of the Aero-
dynamic Model block and parameters the Geometry),
which is afterwards used (section 4.4), for a given aero-
dynamic shape and load case, in the structural sizing
sub-process.

4.1 Static Aeroelastic Loads of a Generic Long-Range
Transport Aircraft

In the following the performances and effectiveness
of the ROM approach in predicting static aeroelas-
tic loads for a generic long-range transport aircraft
fuselage-wing configuration in the transonic flow regime
are presented.

The geometry of the configuration and the under-
lying structured grid featuring 784,384 grid points,
including 19,211 surface grid points, are depicted in
Fig. 4. The aerodynamic model is a Reynolds-Averaged
Navier-Stokes (RANS) model with a negative Spalart-
Allmaras type 1-equation turbulence model [3] and
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Fig. 3 Flow chart of the reduced order modelling for
loads in the MDO framework.

solved using the computational fluid-dynamics (CFD)
DLR TAU solver [60, 38]. The computational struc-
tural model (CSM), however, is spatially discretized
by using finite element shells and beams with 2167
elements (1914 shells, 212 beams and 41 mass type
elements) and 1725 nodes, as showed in Fig. 5. The
ANSYS Structural Mechanics software is used for the
finite element analysis. The coupling between the aero-
dynamic and the structural model is obtained through
the use of Radial Basis Functions (RBFs) [8] to transfer
the aerodynamic loads to the structural model, and
a linear interpolation of the structural displacements
onto the aerodynamic grid.

The aircraft empty mass is 117888.2 kg. A flight
configuration with 55000 kg of payload mass and 61000
kg of fuel mass is considered. Pull-up and pull-down
maneuvers, of respectively load factor 2.5 g and -1 g,
are analyzed.

The computation of the coupled flow-structure so-
lutions were performed in parallel on the DLR C2A2S2E-
2 cluster using two nodes1 with 24 cores. Computing a
free-flight coupled CFD (TAU) - CSM (ANSYS) static

1Intel R© Xeon R© E5-2695 v2 Processors (30M Cache, 2.40
GHz, 12 Cores)
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Fig. 4 Detailed view of the surface of the CFD struc-
tured grid of the generic long-range transport aircraft.

Fig. 5 Structural finite element model of the wing,
showing the front, rear and middle spars, and the ribs.

aeroelastic solution took an average2 of 2430 wall-
clock seconds.

The aeroelastic equilibrium and the trim correc-
tion3 are computed independently with two nested
loops. In order to find the static aeroelastic equilibrium
(outer loop) each iteration involves interpolation of
the displacements from the CSM to the CFD mesh,
deformation of the CFD mesh using RBFs, computa-
tion of the flow solution (with inner loop target CL

trimming strategy), interpolation of the forces from the

2Based on the effectively computed reference solutions, i.e.
without taking into account the not converged simulations.

3It must be noted that the aircraft model is missing the
horizontal tail plane (HTP). Therefore, the equilibrium condition
is applied only in the vertical translation direction. The aircraft
pitching moment, usually trimmed by deflecting the elevator,
is not trimmed during the procedure and center of gravity
variations are not considered as well. The resulting wing lift
will therefore only balance the inertia loads and not the (usual)
negative lift of the HTP. Despite only the vertical equilibrium
is considered, the coupled procedure still offers fluid-structure
snapshots suitable to verify the soundness of the ROM capabil-
ity in predicting approximate solutions.

CFD model to the CSM mesh, and computation of the
structure solution.

An average of four coupling outer iterations are
necessary for the static aeroelastic convergence. In
each of these coupled iterations, the trimmed solution
is obtained through a target CL strategy, where the
angle of attack is determined to provide a lift balanc-
ing the aircraft weight and the inertial force due to a
given load factor. Here the CFD subsystem is solved by
first using a minimum iteration strategy, running 3500
iterations, followed by a minimum residual strategy,
where the density residual is converged by four orders
of magnitude at the initial coupled iteration, up to
six orders of magnitude proceeding with the coupled
iterations. However, the minimum residual strategy is
bounded by a maximum of 9950 inner iterations.

For the test case presented, the ROM is parametrized
only upon flight conditions, i.e., altitude and Mach
number. Choosing suitable flight conditions and con-
figurations parameter combinations for the snapshot
computation is a very important issue in building
the ROM. In this case, static aeroelastic high-fidelity
simulations have been performed (offline) for Mach
numbers ranging from 0.65 to 0.82, and an altitudes
between 0 m and 5000 m. The payload and fuel masses
are kept fixed. The sample points are computed using
a full factorial design strategy. Only the converged
solutions, i.e., 22 snapshots, have been taken into ac-
count in the ROM generation procedure. The ROM is
realized through a POD of the high-fidelity snapshots
together with a Thin Plate Spline (TPS) method in-
terpolating the POD coefficients to get the predicted
aeroelastic solution (i.e., the surface pressure, the skin
friction and the structural displacement). All the POD
modes have been retained. The performances of the
ROM approach are evaluated at flight conditions with
Mach number 0.81 for different altitudes. The predic-
tion points and the DoE sample points are shown in
Fig. 6.

Before computing the ROM predictions, a leave-
one-out cross-validation strategy has been performed
to understand if the set of sample points were enough
to cover the parameter space. Therefore, following this
strategy, alternately one of the high-fidelity snapshots
of the DoE sample set has been left out from the ROM
generation procedure (which is then built using the
remaining 21 DoE sample snapshots as the training set,
retaining all the 21 POD modes). In the corresponding
flight condition of the left-out snapshot (i.e. the valida-
tion point) the ROM prediction has been performed.
This prediction has been compared to the high-fidelity
computation in terms of aerodynamic coefficients.
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Fig. 6 Design of experiment samples and prediction
points.

