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Based on accumulating post-mortem evidence of abnormalities in Purkinje cell biology in essential tremor, we hypothesized that

regressive changes in dendritic morphology would be apparent in the Purkinje cell population in essential tremor cases versus

age-matched controls. Cerebellar cortical tissue from 27 cases with essential tremor and 27 age-matched control subjects was

processed by the Golgi-Kopsch method. Purkinje cell dendritic anatomy was quantified using a Neurolucida microscopic system

interfaced with a motorized stage. In all measures, essential tremor cases demonstrated significant reductions in dendritic

complexity compared with controls. Median values in essential tremor cases versus controls were: 5712.1 versus 10 403.2 mm

(total dendrite length, P = 0.01), 465.9 versus 592.5 mm (branch length, P = 0.01), 22.5 versus 29.0 (maximum branch order,

P = 0.001), and 165.3 versus 311.7 (number of terminations, P = 0.008). Furthermore, the dendritic spine density was reduced in

essential tremor cases (medians = 0.82 versus 1.02mm�1, P = 0.03). Our demonstration of regressive changes in Purkinje cell

dendritic architecture and spines in essential tremor relative to control brains provides additional evidence of a pervasive

abnormality of Purkinje cell biology in this disease, which affects multiple neuronal cellular compartments including their

axon, cell body, dendrites and spines.
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Introduction
Recent post-mortem studies have systematically documented nu-

merous structural changes in the essential tremor cerebellum

(Louis et al., 2006; Louis, 2014), mainly involving the Purkinje

cells. In some, though not all studies, these changes include re-

ductions in Purkinje cell counts (Louis et al., 2007, 2012a; Rajput

et al., 2012) and reductions in Purkinje cell linear density (Axelrad

et al., 2008; Louis et al., 2013, 2014; Symanski et al., 2014).

Other findings include increased numbers of torpedoes (Louis

et al., 2009, 2012b), a broad range of changes in Purkinje cell

axonal morphology (Babij et al., 2013), increased numbers of
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Purkinje cell dendritic swellings (Yu et al., 2012), increased num-

bers of heterotopic Purkinje cells (Kuo et al., 2011), and changes

in the basket cell axonal processes surrounding Purkinje cells

(Erickson-Davis et al., 2010).

Patho-mechanistically, torpedoes and other Purkinje cell axonal

changes are considered markers of neurons in extremis. Neurons

with neurofilament misaccumulations (torpedoes) have impaired

axonal transport, which may lead to neuronal strangulation and

degeneration (Liem et al., 2003). Before degeneration, the meta-

bolic economy of such neurons is severely challenged, and they

are unable to maintain their extensive cytoskeleton. This may

manifest as regressive changes in dendritic morphology (e.g. a

truncation of the dendritic arbor) (Nakano and Hitano, 1987;

Ma and Vacca-Galloway, 1991).

Based on accumulating evidence of abnormal Purkinje cell biol-

ogy in essential tremor, we hypothesized that regressive changes

in dendritic morphology might occur in Purkinje cells in essential

tremor cases versus age-matched controls, and serve as an add-

itional, more subtle, and more proximate biological marker than

frank cell loss. Using the large collection of clinically and patho-

logically well characterized essential tremor brains obtained

through the Essential Tremor Centralized Brain Repository, we

applied the Golgi method to provide detailed morphometric

study of both the Purkinje cell dendritic arbor and dendritic

spine density, and application of rigorous quantitative methods

to measure dendrite abnormalities.

Materials and methods

Clinical evaluation
Essential tremor cases were collected prospectively through the

Essential Tremor Centralized Brain Repository, New York Brain Bank,

Columbia University Medical Centre (Babij et al., 2013). Cases signed

informed consent approved by the University Ethics Board.

Essential tremor diagnoses were assigned using three sequential

methods (Babij et al., 2013). Cases underwent a standardized, video-

taped neurological examination, which included assessments of pos-

tural, kinetic and intention tremors (Louis et al., 2007). Action tremor

was rated using a clinical rating scale, resulting in a total tremor score

(range = 0–36) (Louis et al., 2011). The videotaped examination

included the motor portion of the Unified Parkinson’s Disease Rating

Scale (Fahn et al., 1987). All data were reviewed (E.D.L.) and essential

tremor diagnoses carefully reassessed using published diagnostic cri-

teria (Babij et al., 2013).

