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A reduced-order nonlinear unsteady aerodynamic modeling approach suitable for analyzing pitching/plunging

airfoils subject to fixed or time-varying freestream Mach numbers is described. The reduced-order model uses

kriging surrogates to account for flow nonlinearities and recurrence solutions to account for time-history effects

associated with unsteadiness. The resulting surrogate-based recurrence framework generates time-domain

predictions of unsteady lift, moment, and drag that accurately approximate computational fluid dynamics solutions,

but at a fraction of the computational cost. Results corresponding to transonic conditions demonstrate that the

surrogate-based recurrence framework can mimic computational fluid dynamics predictions of unsteady

aerodynamic responses when flow nonlinearities are present. For an unsteady aerodynamic modeling problem

considered in this study, an accurate reduced-order model was generated by the surrogate-based recurrence

framework approach with significantly fewer computational fluid dynamics evaluations compared to results

reported in the literature for a similar problem in which a proper-orthogonal-decomposition-based approach was

applied. Furthermore, the results show that the surrogate-based approach can accurately model time-varying

freestream Mach number effects and is therefore applicable to rotary-wing applications in addition to fixed-wing

applications.

Nomenclature

a = speed of sound
b = airfoil semichord
Cl, Cm, Cd = airfoil lift, moment, and drag coefficients

E�j� = error for the jth test case
F = matrix of basis functions associated with assumed

polynomials in kriging
fx = vector of basis functions associated with assumed

polynomials in kriging
Gq, Gy = state transition function and state-to-output

mapping function
h = airfoil plunge degree of freedom
�h = oscillatory plunge amplitude
kh = reduced plunge frequency
kM = reduced frequency of time-varying Mach number
k� = reduced pitch frequency
L = likelihood function used in kriging interpolation
M = freestream Mach number
�M = time-varying Mach number amplitude
M0 = mean value of time-varying Mach number
m, n = number of previous time steps required to account

for time-history effects [see Eq. (4)]
Nbasis = number of basis functions associated with

assumed polynomials in kriging
Nsp = number of sample points
NT = number of training cases
Nt = total number of time steps for a test case
Nx = number of input variables
pk = fitting parameters in kriging

q = dynamical system state vector
R = rotor radius
Rkrg = spatial correlation matrix used in kriging
Rkrg��� = spatial correlation function in kriging
r = nondimensional rotor blade radial location
rkrg�x� = spatial correlation vector in kriging
u = vector of external inputs
V0 = mean value of freestream velocity
y = output of interest
ŷ = surrogate approximation of output of interest
y
�j�
max, y

�j�
min = maximum and minimum values of the exact

response for the jth test case
Z�x� = stochastic process in kriging
� = airfoil pitch angle
�� = oscillatory pitch amplitude
� = advance ratio
� = nonlinear mapping function
�̂ = surrogate mapping function
�̂qs = quasi-steady mapping function used for

surrogate-based recurrence framework
initialization

� = rotational speed of the rotor
!h = oscillatory plunge frequency
!M = oscillatory frequency of time-varying Mach

number
!� = oscillatory pitch frequency

I. Introduction

U NSTEADY aerodynamic models are critical components in
computational aeroelastic response and stability analyses. In

addition to the time-history effects associated with unsteadiness,
many computational aeroelasticity applications also involve strongly
nonlinear aerodynamic phenomena, such as effects associated with
transonic flow, hypersonic flow, and dynamic stall. Furthermore,
unsteady aerodynamic modeling is complicated further for rotary-
wing applications due to the effects of time-varying freestreamMach
numbers in forward flight [1].

Currently, computational fluid dynamics (CFD) solutions repre-
sent the state of the art inmodeling nonlinear flow physics. However,
due to the excessive computational cost, high-fidelity CFD simu-
lations are not suitable for a variety of applications, such as routine
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coupled trim/aeroelastic response solutions, design optimization,
and/or closed-loop control studies. Therefore, computationally
efficient approximate aerodynamicmodels are typically employed in
such studies. Representative examples of the approximate models
employed in rotary-wing applications are the rational function ap-
proximation (RFA) approach [2] and the indicial function approach
[3]. Although such models require a fraction of the computational
expense associated with CFD, they are based on various simplifying
assumptions pertaining to the flow physics. For example, the RFA
and indicial function models are based on linear aerodynamic
assumptions, and therefore both models cannot accurately capture
nonlinear flow phenomena associated with transonic flow and/or
dynamic stall.

In addition to developing computationally efficient aerodynamic
models based on simplifying assumptions, reduced-order modeling
approaches that seek to approximate CFD results by extracting
information from a limited number of full-order simulations have
been proposed. Examples of such approaches include proper orthog-
onal decomposition (POD) [4–7], Volterra series [4,8], and
surrogate-based approaches [9–13]. A major advantage of reduced-
order modeling of full-order CFD compared to approaches based on
simplifying assumptions is that the reduced-order models can be
easily upgraded as the CFD solvers from which they are generated
continue to improve. However, the reduced-order models described
in previous studies have certain shortcomings when attempting to
model the rotary-wing aerodynamic environment. Specifically, the
effectiveness of current reduced-order modeling approaches for
producing an accurate-time-domain, fully unsteady model that
accounts for simultaneous pitch/plunge airfoil motions and time-
varying freestreamMach numbers has not been considered. Further-
more, rotor blade dynamics involve large unsteady oscillations of the
airfoil motion and freestream Mach number, as opposed to many
fixed-wing aeroelasticity applications in which reduced-order aero-
dynamic models only need to account for small amplitude dynamics
associated with perturbations about a linearized steady state. The
lack of nonlinear reduced-order aerodynamic modeling approaches
suitable for rotary-wing aeroelasticity has been noted in previous
studies [14,15].