It must be noted that the inputs of the reduced or-
der model are only the Mach number and the altitude.
Therefore the ROM aeroelastic prediction is not asso-
ciated with any angle of attack. The only information
about the freestream boundary condition is related to
the airspeed absolute value (i.e. the Mach number).
This is because the coupled CFD/CSM static aeroelas-
tic solutions have been obtained through a trim proce-
dure using a target CL strategy, i.e. the lift coefficient
is an input of the procedure, and the angle of attack
(together with the aerodynamic forces, for the given
deformed structure) is an output. Therefore, in order
to have a comparison in terms of aerodynamic coeffi-
cients with the high-fidelity static aeroelastic solution,
a proper angle of attack must be selected. Here, the
same angle of attack resulting from the high-fidelity
trimming procedure is used.

Figure 7 shows the lift coefficient computed with
the coupled TAU/ANSYS high-fidelity model (HFM),
necessary to (vertically) trim the aircraft in the var-
ious flight conditions. A linear interpolation is used
to compute the CL between flight condition sample
points. The error between such lift coefficients and
those predicted by the reduced order model is shown
in Fig. 8. Generally, the error is greater in those predic-
tion points outside of the convex hull of the training
set under consideration, where the ROM prediction is
extrapolated. It must be noted that the ROM predic-
tions at the such validation points may be quite chal-
lenging. Indeed, for each validation point the nearby
high-fidelity solutions used as training set to build the

L

Fig. 7 Lift coefficient to balance the inertia loads of
the aircraft as computed with the high-fidelity model
(HFM).

L

Fig. 8 Relative error between the HFM and the ROM
prediction of the lift coefficient to balance the inertia
loads.

ROM are distant ±0.05 in terms of Mach number and
±1000 m in terms of altitude.

As an example, the relative error in percentage be-
tween the lower and upper pressure on the wing of the
reference high-fidelity model and the ROM prediction,
for the validation point (h, Ma) = (1000 m, 0.75) (and
load factor 2.5 g) is shown in Fig. 9. The greater error
is found in correspondence to the shock wave, as can



(a) Lower surface. (b) Upper surface.

Fig. 9 Relative error, in percentage, of the wing pressure distribution between the high-fidelity and the ROM, in
the validation point h = 1000 m, Ma = 0.75.
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Fig. 10 Comparison of the pressure distribution at the 25%, 50% and 70% spanwise airfoils.



Fig. 11 Comparison of the wing structural displace-
ment between the coupled high-fidelity model (TAU-
ANSYS) and the reduced order model (POD-TPS), at
the validation point h = 1000 m, Ma = 0.75, n = 2.5 g.

also be seen in Fig. 10. A comparison of the structural
displacements for such points can be seen in Fig. 11.

After the leave-one-out cross-validation, ROM pre-
dictions have been performed at Mach number 0.81.
Results are summarized in Table 2. In this case, the
relative error between the high-fidelity aeroelastic so-
lution and the ROM prediction is very low, not greater
than 0.1% for the lift and moment coefficients and not
greater than 0.35% for the drag coefficient. Figure 12
compares, for the case of 4000 m of altitude (and
load factor 2.5 g), the surface pressure distributions
predicted by the aeroelastic ROM with the reference
coupled CFD–CSM solution. The pressure distribution
is visualized on the aircraft jig shape for a better com-
parison of the results.

The ROM prediction is obtained in 78 seconds, in
sequential mode, including the data processing (e.g.
loading the snapshots from memory) and building the
ROM (i.e. the computation of the POD modes). Only
0.014 seconds are demanded for the online prediction
of the aeroelastic solution (in terms of surface pres-
sure distribution and structural displacements). The
achieved ROM speed-up factor for the wall-clock time
is 31, when the offline ROM generation is also taken
into account in the total ROM process wall-clock time.
The speed-up rises up to 173571, when only the online
prediction is considered. In these speed-up factors, the
offline cost required to get the 21 high-fidelity coupled
simulations is not considered.

Table 2 Relative error between the aerodynamic coef-
ficients of the trimmed high-fidelity aeroelastic model
(HFM) and the corresponding ROM predictions using
the Hi-Fi trimming angle of attack α.

h [m] 0 1000 2000 3000 4000 5000

H
F

M

α [deg] 1.963 2.319 2.767 3.330 4.064 4.965
CL 0.370 0.417 0.472 0.535 0.608 0.694
CD 0.0229 0.0255 0.0294 0.0355 0.0452 0.0607
CMy -2.263 -2.545 -2.870 -3.248 -3.687 -4.200

R
O

M

CL 0.370 0.417 0.472 0.535 0.608 0.694
CD 0.0228 0.0254 0.0294 0.0354 0.0453 0.0608
CMy -2.265 -2.545 -2.872 -3.248 -3.686 -4.202

E
rr

.
[%

]

CL 0.091 0.043 0.035 0.013 0.011 0.035
CD 0.130 0.319 0.008 0.093 0.087 0.253
CMy 0.084 0.000 0.050 0.010 0.008 0.038

4.1.1 Considerations and Remarks

The ROM shows a good prediction capability in terms
of aeroelastic loads for multidisciplinary optimization
and high-fidelity sizing.

The major discrepancies are near the shock wave. A
better prediction could be achieved using the Isomap
technique, which already showed to perform better
than POD-based ROMs in predicting the shock posi-
tion and intensity for steady aerodynamic computa-
tions [22]. Furthermore, better results could be achieved
by employing a different sampling strategy, like ran-
dom Latin hypercube sampling [17], which is more
suitable for ROM generation, and using a larger num-
ber of samples.

Nevertheless these discrepancies, when the ROM is
employed within the MDO process, it would not affect
the result of the optimization in terms of final design,
as will be shown for the sizing process in Section 4.4.

As final remark, a different physical modelling (e.g.
unsteady RANS or Hybrid RANS/LES) would be nec-
essary in those sample points of the flight envelope
where the aeroelastic solution is not converged, in
order to properly model the unsteadiness of the sep-
arated flow and the effect of the time varying aerody-
namic load on the structure and the aeroelastic trim.