Data on lifetime exposure to medications known to cause cerebellar

damage were collected. In cases with essential tremor, the average

number of daily drinks of beer, wine or liquor during adult lifetime

was quantified. Heavy ethanol use was defined previously (Babij et al.,

2013). Every 6 months, a follow-up evaluation was performed (Babij

et al., 2013).

Normal elderly age-matched control brains (n = 11) were control

subjects from the New York Brain Bank (Babij et al., 2013).

Additional normal elderly age-matched controls were obtained from

the University of Kentucky Alzheimer’s Disease Centre Biobank

(n = 13) and Harvard Brain Tissue Resource Centre (McLean

Hospital, Belmont, MA) (n = 3).

Neuropathological assessment
Each brain underwent a comprehensive neuropathological assessment

(nybb.hs.columbia.edu), including assessment of neurofibrillary degen-

eration with Bielschowsky silver stain, and immunostains to alpha-

synuclein, amyloid-b and hyperphosphorylated tau (Babij et al.,

2013). Paraffin-embedded blocks from standardized brain regions

were sectioned at 7 mm and stained with Luxol Fast blue, and haema-

toxylin and eosin. Brain weight (g) and post-mortem interval (hours

between death and placement of brain in a cold room or upon ice)

were recorded. Brains underwent Braak and Braak Alzheimer’s Disease

staging for neurofibrillary tangles (Braak et al., 2006), Braak

Parkinson’s disease staging of Lewy bodies (Braak et al., 2003), and

Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)

ratings for neuritic plaques (Mirra, 1997). A standard 3 � 20 � 25 mm

parasagittal, formalin-fixed, tissue block was harvested from the neocer-

ebellum; the block included the cerebellar cortex, white matter and den-

tate nucleus, and corresponded to the anterior and posterior

quadrangulate lobules in the anterior lobe of the cerebellar cortex (lob-

ules IV–VI), which are involved in motor control (Stoodley et al., 2012). A

senior neuropathologist (P.L.F.), blinded to clinical information, counted

torpedoes throughout one entire Luxol Fast blue and haematoxylin and

eosin stained 7-mm thick section and, when available, a Bielschowsky

stained 7-mm thick section. Purkinje cells were counted and averaged

from 15 � 100 fields (Luxol Fast blue and haematoxylin and eosin stained

section) and this count was divided by the length of the Purkinje cell layer

centred in the microscopic field to derive Purkinje cell linear density

(cells/mm).

Golgi studies
As brains were formalin-fixed for 515 months, the Golgi-Kopsch pro-

cedure is the optimal Golgi method (Jacobs et al., 2003). The standard

cerebellar cortical tissue block was Golgi-Kopsch stained, and serially

sectioned parallel to the long axis of the cerebellar gyri at 200-mm

thickness with a vibrotome to increase the number of Purkinje cells

with parasagittal orientation and full representation of their dendrite

arbor. Purkinje cells selected for analysis followed a strict protocol.

Four isolated Purkinje cells per block were chosen by a diagnostic-

ally-blinded technician based on previously published criteria (Jacobs

et al., 1997): (i) cell body located centrally within the section depth to

minimize cutting of distal dendritic branches; (ii) dark homogeneous

impregnation throughout the extent of the neuronal dendrites, indicat-

ing adequacy of the Golgi staining; (iii) neurons were relatively unob-

scured by adjacent neuronal structures; and (iv) higher order branches

had natural terminations. We further used a fifth selection criterion

requiring optimal orientation (e.g. the dendritic arbor seen en face,

with the visualization of at least two secondary dendrites). The first

four cells in each block that met the above criteria were quantified

using a Neurolucida system (Microbrightfield Inc) interfaced with a

motorized microscope stage (Ludl Electronic Products) and �20 ob-

jective lens for dendritic measurements and �60 objective lens for

spine density. Tracings proceeded in a specific sequence, beginning

with the cell body followed by primary dendrites and their higher

order branches, with tracking of branch nodes and dendrite lengths,

as provided by the Neurolucida software. Five quantitative measures,

as proposed by others (Jacobs et al., 1997; Rosoklija et al., 2000),

were examined: (i) total dendrite length (i.e. the summed length of

dendritic system) in mm; (ii) branch length (i.e. the average length of

all dendritic segments between branch points) in mm; (iii) maximum

branch order (i.e. the maximum number of branch bifurcations); (iv)