The overall objective of this study is to develop a CFD-based
reduced-order nonlinear aerodynamicmodel suitable for rotary-wing
analyses. It is important to note that while the complex rotary-wing
aerodynamic environment motivated the development of the model
described in this paper, the approach is general and can be used in a
variety of applications involving unsteady aerodynamics. The
specific objectives of this paper are listed below.

1) Develop a two-dimensional (2-D) reduced-order aerodynamic
modeling approach based on surrogate modeling [16–18] that
accurately approximates CFD predictions corresponding to arbitrary
airfoil motions.

2) Demonstrate the effectiveness of the surrogate-based frame-
work by showing that such a methodology enables unsteady
sectional load (lift, moment, and drag) predictions, for fixed or time-
varying Mach numbers, that maintain the fidelity of full-order CFD
solutions under nonlinear transonicflow conditions, while exhibiting
the computational efficiency of approximate linear models.

II. Surrogate-Based Reduced-Order Model

Surrogates refer to computationally efficient approximations of
expensive functions that are constructed by interpolating fitting data
in the form of input/output combinations generated from a limited
number of full-order computations [16–18]. Once constructed, a
surrogate is used in place of the expensive full-order analysis in order
to predict at inputs that were not included in the initial set of fitting
points. Typical surrogate prediction times are on the order of a
fraction of a second, and therefore surrogates are ideal for reduced-
order modeling. Although generating the fitting data may require
significant computational resources, this initial cost is generally
much less than computing repeated solutions from the expensive full-
order analysis. Therefore, surrogate-based approaches are appro-
priate for applications that entail numerous full-order analysis

evaluations that would otherwise be unaffordable. A variety of
computational aeroelasticity and design optimization applications
involving CFD fall under this category.

In this study, CFD solutions for unsteady lift, moment, and drag
due to an arbitrary airfoil motion represent the full-order analysis that
is to be replaced by surrogates. Themethodologies for generating and
using the surrogates for time-domain predictions are described next.

A. Dynamical System Representation of the Input/Output
Relationship

The input/output relationship that is to be approximated by a
surrogate model can be identified by formulating unsteady aerody-
namic responses as dynamical systems: i.e., systems in which the
output at any time t is not only a function of the instantaneous input at
t, but is also a function of the input time history. A general repre-
sentation of a nonlinear time-invariant discrete time dynamical
system is given by [19–22]

q �t� �Gq�q�t ��t�;u�t��t��; y�t� �Gy�q�t�� (1)

where q is a vector containing the system states, u is the vector of
external inputs to the system,Gq is the one-step-ahead state transition
function, y�t� is the output of interest at some instant in time t, andGy

is a function that maps the system states to the output.
In the context of unsteady aerodynamic modeling, the nonlinear

system of equations described by Eq. (1) represents the discretized
Navier–Stokes equations associated with CFD solvers. The state
vectorq consists of the flow states associated with theNavier–Stokes
equations (i.e., density, velocity components, and energy) at each
grid point in the spatially discretized computational domain. There-
fore, the size of the state vector is proportional to the number of grid
points and represents the order of the full-order model. Furthermore,

y�t� � Cl�t�; Cm�t�; or Cd�t� (2)

where Cl�t�, Cm�t�, and Cd�t� are the unsteady airfoil lift, moment,
and drag coefficients, respectively. The relevant external inputs are

u �t� � ��t� _��t� ���t� _h�t� �h�t� M�t� _M�t�
� �

(3)

As shown in Fig. 1, ��t�, h�t�, and M�t� are the instantaneous pitch
angle, plunge displacement, and freestream Mach number, respec-

tively. Time derivatives are denoted by _�� � @� �=@t and ��� �
@2� �=@t2. The inputs in Eq. (3) were selected because it is known
from linear aerodynamic theories that unsteady lift and moment are

functions of these quantities [23], including _M when modeling time-
varying Mach numbers [3] (which is a requirement for rotary-wing
applications).

Equation (1) represents the computationally expensive full-order
system that we seek to replace with a surrogate-based reduced-order
model. To generate a computationally efficient approximation of y�t�
using surrogate modeling, the dynamical system of interest must be
replaced by an equivalent input/output functional relationship such
that y�t� corresponding to any input time history can be obtained

θ(t)

M(t)

M(t)

h(t)

Pitch

Plunge

Fig. 1 Airfoil pitch and plunge degrees of freedom with time-varying

freestream Mach number.
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without solving the nonlinear system of equations described by
Eq. (1). It has been shown in [19–21] that when q is composed of a
finite number of states, the input/output relationship given by Eq. (4)
is equivalent to the nonlinear system described by Eq. (1):

y�t� ���u�t�;u�t��t�; . . . ;u�t�m�t�; y�t ��t�; . . . ;

y�t � n�t�� (4)

In Eq. (4),� is a function–possibly nonlinear–that maps the inputs to
the output, and m and n are integers representing the number of
previous external inputs and outputs required to account for time-
history effects. Selection of m and n is discussed in Sec. IV.
Equation (4) is commonly referred to as a NARMAX (nonlinear
autoregressive moving average with exogeneous inputs) model
[19,21,22,24,25].

It is important to note that the derivations described in [19,20]
guarantee the validity of Eq. (4) only in the vicinity of an equilibrium
state. An equilibrium state q0 is a state in which the system is at rest
for an input sequence that has a constant valueu0; i.e., y�t� is constant
for all twhenq� q0 andu�t� � u0. Therefore, according to [19,20],
Eq. (4) is only guaranteed to be valid in the vicinity ofu0. However, it
was shown in [21] that Eq. (4) can also be used to describe a globally
valid input/output relationship, and thus Eq. (4) is not restricted to
modeling systems for u�t� close to u0. The globally valid model
described in [21] is characterized by increased values of m and n
required to capture time-history effects compared to the locally valid
model described in [19,20].