4.2 Design Load Case Selection via ROMs

Aiming to an aeroelastic structural optimization of the
generic long-range transport aircraft able to withstand
the critical loads, the Mach-altitude envelope for five
design mass cases has been computed, and the relative
design aerodynamic load cases have been determined.
The five mass cases considered were the operating
empty mass, two maximum take-off mass cases, once
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Fig. 12 Comparison of the pressure distribution at the 25%, 50% and 70% spanwise airfoil sections, for Mach 0.81
and altitude 4000 m.

with maximum fuel and once with maximum payload,
a mass case with zero payload and maximum fuel, and
a mass case with zero fuel and maximum payload. The
Mach-altitude envelope for the five mass cases was
computed in intervals of 0.02 in Mach, and of 1000 m
in altitude for two load factors (−1g, 2.5g).

After computing the aerodynamic load envelope
of the flexible aircraft (i.e. the aerodynamic pressure
distribution of the static aeroelastic solution), all the
loads were passed to the sizing tool S-BOT [58]. This
tool provides as an output to the designer the critical
loads and the relative sized structure able to sustain
such loads. The process is iterated, until convergence,
by re-computing the aerodynamic loads associated to
the static aeroelastic solution with the currently sized
structure.

Since this process is computationally very expen-
sive, POD-based ROMs were employed using the DLR’s
SMARTy toolbox. Here ROMs were used to explore the
parameter space with a finer sampling at in-between
altitudes. The ROM predicted aeroelastic loads are
sent to the sizing tool, which determines if the loads
are critical. Whenever a newly predicted aeroelastic
load is found to be potentially critical, the correspond-

ing load case is recomputed with the high-fidelity cou-
pled CFD-CSM methods and checked with the sizing
tool if it is really critical or not.

As an example, two of the five critical mass cases
were used to generate 400 sized high-fidelity aeroelas-
tic snapshots. A parametric reduced-order model has
been generated using such snapshots, and then used
to compute 360 additional loads predictions. Three of
these 360 predictions were found to be additional can-
didates for design load cases, and by computing them
with the high-fidelity tools one case was found to be
actually critical. Figure 13 shows the complete aerody-
namic load case identification process. As an example
Fig. 14 shows the flight envelope as computed with
TAU for one particular mass case (MTOW) and the
corresponding identified design load cases.

This process guarantees an efficient search and se-
lection for new critical load cases. However, it should
be pointed out that the prediction capability of the
ROMs depends on the high-fidelity snapshots used
to generate them. Reduced-order models after all are
just a linear combination of the approximation of such
snapshots. Therefore, it may be possible that the ROMs
could fail to provide additional candidates for the de-
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sign load cases, which might turn out to be critical
for the sizing process if computed with high-fidelity
methods.

4.3 Parametric ROMs for Aero-Data in MDO

This section shows the use of parametric, Isomap-
based, reduced-order models for the prediciton of the
aerodynamic loads of the rigid model of the generic
long-range transport aircraft configuration, subject to
wing geometry variations. The Mach number and the
Reynolds number are here fixed at Ma = 0.83 and
Re ≈ 43.4 · 106 respectively. Furthermore, a target lift
coefficient of CL = 0.5 is prescribed. The twist of five
wing sections are used as parameters of the ROM.
The wing sections positions and the maximum twist
in different rotation directions are shown in Fig. 15.

An adaptive sampling with a hybrid error (HYE)
strategy [21] is employed to generate a set of high-

Fig. 15 Front view of the generic aircraft configura-
tion. Wing is twisted at five section cuts depicted by
the black lines. The left and the right wing show the
maximum positive and negative twists, respectively.

dimensional snapshots by varying the five twist pa-
rameters of the configuration in the parameter space
P = [−0.2, 0.2]× [−2, 2]× [−3, 3]× [−2, 2]× [−1, 1] ⊂
R

5, where the intervals from left to right correspond
to the twist sections from fuselage to tip. A total of 100
viscous flow solution snapshots have been computed
with the TAU RANS solver, whereby the normalized
density residual is reduced by six orders of magnitude
for each solution. Since a target lift coefficient of CL =
0.5 is aimed at, the angle of attack α varies during the
CFD simulation until the target lift is matched.

The sampling process including the computation
of the flow solutions and all further computations
were performed in parallel on the DLR C2A2S2E-2
cluster using one node endowed with 128 GB RAM
and two Intel R© Xeon R© E5-2695 v2 Processors (30M
Cache, 2.40 GHz, 12 Cores). Computing a full CFD
solution for this test case took 5393 iterations or 4214
CPU seconds on average.

Once the set of snapshots W = {W1, . . . , W100}
is obtained, with corresponding parameter set P =
{p1, . . . , p100} ⊂ P , the Isomap based ROMs pre-
dictions are computed at untried points p̃ ∈ P \ P.
Such points p̃ were chosen as the centers of the 10
simplices with the largest volume of the Delaunay tri-
angulation [53, 6] of P, so as to maximize their distance
from each p ∈ P. The error at a prediction point p ∈ P
is computed as:

err(Wref(p), W∗(p)) =
∑i∈IR

|Wref
i − W∗

i |

∑i∈IR
|Wref

i |
(1)

, where Wref(p) ∈ R
n and W∗(p) ∈ R

n are the refer-
ence solution and the ROM-based prediction at p ∈ P ,
respectively, and n the product of the number of grid
points and the number of variables, i. e. n = ngnv.

As will be shown, the results are accurate. Hence,
the Isomap based ROMs for aero-data can be exploited
for a multidisciplinary optimization within the whole
parameter space, saving the costs of computing full-
order CFD solutions.



4.3.1 Isomap with Interpolation

The interpolation based ROM makes only use of the
surface snapshots, hence Wi ∈ R

19,211. Since five
parameters are varied, the Isomap algorithm is ap-
plied to surface Cp-distribution vectors to compute a
5-dimensional embedding consisting of 100 represen-
tatives yi ∈ R

5. The neighborhood graph is built using
87 nearest neighbors, and the back-mapping employes
between 10 − 20 nearest neighbors.