number of terminations (i.e. the number of distal branch endings); and
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(v) dendritic spine density (i.e. the average number of spines/1 mm of

dendritic length). For the determination of dendritic spine density, all

terminal segments that at �20 magnification were at least 5 mm long,

had visible spines, and were unobscured by nearby branches were

marked. Scholl’s method of concentric circles (Sholl, 1953) was used

to divide the Purkinje cell dendritic arbor into two circles. The first

(inner) circle was half the diameter of the second (outer) circle.

Within each circle, the marked terminal segments were numbered in

a clockwise sequence from a line drawn from the primary dendrite.

Five of the marked proximal and distal terminal segments (10 seg-

ments per cell) were randomly selected. Using a �60 oil immersion

lens, spines were counted either to the nearest branch point or to the

point at which the segment was obscured; the length of the segment

was measured using the contour feature of StereoInvestigator

(MicroBrightField). Dendritic spine density was the average spine dens-

ity of the 10 segments.

Final sample
Excluded were essential tremor brains with concomitant neurodegen-

erative disorders diagnosed on post-mortem examination [e.g.

Parkinson’s disease (n = 2), progressive supranuclear palsy (n = 2), cor-

ticobasal degeneration (n = 1)]. After these exclusions, tissue was

available on a final sample of 27 essential tremor brains, which were

age-matched to 27 control brains. Three cases and three controls had

been included in our earlier report (Louis et al., 2007).

Statistical analyses
Statistical analyses were performed in SPSS (version 21.0). Dendritic

architecture and spine density variables were not normally distributed;

hence, case-control data were presented as both means and medians,

and non-parametric statistical testing (Mann-Whitney tests,

Spearman’s correlation coefficients) was performed. Each dendritic

architecture and spine density variable was carefully specified in an a

priori manner during the design phase of the study; hence, correction

for multiple and/or post hoc comparisons was not required. Similarly,

each dendritic architecture and spine density variable was compared to

only one clinical variable, the total tremor score, which had been

prespecified during the design phase of the study.

In a subanalysis, we excluded 12 cases and two control subjects

whose Braak Alzheimer’s disease score was 42. Because this resulted

in a marked reduction in sample size and analytical power, for this

subanalysis, we reported percentage case-control differences in the

absence of statistical comparisons.

Results
The 27 essential tremor cases and 27 controls were similar in age

at death, brain weight, Braak Alzheimer’s disease score, and

CERAD score, but differed by gender and post-mortem interval

(Table 1). Age of tremor onset was 465 years in four (14.8%)

cases and 465 years in the remainder. No cases were heavy

ethanol users and none had lifetime exposure to medications

known to cause cerebellar damage. None of the cases had both

a Braak (i.e. neuronal tangle) score = 6 and a CERAD score = 3,

although three, with lower scores, had intermediate likelihood of

Alzheimer’s disease. Lewy bodies (alpha-synuclein: dorsal vagal

nucleus, locus ceruleus, substantia nigra) were detected in none.

Essential tremor cases had higher torpedo counts [P = 0.018

(Luxol Fast blue and counterstained with haematoxylin and

eosin) and P = 0.02 (Bielschowsky)] and lower Purkinje cell

counts and Purkinje cell linear density (P = 0.025) than controls

(Table 1). The two torpedo counts (Luxol Fast blue and counter-

stained with haematoxylin and eosin, and Bielschowsky) were

highly consistent with one another (Pearson’s r = 0.85, P5 0.001).

In all measures, essential tremor cases demonstrated significant

reductions in dendritic complexity compared with controls (Table 2

and Fig. 1). Reductions in essential tremor cases ranged from

21.4–47.0% (median = 33.8%, Table 2). Furthermore, the den-

dritic spine density was reduced in essential tremor cases com-

pared to controls (Table 2).

The dendritic arborization and spine density variables were all

highly-intercorrelated (i.e. changes in one variable were reflected

in changes in other variables), indicating a system-wide set of

changes rather than single, isolated changes (Table 3).