B. Approximation of the Nonlinear Mapping Function

Although Eq. (4) provides a qualitative representation of the input/
output relationship associated with a nonlinear dynamical system, it
is of little practical use for modeling unsteady aerodynamic
responses, because a closed-form expression for � is not available.
However,� can be numerically evaluated, or sampled, by employing
CFD as a black-box function that calculates lift, moment, and drag
for a given airfoil motion time history. A surrogate mapping function

�̂ can then be constructed by interpolating the sample data. Once
constructed, the computationally efficient surrogate can be used to
replace the full-order function �. When modeling dynamical
systems, the process of approximating the unknown function � is
also referred to as system identification [22]. The steps for generating
the surrogate mapping function are summarized below, and
additional details for each step are provided in the following
subsections.

1) Use design of experiment (DOE) methods [17,26] to select a
limited number of training cases at which to conduct CFD
simulations. Each training case consists of an airfoil undergoing
simultaneous pitch/plunge oscillations, with either a fixed freestream
Mach number, or time-varyingMach numbers if the surrogate is to be
used for rotary-wing applications.

2) Generate aerodynamic response data for each training case
using CFD, and then extract time-domain sample data of the form
dictated by Eq. (4) from the results. Each training case can be
computed simultaneously using multiple processors. Therefore, the
time required to generate the initial fitting data can be decreased
significantly through the use of parallel computation.

3) Construct a surrogate mapping function �̂ from the sampled
data by employing kriging interpolation [27,28], which is a method
well suited for approximating nonlinear functions.

1. Selection of the Training Cases (DOE)

To generate the input/output combinations required for inter-
polation, the unsteady aerodynamic responses corresponding to a
limited number of training cases are obtained fromCFD simulations.
The training cases should be representative of the application for
which the surrogate will be used. For instance, the training motions
considered in this study correspond to simultaneous pitch/plunge
oscillations with fixed or time-varying freestream Mach numbers,
since these cases are representative of those encountered in rotary-

wing aeroelasticity. The airfoil oscillations and time-varying Mach
numbers used for training are defined by Eqs. (5–7):

��t� � �� cos�!�t� (5)

h�t� � �h cos�!ht� (6)

M�t� �M0 � �M sin�!Mt� (7)

Equation (7) is representative of the time-varying freestreamMach
numbers associated with a helicopter rotor blade during forward
flight, in which the oscillatory frequency !M corresponds to one
period per revolution of the blade (i.e., 1=rev) [1]. For a typical rotor
blade depicted in Fig. 2, with rotational velocity� and radius R, the
Mach number at the blade tip in hover (i.e., zero forward flight
velocity) is given by

M�R �
�R

a
(8)

The mean value and oscillatory amplitude in Eq. (7) are

M0 � rM�R (9)

and

�M � �M�R (10)

where � is referred to as the advance ratio and is defined as the
component of the forward flight velocity parallel to the hub plane of
the rotor normalized by �R.

The oscillatory frequencies in Eqs. (5–7) are given by

!� �
k�V0

b
; !h �

khV0

b
; !M �

kMV0

b
(11)

where

V0 � aM0 (12)

Furthermore,

!M �� (13)

which gives

kM �
�b

aM0

�
�b

arM�R

�
b

Rr
(14)

Note that the unsteady aerodynamic loading is typically only
modeled for r > 0:15 in helicopter applications, since the loads near
the hub are relatively insignificant and their effects on the aeroelastic
response of the blade can be neglected. Therefore, for givenvalues of
the nondimensional airfoil semichordb=R andM�R, a single training
case given by Eqs. (5–7) is defined by six independent parameters:

� ��; k�; �h; kh; r; ��.
DOE methods [16,17] are used to select NT initial training cases

forwhich to conduct CFDsimulations. Each training case in theDOE
consists of different combinations of the six independent parameters.
In general, the number of training cases required to accurately
identify a system will increase as the number of external inputs
increases. For strongly nonlinear systems, additional external inputs
can result in significant increases in the number of required training

R

rR

Ω

Fig. 2 Typical rotor blade configuration.
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cases (i.e., the curse of dimensionality). So, as with any reduced-
order modeling method, the cost associated with the initial training
cases may be prohibitive for applications involving numerous
structural degrees of freedom. However, modal decomposition
techniques can be useful for modeling structures with a tractable
number of degrees of freedom.

When the initial data set is produced by a deterministic computer
code, as opposed to a physical experiment or stochastic analysis, a
given input will always yield the same output, because there is no
measurement error or other random sources of noise. Under these
conditions, the DOE need only be space-filling [26,29] so that all
regions of the input parameter space are sampled. A commonly used
space-filling design is Latin hypercube sampling (LHS) [30]. In
LHS, each input parameter is partitioned into NT equally spaced
sections. Each input parameter is sampled once in each section,
resulting in a column vector containing NT different values of the
input parameter. The column vectors for each input parameter are
arranged side by side into a matrix and the components of the vectors
are then randomly reordered. The resultingmatrix is known as aLatin
hypercube. Since there are six independent parameters in this study,
each hypercube is aNT � 6matrix, in which each row corresponds to
a different training case defined by the six input parameters. A major
disadvantage of LHS is that training cases can cluster together due to
the random combination of input parameters associated with each
row of the Latin hypercube. To prevent this, optimal Latin hypercube
(OLH) sampling is used in this study to ensure a more uniform (or
space-filling) design of experiment. Optimal Latin hypercube sam-
pling creates a more uniform design than conventional LHS by
maximizing a spreading criteria, rather than randomly combining
input parameters. Figure 3 illustrates the difference between a con-
ventional Latin hypercube and an optimal Latin hypercube for a two-
dimensional parameter space. In this study, the OLH algorithm from
the iSIGHT software package was used [31–33].