For comparison purposes, a global POD of the 100
full-order surface Cp snapshots is performed, yield-
ing a basis consisting of 99 orthonormal POD eigen-
mode vectors4 of dimension 19,211. As before, the
POD model is combined with a TPS interpolation
scheme [21, 8]. Compared to Isomap+I, where a rep-
resentative y∗ ∈ R

5 of dimension five has to be in-
terpolated to obtain a surface Cp prediction, POD+I
employs TPS to interpolate the POD coefficient vector
a ∈ R

99 of much larger dimension.
Isomap+I and POD+I were built in 119 and 0.17

CPU seconds, respectively, including the data pro-
cessing, setting up the TPS model and, in the case
of Isomap, the computation of the proper number of
nearest neighbors [21]. Although there is a big dif-
ference between the building times of Isomap+I and
POD+I, compared to a full CFD calculation the offline
times (without the snapshot computations) are negli-
gible. The online prediction of a surface solution at an
untried parameter combination p̃ ∈ P \ P took less
than 0.01 CPU seconds for both ROMs, whereas a full
CFD solution took 4214 CPU seconds on average. In
other words, the predictions of both ROMs are more
than 400,000 times faster than a full CFD solution, but
certainly due to a trade-off of less accuracy.

The resulting surface Cp-distributions predicted by
Isomap+I and POD+I for various parameter combi-
nations are compared to the corresponding TAU ref-
erence solutions. The corresponding errors in terms
of equation (1) for the prediction points are given in
Table 3. The Isomap+I predictions feature a smaller
error than the POD+I predictions. An example of the
ROM aerodynamic loads predictions (in terms of sur-
face Cp-distribution) for an untried parameter combi-
nation (p̃8 of Table 3) is given in Fig. 16. The Isomap+I
prediction matches the surface Cp-distribution of the
TAU reference solution quiet accurately. The POD+I
prediction also yields accurate predictions, but the Cp-
distribution between the first two sections differs from
the reference solution.

Of course, due to the complexity of the test case,
where arbitrary twists at the five sections of the wing

4The mean of the snapshots is subtracted.

Table 3 Errors in terms of equation (1) between the
TAU reference surface Cp solutions and the surface
Cp predictions obtained by Isomap+I, Isomap+LSQ,
POD+I and POD+LSQ at various parameter combi-
nations. The column NN lists the number of nearest
neighbors employed by the Isomap based predictions
at each parameter combination p̃.

p̃ NN Isomap+I Isomap+LSQ POD+I POD+LSQ

1 11 8.5930·10−2 7.1702·10−2 9.4556·10−2 5.9426·10−2

2 16 8.7347·10−2 7.5275·10−2 1.1523·10−1 5.5323·10−2

3 14 7.7126·10−2 7.5143·10−2 9.4977·10−2 6.3302·10−2

4 10 1.0089·10−1 1.3703·10−1 1.3514·10−1 6.4285·10−2

5 20 6.4210·10−2 7.1029·10−2 7.7599·10−2 5.7465·10−2

6 10 7.0431·10−2 9.3372·10−2 7.7246·10−2 5.9561·10−2

7 14 6.7638·10−2 5.1527·10−2 9.1839·10−2 4.4243·10−2

8 10 4.3445·10−2 4.5011·10−2 8.9193·10−2 3.0280·10−2

9 13 5.6208·10−2 4.0005·10−2 7.4482·10−2 2.8970·10−2

10 10 6.3993·10−2 5.9396·10−2 8.7417·10−2 4.1372·10−2

are analysed, there could be cases where the ROM pre-
dictions are less accurate, so leading to bigger errors
(see e.g. the parameter combination p̃4 in Table 3).

The spanwise distributions of the partial force fz

and the partial moment my, have been calculated via
AeroForce [71], and are shown for the parameter com-
bination p̃8 in Fig. 17. As it can be seen, there is a good
match between the force and moment distributions of
the reference solution and those of the ROM predic-
tion.

4.3.2 Isomap with Residual Optimization

The interpolation-based Isomap and POD coefficients
can be then exploited as starting values for the resid-
ual based ROM [21]. To optimize the coefficients of
an Isomap or POD based prediction, the Levenberg-
Marquardt algorithm [48, 72] with additional Broy-
den’s rank one updates of the Jacobian is applied to
the unconstrained optimization problems [21].

All primitive variables plus the Cp-distribution are
taken into account, leading to a set of snapshots W ⊂
R

n, n = ng · nv = 6, 275, 072. Hence, Isomap+LSQ and
POD+LSQ are based on 100 snapshots of dimension
n = 6, 275, 072, increasing the building time of the
POD based ROM to 117 CPU seconds. The costs of
Isomap+LSQ (119 CPU seconds) remains unaffected of
the new data set, as only the surface Cp-distribution is
exploited to compute the embedding.

The residual has to be evaluated with proper bound-
ary conditions Ma and α, which are not specified by
the varied parameters. While the Mach number Ma is
fixed, the angle of attack α varies for each flow solu-
tions to ensure the specified target CL value. Here, the
angle of attack α is obtained from the corresponding
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Fig. 17 Spanwise distributions of the force fz and moment my at the p̃8 prediction point.

Fig. 16 Prediction of the surface Cp-distribution of the
generic transport aircraft by Isomap+I and POD+I at
an untried parameter combination p̃8 ∈ P \ P. The
four section cuts, ordered line by line from left to right,
correspond to the twist sections from fuselage to tip.

reference solution to exclude additional error sources
which would affect the accuracy of the Cp predictions.
After evaluating the TAU residual, the discrepancy in
the total energy values belonging to the 20% smallest
cells is exploited by the objective function to optimize
the coefficient vector a ∈ R

d, until the tolerance of
termination (tol = 1.49012 · 10−8) is reached.