The dendritic architecture and spine density variables were not

correlated to any consistent degree with age, gender, post-

mortem interval, CERAD score, Braak Alzheimer’s disease score,

or brain weight (Supplementary Table 1). Therefore, these vari-

ables could not have been confounders. In essential tremor cases,

the average number of daily drinks (beer, wine and liquor com-

bined) was not associated with total dendrite length (Spearman’s

r = 0.11, P = 0.63), branch length (Spearman’s r = �0.04,

P = 0.87), maximum branch order (Spearman’s r = �0.13,

P = 0.55), number of terminations (Spearman’s r = 0.04,

P = 0.84), or dendritic spine density (Spearman’s r = 0.09,

P = 0.73).

Dendritic architecture and spine density variables were not cor-

related to a significant degree with Braak Alzheimer’s disease score

(Supplementary Table 1); hence, the observed case-control differ-

ences in these variables were not likely due to confounding effects

of Alzheimer’s type changes. Nonetheless, we performed an add-

itional subanalysis in which we excluded 12 cases and two controls

whose Braak Alzheimer’s disease score was 42. Case-control dif-

ferences persisted, and for four of five variables, the magnitude of

the case-control differences was slightly higher than seen when

analyses included the full sample (Table 2).

The Purkinje cell count (Luxol Fast blue and counterstained with

haematoxylin and eosin) was marginally associated with maximum

branch order (i.e. brains with fewer Purkinje cells had a lower

maximum branch order, Spearman’s r = 0.33, P = 0.06). Total

tremor score was inversely associated with branch length

(Spearman’s r = �0.44, P = 0.047), maximum branch order

(Spearman’s r = �0.41, P = 0.058), and number of terminations

(Spearman’s r = �0.43, P = 0.054) (i.e. more severe tremor was

associated with more marked dendritic pruning). None of these

variables (including total tremor score) was associated with disease

duration.

Discussion
Using quantitative analyses of Purkinje cells stained by the Golgi

method, we found significant reductions in Purkinje cell dendritic

complexity and dendritic spine density in essential tremor cases
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versus controls. These dendritic arbor and spine density variables

were all highly intercorrelated, indicating a system-wide set of

regressive changes rather than isolated and unconnected changes.

A reduction in dendritic arborization is a structural change asso-

ciated with dysfunction, and it is thought to precede neuronal

death (Ferrer et al., 1984). This type of change is not specific to

essential tremor, and it has been noted in Purkinje cells in patients

with hereditary ataxias (Shintaku and Kaneda, 2009) as well as

Purkinje cells in chronic alcoholics (Ferrer et al., 1984). Hence,

these changes are a marker of neurons in extremis. Previous stu-

dies have shown a reduction of Purkinje cell dendritic arbor

complexity in Alzheimer’s disease (Mavroudis et al., 2013). We

conducted several additional analyses that indicated that concomi-

tant Alzheimer’s type-changes in essential tremor cases do not

seem to account for the observed essential tremor case-control

differences.

Importantly, we demonstrated that tremor of greater severity

was correlated with more pruning of the Purkinje cell dendritic

arbor, as observed in several quantitative measures including

branch length, maximum branch order and number of termin-

ations. In addition, the Purkinje cell count (Luxol Fast blue and

counterstained with haematoxylin and eosin) was associated with

Table 1 Clinical and pathological features of 27 essential tremor cases and 27 controls

Essential tremor cases Controls Significance

Age at death (years) 87.7 � 7.4 85.0 � 6.7 P = 0.16a

Female gender 14 (51.9) 21 (77.8) P = 0.046b

Age of tremor onset (years) 40.3 � 26.3 Not applicable Not applicable

Duration of tremor (years) 47.5 � 26.4 Not applicable Not applicable

Median post-mortem interval (h) 2 5.25 P = 0.001

Brain weight (g) 1212 � 156 1176 � 136 P = 0.36a

Braak Alzheimer’s disease scorec P = 0.16b

0 2 (7.4) 2 (18.2)

1 9 (33.3) 3 (27.3)

2 4 (14.8) 4 (36.4)

3 11 (40.7) 1 (9.1)

4 1 (3.7) 0 (0.0)

5 0 (0.0) 0 (0.0)

6 0 (0.0) 1 (9.1)

CERAD scorec P = 0.79b

0 11 (40.7) 4 (36.4)