2. Extract Time-Domain Sample Data

For each training case, CFD is used to obtain time-domain
aerodynamic response data from t0 to tf, in increments of �t. The
sampled outputs and the corresponding inputs required to construct

the surrogate mapping function �̂ are obtained from the CFD results.
In this study, sample data from each training case is obtained for one
period corresponding to the lowest-frequency component: i.e.,

tf � t0 �
2�

min	!�; !h; !M

(15)

From Eq. (4), the vector of inputs corresponding to a sampled
output y is given by

x�t�� 	uj�t� uj�t��t� � � �uj�t�m�t� yj�t��t� � � �yj�t�n�t 


for j� 1;2; . . . ;NT (16)

where yj and uj correspond to the jth training case and are given by
Eqs. (2) and (3), and x is a vector of sizeNx � 7�m� 1� � n, where
the factor of 7 is due to the size of the external input vector given by
Eq. (3).

For every training case in the OLH, fitting data of the form �x; y� is
available at discrete time instants t, for �t0 �max	m; n
�t� � t � tf.
At time t of the jth training case, uj�t� and uj�t ��t�; . . . ;uj�t �
m�t� are known from the prescribed motions defined by Eqs. (5–7),
and the responses yj�t� and yj�t��t�; . . . ; yj�t � n�t� are obtained
from the CFD results. The sample data obtained from each of theNT

training cases are combined into a single data set consisting of Nsp

total sample points: i.e., �x�i�; y�i�� for i� 1; 2; . . . ; Nsp. Note that
generating the sample data can be expedited by using parallel
computation, since multiple training cases in the OLH can be simu-
lated simultaneously.

3. Construct Surrogate Mapping Function (Kriging Interpolation)

The next step in constructing the reduced-order aerodynamic
model is to approximate the nonlinear mapping function by
interpolating the sampled data. The resulting surrogate mapping

function �̂ is used in place of the exact function in order to generate
approximate predictions of the unsteady airloads for arbitrary inputs.
To be useful for modeling nonlinear flow effects, the interpolation
methodmust bewell suited to approximating nonlinear functions and
should not require a priori assumptions on the form of the function
that is to be approximated. Kriging interpolation [27,28] satisfies
these conditions and is therefore used to generate the surrogate
mapping functions in this study.

In kriging, the unknown function of interest, ��x�, is assumed to
be a random variable of the form

��x� � f�x� � Z�x� (17)

where f�x� is an assumed function (usually a low-order polynomial)
and Z�x� is a stochastic (random) process that is assumed to be
Gaussian with zero mean and variance �2

var. The regression model
f�x� can be thought of as a globally valid trend function, while Z�x�
accounts for local deviations from f�x� that ensure that the kriging
model interpolates the sample points exactly. The local deviations
dictated by the sample points enable the kriging predictor to
approximate nonlinear behavior regardless of the exact function’s
form. Note that although ��x� is deterministic rather than the
stochastic process assumed in Eq. (17), kriging interpolation is still
applicable. The assumption that ��x� is a random process is made
because the deviation from the regression model can resemble a
realization of a stochastic process [27].

The covariancematrix ofZ�x�, which is ameasure of how strongly
correlated two points are, is given by

Cov 	Z�x�i��; Z�x�j��
 � �2
varRkrg (18)

where each element of the Nsp � Nsp correlation matrix Rkrg is
given by

�Rkrg�ij � Rkrg�x
�i�;x�j�� (19)

and Rkrg is a user defined spatial correlation function (SCF). In this
study,

Fig. 3 Conventional Latin hypercube vs optimal Latin hypercube in two-dimensional parameter space.
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Rkrg�x
�i�;x�j�� �

Y

Nx

k�1

max	0; 1 � pkjx
�i�
k � x

�j�
k j
 (20)

where x
�i�
k is the kth component of the ith sample input given by

Eq. (16). This SCF was selected because the resulting correlation
matrices were not ill-conditioned, which is an issue that may arise

with kriging [28]. As two points move closer to each other, jx
�i�
k �

x
�j�
k j ! 0, and Eq. (20) approaches unity, which is the maximum
value of the SCF. Therefore, the SCF recovers the intuitive property
that the closer two points are to each other, the greater the correlation
between the points.

The fitting parameters pk are unknown correlation parameters that
need to be determined. To determine these parameters, the form of
f�x� needs to be chosen. In this study, f�x� is assumed to be a
second-order polynomial given by

f�x� � fT
x� (21)

where fT
x is a 1 � Nbasis vector,Nbasis is the number of basis functions

associated with the second-order polynomial, and � is a Nbasis � 1
vector of coefficients. Similarly, F�x� can be defined as an Nsp �
Nbasis matrix, where the ith row corresponds to the evaluation of the
Nbasis functions at the i sample point.

To find pk, the generalized least-squares estimates of � and �2
var,

denoted by �̂ and �̂2
var, respectively, are employed [27,28]:

�̂� �FT�Rkrg�
�1F��1FT�Rkrg�

�1y (22)

and

�̂ 2
var �

�y � F�̂�T�Rkrg�
�1�y � F�̂�

Nsp

(23)

where y is a Nsp � 1 vector of observed function outputs at the
sampled inputs.