The CFD enhanced predictions obtained by the
residual optimization have been computed for differ-
ent untried parameter combinations [21]. An exam-
ple of the ROM prediction, compared to the corre-
sponding TAU reference solutions, is shown in Fig. 18.
The spanwise distributions of the partial force fz and
the partial moment my are depicted in Fig. 19. After
conducting the residual optimization both ROM show
an improved prediction of the shock in the first two
section cuts. In the last two cuts, both methods fall
short on an accurate match of the Cp-distributions.
After conducting the residual optimization, it can be
seen (Table 3) that for both ROMs (Isomap+LSQ and
POD+LSQ) the corresponding errors in terms of equa-
tion (1) are reduced, and the spanwise distributions
depicted in Fig. 19 match now the reference distribu-
tions almost exactly.

Unlike the POD+LSQ, the application of the resid-
ual optimization to Isomap (Isomap+LSQ) increases
the error at few parameter combinations p̃ for this
set up. However, an improvement of the predictions
is observed in most cases. Comparing the CPU times
in Table 4, due to the less DoF the Isomap+LSQ pre-
dictions are up to 4 times faster than the POD+LSQ
predictions and, in average, 7.5 times faster than a full
CFD computation.

4.4 Reduced-Order Models for Aerodynamic Loads
and Structural Sizing

In the context of MDO a CFD solver is repeatedly
used to perform fluid/structure-coupled simulations.
Typically, the entire optimization process consists of



Fig. 18 Prediction of the surface Cp-distribution of the generic transport aircraft by Isomap+LSQ and POD+LSQ
at an untried parameter combination p̃7 ∈ P \ P. The four section cuts, ordered line by line from left to right,
correspond to the twist sections from fuselage to tip.

two nested loops: an inner loop, where different load
cases are computed to size the different optimization
regions of the structural model for a given aerody-
namic shape, and an outer loop where performance
data is computed and used to optimize the shape of the
wing or aircraft according to some objective function.
Since the computations of the full-order CFD solutions

are expensive and repeatedly required in both loops,
ROM may provide remedy. For the outer loop, the
steady aerodynamic ROM introduced in Section 4.3.1
and Section 4.3.2 can be exploited to compute the
necessary aerodynamic quantities for the optimization
of the geometry, since the variation of the geometry
is taken into account. The advantage of substituting
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Fig. 19 Spanwise distributions of the force fz and moment my at the p̃7 prediction point.

Table 4 Number of iterations and CPU times of
conducting Isomap+LSQ and POD+LSQ predictions
for the generic aircraft configuration test case. The
gained speed-up by performing Isomap+LSQ instead
of POD+LSQ is stated in the last column.

Isomap+LSQ POD+LSQ speed-up
p̃ iter CPU times (s) iter CPU times (s) factor

1 23 568.39 19 1,905.21 3.35
2 27 714.16 19 1,900.94 2.66
3 19 557.12 17 1,873.29 3.36
4 22 540.33 19 1,905.38 3.53
5 21 682.94 21 1,920.56 2.81
6 18 479.97 19 1,904.7 3.97
7 19 554.35 14 1,816.53 3.28
8 22 539.72 19 1,897.45 3.52
9 18 523.81 16 1,849.99 3.53

10 18 480.95 15 1,829.26 3.8

the CFD solver with a ROM is that the snapshots and
the ROM are computed offline before the optimization
takes place. This should lead to a speed-up of the ac-
tual optimization process or rather to a larger amount
of load cases that can be considered for the structural
sizing in the inner loop.

To demonstrate the idea it is assumed here that
the aircraft is rigid, i.e., there is no need to perform
fluid/structure-coupled simulations. This is true for
some very stiff models, e.g., for wind-tunnel models.
A rigid aircraft may also be assumed when computing
CFD-based corrections to a linear potential flow so-
lution in the context of loads computations (so-called
AIC corrections). Furthermore, the model does not in-
clude the engine5 so to simplify the demonstration of
the approach. Finally, a single (steady) load case is here
used to size the structural model. Hence, skipping the
inner loop, the ROM for the generic long-range trans-
port aircraft are exploited to predict the steady sur-

5A correct wing sizing procedure requires of course to in-
clude the engine and all the others non-structural masses (e.g.
fuel, payload, systems etc.).

face Cp-distributions for different geometries, which
afterwards are fed into the structural sizing process to
obtain the skin thickness of each optimization region.

For the reference aircraft test case, the structural
optimization regions are divided into upper skin re-
gions, lower skin regions, wing ribs regions and wing
spar regions. The skin thicknesses at the wing spar,
which is the main structural member of the wing,
are shown in Fig. 20 and Fig. 21 computed respec-
tively with the intepolation approaches (POD+I and
Isomap+I) and the least-squares approaches (POD+LSQ
and Isomap+LSQ) for the prediction points p̃3 and
p̃7. The three spars are divided in the optimization
regions from 234 to 287, 288 to 303 and 304 to 347. Since
there are three wing spars, the thickness distribution
plotted against the optimization region does not show
a decreasing behaviour as usual, but for each sepa-
rate spar it does. However, close to the optimization
region 320, there is an outlier which may be due to
the fact that the inner spar, with corresponding opti-
mization regions 288 to 303, ends and the loads are
distributed to the two remaining spars. As it can be
seen, Isomap and POD-based ROM provide good pre-
dictions of the thickness distributions at the wing spar
optimization regions. Particularly, the detailed views
emphasize that there is almost no mismatch between
the computed thicknesses of the predicted solutions
and the computed thicknesses of the corresponding
reference solutions. Thus, these ROM are suitable in
the context of MDO and should lead to a speed-up of
the optimization process as mentioned above.