With �̂2
var and �̂ known, pk are found such that a likelihood

function is maximized [28,34]. The likelihood function, given in
Eq. (24), represents the probability that the stochastic process ��x�
produced the sampled data points in y. Since the stochastic process
associated with kriging has been assumed to be Gaussian, one seeks
the set pk that maximizes the probability that the sample points have
been drawn from a Gaussian process:

L�y; pk� � �
Nsp ln ��̂

2
var� � ln jRkrgj

2
(24)

The maximum likelihood estimates of pk represent the fitting
parameters that are most consistent with the sampled data. Any
values of pk would result in a surrogate that interpolates the sample
points exactly, but the “best” kriging surrogate is found by
maximizing the likelihood function.

With all parameters known, the kriging approximation of a
function ��x� is given by [27]

�̂�x� � fT
x �̂� rTkrg�x��Rkrg�

�1�y � F�̂� (25)

where

r krg�x� � 	Rkrg�x;x
�1��; Rkrg�x;x

�2��; . . . ; Rkrg�x;x
�Nsp��
T (26)

The column vector rkrg�x� of length Nsp is the correlation vector
between an arbitrary prediction point x and the sampled inputs,
x�1�; . . . ;x�Nsp�. The kriging predictor given by Eq. (25) represents
the optimal predictor in the sense that, among all admissible
predictors, Eq. (25) results in the minimum mean square error with
respect to the assumed stochastic process ��x� [27]. Note that
although the kriging predictor is derived as an approximation to a
stochastic process, Eq. (25) is a deterministic function. Therefore,
kriging has been used extensively in approximating deterministic
computer models [28]. The kriging surrogates were created with a
freely available MATLAB toolbox [35].

It is worth noting that several design of experiment (DOE) and
nonlinear interpolation methods have been implemented in popular
engineering software packages such as MATLAB. For example, a
kriging surrogate for the mapping function could be generated with
MATLAB by first using the lhsdesign function in order to
produce an optimal Latin hypercube for the DOE. A CFD solver
would then be used to obtain the time-domain aerodynamic response
data corresponding to the cases in the Latin hypercube. Finally, the
full-order input/output data would be provided as inputs to the
MATLAB kriging toolbox (see [35]), which would automatically
generate the surrogate. Furthermore, users are not limited to kriging
surrogates based on optimal Latin hypercubes, since alternativeDOE
methods are available in the MATLAB Statistics Toolbox, and
additional nonlinear interpolation methods can be found in the
System Identification andNeural Network Toolboxes. Therefore, the
reduced-order modeling approach described in this paper can be
setup with relatively little difficulty, since well-documented DOE
and nonlinear interpolation tools are widely available.

C. Time-Domain Predictions Using a Surrogate-Based
Recurrence Framework

The surrogate mapping function can be used for discrete time-
domain predictions when provided with arbitrary instances of the
input vector x�t� given by Eq. (16). However, n components of x
correspond to previous values of the unsteady aerodynamic
response, which will not be known for arbitrary inputs. Only the
surrogate’s approximation of the previous responses will be avail-
able. Therefore, an approximate input vector x̂ consisting of the
surrogate’s predictions of the previous responses must be used in
order to obtain predictions at an arbitrary input. The approximate
input vector is

x̂�t�� 	u�t� u�t��t� � � �u�t�m�t� ŷ�t��t� � � � ŷ�t� n�t� 


(27)

where the approximate previous responses ŷ are obtained from the
surrogate’s predictions at previous time steps. The development of
the reduced-order aerodynamic model is completed by using the
surrogate mapping function within the recurrence framework
depicted in Fig. 4. The term recurrence refers to the property that the

approximate solutions, ŷ, are fed back and used as inputs to �̂ for the
prediction at the current time. Therefore, the approximate aerody-
namic responses obtained from the surrogate-based recurrence
framework (SBRF) can be written as

ŷ�t� � �̂�x̂�t�� (28)

The process depicted in Fig. 4 ismarched forward in increments of
�t until the approximate solution at somefinal time is obtained. Note
that guesses for the n previous responses are needed to initialize the
SBRF. However, as will be shown in Sec. IV, the accuracy of the

u(t)(t)

y(t)y(t)^

delay

y(t-y(t-∆t)^

delay

y(t-2y(t-2∆t)^

delay

y(t-ny(t-n∆t)t)^

delay

u(t-(t-∆t)t)

delay

u(t-m(t-m∆t)t)

Φ
^

Fig. 4 Surrogate-based recurrence framework.
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initial guesses is not critical, since the initial transients in the SBRF’s
predictions die out as time ismarched forward. This is similar to CFD
solutions, which must use a number of initial time steps to allow
transients in the solution to settle. In summary, the SBRFaccounts for
time-history effects associated with unsteady flows by employing a
recurrence solution methodology, while flow nonlinearities are
modeled by using a kriging approximation of the full-order mapping
function.

III. CFD Solver

The CFD results generated in this study are obtained using the
commercially available CFD code CFD++ [36,37] developed by
Metacomp Technologies. The CFD++ code is capable of solving the
compressible unsteady Reynolds-averaged Navier–Stokes equa-
tions. It uses a unified grid methodology that can handle a variety of
structured, unstructured, multiblock meshes, and cell types, includ-
ing patched and overset grid features. Spatial discretization of the
Navier–Stokes equations is based on a second-order multidimen-
sional total-variation-diminishing scheme [38]. For temporal
discretization an implicit algorithm with dual-time-stepping and
multigrid acceleration is used. Dual-time-stepping schemes are
constructed by appending a pseudo-time-derivative term and using
subiterations for improved accuracy.Multigrid acceleration employs
a hierarchy of coarsening grids to speed the convergence. Several
turbulence models are available in CFD++, ranging from one-
equation to three-equation transport models.