5 Reduced Order Models of Aerodynamic Influence

Coefficients

In the context of the MDO process in the Digital-X
project, loads analysis plays a central role [41]. It is
responsible for determining the loads envelope of the
current design iteration and size the structure to com-
ply with structural limits on the so called “Dynamic
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Fig. 20 Thicknesses at the wing spar optimization regions for the predictions of Isomap+I (top) and POD+I
(bottom) at p3.

level” (ref. Fig. 1), before higher fidelity methods are
applied to make a detailed analysis of the intermediate
result.

5.1 Loads Analysis

Loads analysis on the dynamic level takes into account
a large amount of load cases in accordance with CS 25
requirements covering trim cases, dynamic maneuvers
and gust encounters across the flight envelope. To get
results in a reasonable amount of time, this automated
process has to be as fast as possible. To this end several
simplifications are applied during model integration,
the result of which is represented schematically in
Fig. 22.

The process starts out with a full Finite Element (FE)
structural model containing about 72000 DoF, which is
then condensed onto componentwise loads reference
axes (LRA) using a Guyan reduction, yielding 3000
DoF. Subsequent modal analysis reduces the struc-
tural DoF further to e.g. 40. The same Guyan trans-
formation is also used to condense the structural mass
distribution to the nodes on the loads reference axes.

Fuel and secondary masses are then attached to these
nodes to form a lumped mass model.

The aerodynamic model is based on the Prandtl-
Glauert potential flow equations. They may be used ei-
ther in their unsteady or in their steady Laplace form,
depending on the load case requirements. These linear
equations are discretized on a mean lifting surface
grid instead of the volumetric surface of the aircraft,
thereby dramatically reducing the number of elements
required to solve for the pressure distribution. For
unsteady cases, the discretization uses doublet ele-
ments to model the lifting effect of each panel, yielding
the Doublet Lattice Method (DLM). Steady flows are
discretized using horseshoe-shaped vortex elements,
yielding the Vortex Lattice Method (VLM). Solving
the problem for a grid with many elements, including
the interactions of elementary flows among the panel
control points, leads to the Aerodynamic Influence Co-
efficient (AIC) matrix. The AIC relates pressure differ-
ences of the panels to the downwash velocities at the
panel control points. VLM yields a real-valued AIC,
while DLM produces a complex-valued AIC matrix,
depending on the reduced frequency parameter k.
As both VLM and DLM use the same panel grid, they
may be combined to solve unsteady flow problems
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Fig. 21 Thicknesses at the wing spar optimization regions for the predictions of Isomap+LSQ (top) and POD+LSQ
(bottom) at p7.

with a steady component. DLM is solved in the fre-
quency domain, whereas VLM is directly applicable
to quasi-steady time domain problems. To obtain tran-
sient time domain solutions an inverse Laplace trans-
formation is applied to the frequency domain solution
via a Rational Function Approximation (RFA) [56, 32,
16, 54].

These submodels are then integrated by connecting
the structural LRA nodes to the aerodynamic panel
control point set using a splining scheme. This yields a
fast and iteration-free coupling between structure and
aerodynamic models.

The Prandtl-Glauert equations governing the aero-
dynamic part of the loads model may be traced back
from the Navier Stokes equations through a number
of simplifying assumptions, as summarized in Table 5.
To overcome the absence of non-linear flow phenom-

ena, several AIC correction methods have been devel-
oped. These reintroduce the effects at specific flight
conditions by comparing with corresponding higher
fidelity results. Giesing et al.[23] propose a diagonal
multiplicative technique, which was extended to a
full correction factor matrix by Jadic et al.[30]. Brink-
Spalink et al.[10] describe an additive AIC correction

Table 5 Some flow governing equations and corr. as-
sumptions which accumulate downward.

Assumption Equation effect neglected

continuum fluid mechanics Navier Stokes no molecular dynamics

inviscid Euler boundary layer, turbulence

irrotational, isentropic Full Potential no strong shocks

small disturbances transonic small disturb. (TSD) no blunt bodies

linearized Prandtl-Glauert no transonic effects

time-independent Laplace no unsteady effects

technique based on weighted least squares optimiza-
tion. In general, these methods may use either empir-
ical data or higher fidelity computational flow results
as a basis for correction.

Here, we present the combination of an additive
AIC correction method with the concept of the ROM
through proper orthogonal decomposition of the AIC
matrices, rather than the pressure distributions them-
selves. This has the advantage of retaining the in-
tegrated loads model and fast simulation capability
as described earlier, while also introducing the non-
linear effects of high fidelity CFD solutions. A rela-
tively small number of CFD solutions is used for the
correction of the linear low-fidelity model, and their
computation is mainly done about those parameters



(a) Internal loads submodels

(b) External loads submodels

Fig. 22 Schematic loads submodels for a generic 2-
engine passenger aircraft.

pertaining to major flow nonlinearities, e.g. transonic
Mach numbers and high angles of attack).
Moreover, by coupling the AIC-ROM to a multi-di-
mensional spline interpolation method, we can eval-
uate at any parameter combination within the domain
of correction and have a flow parameter-complete aerody-
namics model in a neighborhood around the correction
point due to the linear nature of VLM. The AIC matrix
relates local differential pressures to local downwash,
or equivalently, angle of attack. Every global flow pa-
rameter (except Mach) is translated to a contribution to
the downwash distribution on the lifting surface panel
grid. This means that we may correct for the principal
higher order flow phenomena associated with varying
Mach number and angle of attack and use the resulting
model with load cases which require non-zero rota-
tional rates, control surface deflections and bending
modes while still benefiting from the correction.

5.2 Surface Geometry Mapping

Since the source for correction of the VLM model in
this work are surface pressure distributions from CFD
solutions, the correction process must start with a ge-
ometric mapping from the CFD mesh onto the VLM
panel grid.
The objective is to have an equivalent VLM pressure
distribution which is accurate both globally and lo-
cally when comparing cross-sections.
There are significant geometry restrictions associated
with the VLM method. Specifically, VLM being a lift-
ing surface method, it discretizes the mean surface of
aerodynamic components producing a model without
internal volume. Also, individual panels are not al-
lowed to have incidence angles with respect to the
nominal oncoming flow direction (usually equivalent
to α = 0◦, β = 0◦). Instead, the VLM pressure distribu-
tion results from the circulation induced by linearized
small incidence angles.
These restrictions raise considerable geometric differ-
ences to overcome in the mapping process.

(a) CFD surface mesh.

(b) VLM panels grid with the various components indicated by
different colors. The fuselage is modeled using a vertical and
horizontal plane in a cruciform shape as the method is restricted
to planar components.

Fig. 23 CFD surface mesh and VLM grid for the generic
transport aircraft.



(a) Geometric overlay of the CFD mesh and the VLM panels.

(b) Perpendicular projection mapping of the horizontal fuselage
VLM panels (in blue) onto the CFD surface mesh (in green).

(c) Remaining area of the CFD mesh (in red), distributed to the
nearest VLM panels.

Fig. 24 Component-wise geometry mapping.

An overview of such process for a generic passen-
ger aircraft (Fig. 23) is described hereafter, and illus-
trated in Fig. 24. The global coordinate frames of both
geometries are related to one another through a roto-
translation operation, in order to optimize the geomet-
ric overlay match and facilitate the mapping between
the CFD surface grid (Fig. 23(a)) and the VLM panels
(Fig. 23(b)). A visual inspection may be necessary at
this point to uncover potential mismatches in e.g. com-
ponent planforms, dihedral, etc. as these may neces-
sitate correction of the VLM model geometry. It may
happen that some components are missing in the CFD
geometry. Such is the case in Fig. 24(a) with the engines
and winglets. As the mapping proceeds component-

wise, however, these components may simply be left
out at this point. Later these uncorrected components
will be recovered in the corrected model and still pro-
vide interaction effects with the corrected components.

Assuming a planar component such as a wing or
tail surface, there will be two opposing surfaces in the
CFD geometry to be mapped onto the single surface of
the component’s VLM representation. This means the
result will be a pressure difference ∆Cp. The method
proceeds by cutting the CFD geometry perpendicular
to each VLM panel. This includes cutting individual
faces and interpolating pressure values at the newly
created nodes as shown in Fig. 24(b).

The selected areas and their pressure values have
to be related to the load control point of the associ-
ated panel. First, force vectors are calculated for each
CFD element. These forces are then integrated onto the
panel load control point using a rigid splining scheme.

The three matrix operations may be combined to
yield a single mapping matrix, which may be concate-
nated for all panels in the component. Thus, the map-
ping process may be conveniently stored as a small
collection of mapping matrices corresponding to the
aircraft components included in the process.

In the case of planar components like wings and
tailplanes the above suffices. Instead tubelike compo-
nents, such as the fuselage in Fig. 24, may be roughly
accounted in the VLM method by modelling them
with two perpendicular planes6. In this case the map-
ping process needs a refinement: the CFD loads are
decomposed vector-wise and the y- and z-components
are projected onto the perpendicular planes. The x-
component is distributed using the ratio of distances to
both planes. This decomposition conserves integrated
loads as well as the spanwise distributions.

5.3 AIC correction

At its core, the application of the VLM method in-
volves solving the pressure difference as

∆Cpj
= QjjDjxUx, (2)

6While such representation of the fuselage represents a large
simplification, the results concerning the lift gradients due to
the angle of attack (α) and sideslip (β) along the fuselage axis
are fairly accurate. The offsets at zero angle of attack of course
need to be corrected. Also the effect of the flow acceleration
around the volumetric body due to the displacement and its
influence on the pressure distribution is not accounted for by
the simple cruciform shaped fuselage modelling. Such simplifi-
cation is however adequate for the loads estimation within the
preliminary aircraft design context. A less strong simplification
could rely on the use of the general slender body theory.



where Qjj ∈ R
n×n is the AIC matrix for an n-panel

grid, Djx ∈ R
n×k is the downwash matrix and Ux ∈ R

k×1

is the flight state parameter vector, e.g. containing free-
stream flow angles, rotational rates, control surface
deflections and modal coordinates of bending modes.

In order to correct the VLM model, the AIC matrix
has to be adapted to the mapped CFD loads distribu-
tion. However, as Qjj is responsible for the gradient
of the pressure distribution, changing it will generally
also result in a non-zero pressure offset vector Cp0 ∈ R

n.

To solve the AIC matrix correction, the VLM gradi-
ent (denoted by (v))

G
(v)
jx := Q

(v)
jj Djx (3)

may be equated to the CFD gradient G
(c)
jx (denoted

by (c)) and solved for the corrected AIC matrix Q∗
jj

through Kronecker product vectorization:

vec G
(c)
jx =

(

DT
jx ⊗ In

)

vec Q∗
jj, (4)

where In is the n-dimensional identity matrix.
This under-determined problem has a nonempty set
of solutions provided that DT

jx ⊗ In has full rank. One

particular solution is the least norm solution, minimiz-
ing ‖ vec Q∗

jj‖ using a pseudo inverse [51] (denoted

as (·)†).

However, since the VLM AIC Q
(v)
jj provides a base-

line solution, a more physically meaningful approach
would be to minimize the norm of the difference ∆Qjj =

Q
(v)
jj − Q∗

jj as it minimizes the changes applied to Q
(v)
jj .

This may be achieved as follows:

∆Gjx = ∆QjjDjx ⇒ (5)

vec ∆Gjx =
(

DT
jx ⊗ In

)

vec ∆Qjj ⇒

vec ∆Qjj =
(

DT
jx ⊗ In

)†
vec ∆Gjx (6)

Q∗
jj = Q

(v)
jj − ∆Qjj

For problems with 1000s of panels (n > 1000), solving
Eq. (6) directly becomes inefficient even with sparse
data types. However, Eq. (6) lends itself well to a
row-wise computation which alleviates a computer’s
memory capacity problems and enables the solving of
arbitrarily large problems. Furthermore, breaking the
problem up into pieces consisting of a number of rows
allows for speed optimization.