All the computations are carried out by solving RANS equations
and assuming fully turbulent flow. The computational domain is a
C-grid, as shown in Fig. 5, with far-field boundary extending to 50
chord lengths in all directions. A distance of 30–50 chord lengths is
typically used in order tominimize the effects of numerical reflection
from the far-field boundary. The grids are clustered at the airfoil wall
boundaries such that the dimensionless distance y� of the first grid
point off thewall is less than 1 and the equations are directly solved to
the walls without assuming any wall functions. The Spalart–
Allmaras turbulence model is used in all computations.

IV. Results

The effectiveness of the SBRF approach is demonstrated in this
section by comparing against full-order CFD predictions for
unsteady lift, moment, and drag coefficients for a NACA 0012 airfoil
subject to fixed and time-varying freestream Mach numbers. The
CFD data was generated for three periods of the lowest-frequency
component so that initial transients in the solutions were eliminated.
The data from the final period was used for training and testing the
SBRF. For a time step of �t� 0:0002 s, the CFD results corre-
sponding to each training/test case required 1–4 h of simulation time
using four 3.2 GHz Xeon processors. The values of m and n were
selected after trying various combinations of the parameters with
values up to 4. For the flow regimes considered in this study, setting

m� 0 and n� 2 resulted in a tractable number of inputs to the
surrogate mapping function while enabling accurate approximation
of time-history effects. Since increasing m or n did not result in
significant improvement in the accuracy of the SBRF, all SBRF
results presented in this study correspond to settings of m� 0 and
n� 2.

The following errormetricwas used to quantify the accuracy of the
SBRF approach relative to CFD:

E�j� � 100 �

1
Nt

PNt

i�1 jŷ�ti� � y�ti�j

y
�j�
max � y

�j�
min

(29)

In Eq. (29), E�j� is a relative error measure corresponding to the jth
test case, the numerator corresponds to the average error over the total
number of time steps, and the denominator represents the range of the
exact response. Thus, Eq. (29) represents the average error in the
SBRF relative to the range of the exact response.

To initialize the SBRF, responses corresponding to n� 2 previous
time steps are required as inputs to the surrogate mapping function.
These initial responses were obtained from second-order polynomial
response surfaces [17] that were only a function of the external inputs
(i.e., no previous response inputs). Therefore, the predictions of
the previous response quantities required to initialize the SBRF are
given by

ŷ�t� i�t� � �̂qs�u�t � i�t�� for i� 1; . . . ; n (30)

where �̂qs denotes that these response surfaces can be thought of as
quasi-steady approximations, since they are only functions of the
instantaneous external inputs and therefore have no mechanism to
account for time-history effects. After the initial n time steps, the
previous responses required as inputs are obtained from the SBRF
feedback mechanism depicted in Fig. 4.

A. Pitch Motion and Fixed Freestream Mach Number

The purpose of considering a pitching airfoil at a transonic Mach
number is so that the effectiveness of the SBRF approach can be
compared to a popular alternative reduced-order modeling approach
described in the literature. The results presented in this section
correspond to a modeling problem similar to the one considered in
[39], in which a POD-based approach was used to model the
unsteady lift of an NLR 7301 airfoil oscillating at a transonic Mach
number M� 0:764. The POD model was constructed from CFD

solutions corresponding to 450 different combinations of �� and k�,
which were constrained to be

0:0001� � �� � 14� (31)

0:0 � k� � 1:2 (32)

The PODmodel based on 450 training cases was then used to predict
unsteady lift coefficients corresponding to reduced frequencies of
0.2, 0.6, and 1.2. Overall, the PODmodel predictions compared well
with CFD, although there were noticeable errors (around 10%) for
certain cases.

In this study, a SBRF constructed from only 200 training cases for
a NACA 0012 airfoil at M� 0:764 was considered. The 200 point
OLH used to generate the training data was constrained by Eqs. (31)
and (32). The SBRF predictions of unsteady lift were compared to
CFD results corresponding to 18 test cases similar to those
considered in [39]. The test cases, whichwere not included in the 200

point OLH, corresponded to ��� 2, 4, 6, 8, 10, and 12� at each of the
three reduced frequencies k� � 0:2, 0.6, and 1.0. According to the
metric defined in Eq. (29), the SBRF errors ranged from 0:2–2:8%,
with an average value of 1.3% over the 18 test cases. Comparisons of
the SBRF predictions and CFD are shown in Fig. 6 for six of the 18
test cases. These results are representative of the accuracy exhibited
by the SBRF predictions for all 18 test cases. Note that the case
shown in Fig. 6a corresponds to the maximum error of 2.8%.
Therefore, even for the worst case, the SBRF based on 200 trainingFig. 5 C-grid used in CFD calculations.
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cases effectively mimics the CFD predictions of unsteady lift.
Considering that 450 training cases were used in [39] for the POD
approach, these results indicate that the SBRF approach compares
favorably with alternative reduced-order modeling methods.

B. Pitch/Plunge Motion and Fixed Freestream Mach Number

To isolate the effectiveness of the SBRF inmodeling aerodynamic
nonlinearities, the SBRF was compared with CFD and the linear
RFA approach [2] for a fixed freestream Mach number. The RFA
approach is a 2-D unsteady time-domain theory that accounts for
compressibility as well as variations in the oncoming flow velocity,
and is based on Roger’s approximation [40] for representing
aerodynamic loads in the Laplace domain. In the RFA imple-
mentation [2], the oscillatory airloads in the frequency domain are
obtained from a 2-D doublet-lattice solution [41] of Possio’s integral
equation [23]. The Laplace domain transfer matrix that maps
generalized airfoil motions into generalized aerodynamic loads is
obtained from a least-squares fit of the frequency domain data. A
time-domain representation of the aerodynamic transfer matrix is
obtained by taking the inverse Laplace. TheMach numberM� 0:75
was chosen so that flow nonlinearities due to transonic effects would
be present. The accuracy of the SBRF and RFA predictions was

quantified by comparing with CFD results for a set of test cases that
were not included in the OLH used to train the surrogate mapping
function. Since the Mach number is fixed, only four parameters are

required to define a training case: ��, k�, �h, and kh. Furthermore, the
surrogate mapping function will be a function of seven inputs: ��t�,
_��t�, ���t�, _h�t�, �h�t�, ŷ�t��t�, and ŷ�t� 2�t�. An OLH consisting
of 150 pitch/plunge motions was used to generate the sample points,
while test points were generated from a separate 20-point OLH. The
bounds on the OLH parameters were

0� � �� � 8� (33)

0:01 � k� � 0:3 (34)

0 m � �h � 0:023 m (35)

0:01 � kh � 0:3 (36)

The upper bound for �h was selected so that

_h max � V0��max�=180� (37)
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where _hmax and �max represent themaximumpossible plungevelocity
and pitch angle, respectively.

A comparison of the SBRF and RFA errors for the 20 test cases is
presented in Table 1. Note that the RFA approach does not calculate
drag, so a corresponding error measure is not available. The SBRF
and RFA approaches required a fraction of a second on a single
computer processor to generate the predictions for each test case,
while the CFD results required 1–4 h to generate using four
processors. The average errors over all 20 test cases for the SBRF
were 0.7, 4.7, and 3.9% for lift, moment, and drag, respectively.
Similarly, the average RFA errors were 6.6 and 15.5% for lift and
moment.

The advantage of the nonlinear reduced-order model is best
illustrated by the unsteady moment predictions: the SBRF
corresponds to 2.4–8.0% error for the 20 test cases, while the RFA
approach results in 5.0–35.1% error. The improved predictions
facilitated by the SBRF are expected, since the moment coefficient is
very sensitive to the position of shocks that move over the airfoil’s
surface in transonic flow. The linear RFA approach cannot model
suchflownonlinearities. Similarly, it was noted in [3] that the indicial
function approach also has difficulty modeling nonlinear transonic
shock effects on the unsteady moment. In contrast, the nonlinear
SBRF approach accurately modeled transonic effects for the 20 test
cases. This is illustrated in Fig. 7, which shows the unsteady airloads
predicted by CFD, the SBRF, and RFA (lift and moment) for one of
the 20 test cases that demonstrated a significant effect on themoment
coefficient due to a moving shock. For this test case, the SBRF errors
are 0.4, 4.1, and 2.1% for lift, moment, and drag, respectively, while
the RFA approach corresponds to 3.6 and 21.8% error for lift and
moment. The results shown in Fig. 7 demonstrate the ability of the

SBRF approach to mimic CFD solutions for highly nonlinear flows.
However, the SBRFpredictions required a fraction of a second,while
the CFD results for this test case required 3 h to generate. Therefore,
the SBRF can accurately approximate the fidelity associated with
CFD, while exhibiting the computational efficiency associated with
approximate linear models.

To investigate the effects of how the SBRF is initialized, the SBRF
initialized with predictions from the quasi-steady response surface
was comparedwith an SBRF initialized by setting ŷ�t� i�t� � 0 for
i� 1; . . . ; n. The latter case is representative of the SBRF’s
performance when initializing with poor guesses for the previous
responses. The effects of the poor initial guesses were found to be
negligible for the 20 test cases, since they only affected the SBRF’s
predictions in the vicinity of the initial time. As time was marched
forward, the initial transients died out and the SBRF’s predictions
quickly reached a periodic solution. This is illustrated in Fig. 8,
which corresponds to the test case depicted in Fig. 7. In Fig. 8,
SBRF_QS denotes initial quantities obtained from the quasi-steady
response surface, while SBRF_0 corresponds to initial responses set
to zero. It is clear from Fig. 8 that the SBRF settles into a periodic
solution for both methods of initialization. Therefore, the method for
estimating the initial responses is not critical.

In the preceding results, the SBRF was trained and tested by
considering simple harmonic motions. However, in practice, a time-
domain aerodynamic model must accurately predict unsteady
aerodynamic responses for arbitrary combinations of the compo-
nents of the input vector x. To demonstrate the effectiveness of
the SBRF for aerodynamic response predictions due to arbitrary
motion, a multiharmonic pitching motion given by Eq. (38) was
considered:

Table 1 Comparison of SBRF and RFA errors for 20 test cases (M � 0:75)

Method Error in Cl Error in Cm Error in Cd

SBRF 0.3–1.9% (avg 0.7%) 2.4–8.0% (avg 4.7%) 1.5–10.3% (avg 3.9%)
RFA 2.7–11.1% (avg 6.6%) 5.0–35.1% (avg 15.5%) ——
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Fig. 7 Unsteady lift, moment, and drag coefficients ( ��� 5:9�, k� � 0:08, �h� 0:013 m, kh � 0:05, and M � 0:75).
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��t� �
X

50

i�1

��i cos�!�;it� �i� (38)

The 50-component multiharmonic pitch motion was generated by

randomly selecting the amplitudes ��i, frequencies !�;i, and phase
shifts �i. The randomly generated motion was constrained such that

the resulting ��t�, _��t�, and ���t�werewithin the bounds of the sample
data so that extrapolation was avoided. As with any interpolation
method, the SBRF’s predictions are not reliable when used for

extrapolation. The plunge degrees of freedom, _h and �h, were set to
zero for this case. The randomly generated pitch input, and the
comparison between the SBRF approach and CFD, are shown in
Fig. 9. It is clear from Fig. 9 that the SBRF accurately predicts the
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unsteady airloads corresponding to the multiharmonic motion. The
SBRF errors are 1.2, 4.0, and 5.2% for lift, moment, and drag,
respectively. These results indicate that generating the training data
from an adequate number of simple harmonic airfoil motions can
produce a sufficiently space-filling set of sample points such that the
SBRF has enough information from surrounding sample points to
accurately interpolate at arbitrary inputs.