After the desired Q∗
jj has been solved for, the pres-

sure offset vector may be found by taking the surface

pressure vector from CFD C
(c)
p and solving

Cp0 = C
(c)
p − Q∗

jjDjxUx (7)

To determine the CFD gradient, we use a simple for-
ward difference quotient to limit the number of re-
quired CFD solutions:

G
(c)
jxi

=
∂Cp (Ux)

∂Uxi

≈
Cp (Uxi

+ hi)− Cp (Uxi
)

hi
,

where the subscript i denotes the global flow parame-

ter in Ux and G
(c)
jxi

is the corresponding column of the

gradient matrix G
(c)
jx . The AIC matrix may be corrected

with respect to a subset of Ux by including only the
corresponding columns of the downwash matrix Djx

in Eq. (5).

5.4 POD Interpolation

The first step is to build the snapshot matrix Y for
both the ensemble of AICs and offsets. This is done
by concatenating the vectorized AIC matrices on the
one hand and concatenating the pressure offset vectors
directly on the other hand.

The resulting POD for either case may be written
compactly as YTYV = VΛ, where V = [v1, . . . vl ] is
an n × l matrix composed of eigenvectors and Λ =
diag (λ1, . . . , λl) is an l × l diagonal matrix with the
corresponding eigenvalues.

To facilitate interpolation, the POD is formulated as
the product of two quantities: Φ = Y · V ∈ R

m×l and
H = VT ∈ R

l×n such that, if l is chosen equal to d, we
obtain Y = Φ · H and for a smaller number of retained
eigenvectors Φ · H approximates Y optimally given
the choice of l. The columns of H = [η1, . . . ηn] may be
interpreted as the modal coordinates of the POD. Each
ηi for i = 1, . . . , n corresponds to a corrected flight state
with parameter vector xi ∈ X.

A multivariate interpolation method may now be
used to map H onto X giving η as a function of any de-
sired flight condition x∗. The Thin Plate Spline (TPS),
a form of Radial Basis Function (RBF) spline, is here
used. It is well-behaved and has only one free param-
eter. Beckert and Wendland [8] describe the TPS and a
number of alternatives in a fluid dynamics context.

Finally, to obtain the corrected AIC matrix and
pressure offset at x∗, we apply the results from the



interpolation method η (x∗) to the POD data matrix Φ:

y (x∗) ≈ Φ · η (x∗) →

vec Qjj (x
∗) ≈ ΦQjj

· ηQjj
(x∗)

Cp0 (x
∗) ≈ ΦCp0

· ηCp0
(x∗)

5.5 Results

The AIC-ROM has been implemented to work with
VarLoads [28], a Loads Analysis tool developed jointly
by DLR and Airbus. The angle of attack and the Mach
number can vary greatly during a maneuver. Figure 25
illustrates the presented AIC-ROM method applied to
correct the aerodynamic load distribution on a generic
long-range tranport aircraft fliyng at Mach numbers
0.77 < Ma < 0.83, angle of attack 0 < α < 8 de-
grees, and sideslip angle −2 < β < 2 degrees. Within
such range of the parameters the linearity acceptance
is no longer valid. The VLM model therefore has been
corrected using a relatively small number of stationary
CFD solutions computed for the rigid aircraft model,
at different flight points (M, α, β) combinations uni-
formly distributed in the parameter space, as showed
in subfigure (a). Due to the aircraft symmetry, only the
flight conditions with non negative values of sideslip
angle β have been analysed with the CFD (the blue
circles in subfigure (a)), being the negative sideslip just
with a specular pressure distribution.

The corrected models are then assembled into a
snapshot matrix to which a POD is applied. Then, the
modal coordinates are quickly evaluated by interpo-
lation along a given maneuver having the trajectory
(i.e. the set of flight states represented by the green
line in subfigure (a)) lying within the parameter space
spanned by the CFD training set. The corrected AIC-
ROM model is compared to the reference CFD-based
ROM solution for a wing/fuselage/tail configuration,
i.e. missing of the engines. The resulting spanwise
normal force CZ and moment CM distributions are
shown in (c) & (d), respectively. It can be seen that the
AIC-ROM correction procedure is able to succesfully
combine the benefits of the VLM model and those of
the nonlinear high-fidelity CFD models, by including
the engines effects of the former and the fuselage ef-
fects of the latter. Furthermore, besides the addition
of neglected components, the AIC-ROM allows then
to account for flexible deformation of the aircraft and
rotational rates in a straight forward manner. A more
detailed description of the AIC-ROM method with ad-
ditional results may be found in [70].

6 Summary

The effectiveness of parametric CFD-based, linear and
nonlinear, reduced order models have been demon-
strated in the context of an MDO process.

Static aeroelastic loads of a generic long-range trans-
port aircraft are predicted at different flight conditions
with a a good level of accuracy for aircraft design
purposes, and a great speed-up compared to a high-
fidelity full-order fluid/structure coupled simulation.
The accuracy and low computational cost of the ROM
loads prediction allows an improved selection of the
critical loads, by rapidly spanning the flight envelope
parameter space. This provides additional critical load
cases which would otherwise not be found by the
high-fidelity only approach. The ROM-predicted aero-
dynamic loads are then shown to be accurate enough
to be used for structural sizing, leading to results com-
parable to high-fidelity methods, but with a great re-
duction of the computational time.

The AIC-ROM method has been introduced. Its
role in “dynamic level” loads analysis and sizing pro-
cess is to provide improved aerodynamic fidelity by
reintroducing complex flow phenomena which are ab-
sent in the fast potential flow methods used in this
process. We have shown its ability to replicate flow
states for roll rates when this parameter is absent in
the snapshot dataset. This is due to the AIC-ROM’s
inherent parameter-completeness.
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