C. Pitch/Plunge Motion and Time-Varying Freestream

Mach Numbers

To be applicable to rotary-wing applications, the SBRF approach
must account for time-varying Mach numbers. The results in this
section demonstrate the effectiveness of the SBRF approach for
modeling unsteady aerodynamic responses subject to time-varying
Mach numbers. All time-varying Mach number results correspond
to b=R� 0:027 and M�R � 0:64. These parameters are consistent
with a model representative of an MBB BO-105 helicopter rotor.
When modeling time-varying Mach numbers, r and � must be
included in the OLH in addition to the four parameters required for
the fixed-Mach-number case. The surrogate mapping function

requires M�t� and _M�t� as inputs in addition to the seven variables
used in the fixed-Mach-number case. An OLH consisting of 200
training cases was used to generate the sample data, while test points
were generated from a separate 20-point OLH. The bounds on the
pitch/plunge kinematical parameters are the same as those given by
Eqs. (33–36), and

0:75 � r � 0:85 (39)

0 � � � 0:4 (40)

Therefore, the effectiveness of the SBRF for modeling time-varying
Mach number effects is demonstrated in this study by considering a
spanwise section spanning the 75–85% blade stations, over advance
ratios that range from hover (�� 0) to high-speed forward flight.

The SBRF and RFA errors for the 20 test cases are presented in
Table 2. For these cases, the differences between the SBRF and RFA
errors were not as large as the fixed-Mach-number cases. This is
because the time-varying test cases correspond toMach numbers that
vary from 0.24 to 0.79. Therefore, the flow conditions will vary
between linear conditions at the lower Mach numbers and nonlinear
conditions at transonic Mach numbers. The RFA approach is
expected to be more accurate for the low-Mach-number portions of
the test cases. The largest difference between the SBRF and RFA
predictions correspond to the maximum errors for moment
coefficient: 7.9% for the SBRF and 18.4% for the RFA approach.
This indicates that the SBRF is more accurate in the instances
corresponding to strong transonic effects on the moment coefficient.
Therefore, in addition to producing unsteady drag predictions, the
advantage of the SBRFapproach is that it accurately predicts for both
linear and nonlinear flow conditions associated with time-varying
Mach numbers.

As in Sec. IV.B, the effectiveness of the SBRF for modeling
unsteady aerodynamic responses corresponding to arbitrary inputs
(i.e., not limited to simple harmonic) was verified by considering a
randomly generated pitch motion governed by Eq. (38) with time-
varying Mach numbers. These results are shown in Fig. 10. The
SBRF errors for this test case are 1.4, 2.1, and 2.5% for lift, moment,
and drag, respectively. The accuracy of the SBRF depicted in Fig. 10
indicates that the 200 point OLH resulted in a sufficiently space-
filling data set such that the SBRF can accurately predict at arbitrary
inputs. It should be noted that accurate surrogate mapping functions
can potentially be generated frommuch fewer than 200 training cases

Table 2 Comparison of SBRF and RFA errors for 20 test cases subject to time-varying Mach numbers

Method Error in Cl Error in Cm Error in Cd

SBRF 1.0–4.5% (avg 2.1%) 1.6–7.9% (avg 3.6%) 2.0–10.0% (avg 5.5%)
RFA 0.6–5.4% (avg 3.1%) 1.2–18.4% (avg 6.1%) ——
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by using more “intelligent” sampling methods [34,42] compared to
purely space-filling approaches. Such approaches are the subject of
ongoing research that is beyond the scope of this paper.

V. Conclusions

The reduced-order nonlinear unsteady aerodynamic model
described in this paper was shown to effectively mimic CFD
predictions of unsteady lift,moment, and drag coefficients for airfoils
undergoing simultaneous pitch/plunge oscillations while subjected
to fixed and time-varying Mach numbers. The surrogate-based
recurrence framework (SBRF) approach to time-domain reduced-
order modeling uses kriging surrogates to account for flow non-
linearities, and a recurrence methodology to account for time-history
effects associated with unsteadiness. Once constructed from a
limited number of full-order CFD analyses, the SBRF predictions
require a fraction of a second to compute,whilemaintaining a level of
fidelity corresponding to CFD results that would require several
hours to obtain. Therefore, the SBRF approach is appropriate for
applications that would require excessive computational resources
when using CFD, such as routine coupled trim/aeroelastic response
solutions and design optimization. The principal results of this study
are as follows:

1) For the pitching airfoil problem considered in this study, an
accurate reduced-order unsteady aerodynamic model was generated
by the SBRF approach with significantly fewer full-order CFD
training cases compared to results reported in the literature for a
similar problem in which a proper orthogonal-decomposition-based
approach was applied.

2) The effectiveness of the SBRF approach for modeling flow
nonlinearities was demonstrated by considering transonic flow
conditions. The SBRF accurately modeled the strongly nonlinear
effects of moving shocks on the unsteady pitching moments.

3) The SBRFapproach accuratelymodeled unsteady aerodynamic
responses associated with time-varying Mach numbers. Therefore,
the SBRF is suitable for rotary-wing applications.
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