A 10 (37.0) 5 (45.5)

B 4 (14.8) 2 (18.2)

C 2 (7.4) 0 (0.0)

Torpedo count (Luxol Fast blue and counterstained with haematoxylin and eosin) 17.7 � 16.6 6.1 � 7.5 P = 0.018a

Torpedo count (Bielschowsky) 25.8 � 22.8 10.3 � 10.3 P = 0.02a

Purkinje cell count 6.8 � 1.8 8.5 � 2.1 P = 0.025a

Purkinje cell linear density (cells/mm) 3.1 � 0.8 3.9 � 1.0 P = 0.025a

Values are mean � standard deviation or number (percentage) unless specified otherwise.
aStudent t-test.
bChi-square test.
cData available on 11 rather than 27 control subjects.

Table 2 Purkinje cell dendritic arborization and spine density in 27 essential tremor cases and 27 controls

Essential tremor
cases

Controls Percentage
differencea

Significance

Total dendrite length (mm) 8605.9 � 6909.9 (5712.1) 11 658.5 � 5734.2 (10 403.2) 45.1% P = 0.01b

Branch length (mm) 515.9 � 174.3 (465.9) 600.3 � 134.2 (592.5) 21.4% P = 0.01b

Maximum branch order 23.4 � 8.4 (22.5) 29.6 � 6.5 (29.0) 22.4% P = 0.001b

Number of terminations 211.0 � 164.1 (165.3) 311.1 � 153.8 (311.7) 47.0% P = 0.008b

Dendritic spine density (mm�1) 0.79 � 0.21 (0.82) 0.97 � 0.20 (1.02) 18.6% P = 0.03b

Values are mean � standard deviation (median).
aPercentage difference between the median value of cases versus the median value of controls.
bMann Whitney test.

In a subanalysis in which we excluded 12 cases and two controls whose Braak Alzheimer’s disease score was 42, the percentage difference between the median value of
the cases versus controls persisted: total dendrite length (51.7%), branch length (22.8%), maximum branch order (25.8%), number of terminations (53.8%), and dendritic
spine density (18.5%).
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maximum branch order (i.e. brains with fewer Purkinje cells had a

lower maximum branch order).

This study provides the only report to date on the dendritic

anatomy of the Purkinje neuron population in essential tremor.

These findings may be added to the growing catalogue of changes

documented in the Purkinje cell population in essential tremor

(Grimaldi et al., 2013). The current study focused in detail on

the Purkinje cell dendritic compartment, whereas our previous

work has focused on the axonal compartment and cell body. In

combination, these results indicate that the Purkinje cell is broadly

affected across several cell compartments in essential tremor.

Our current findings and previous findings (Babij et al., 2013)

also indicate that the identifiable presence of a range of struc-

tural markers of neurons in extremis in essential tremor and,

as discussed in detail elsewhere, frank Purkinje cell loss is likely

to be only one part of a cascade of patho-mechanistic

events involving the cerebellar cortex in essential tremor (Louis,

2014).

Regressive changes in Purkinje cell dendritic architecture seem

to be a feature of essential tremor relative to control brains, and

Figure 1 Reduction in Purkinje cell dendritic complexity in ET. (A and B) Cerebellar cortical sections stained with Golgi Kopsch method,

�2.5. Two adjacent Purkinje cells in a control (A) and one Purkinje cell in an essential tremor case (B). Arrow in B shows an area of

relatively preserved dendritic complexity versus arrowhead in B which shows an area of reduced dendritic complexity in the essential

tremor case. (C–E) Neurolucida tracings of Purkinje neurons in two controls (C and D) and one representative essential tremor case (E). The

neurolucida tracings correspond to different neurons than those shown in A and B.

Table 3 Correlation between dendritic arborization and spine density variables in 27 essential tremor cases and 27 controls

Total dendrite
length (mm)

Branch length
(mm)

Maximum
branch order

Number of
terminations

Dendritic spine
density (mm�1)

Total dendrite length (mm) r = 0.78, P5 0.001 r = 0.83, P5 0.001 r = 0.93, P5 0.001 r = 0.52, P = 0.002

Branch length (mm) r = 0.61 P5 0.001 r = 0.58, P5 0.001 r = 0.39, P = 0.026

Maximum branch order r = 0.90, P5 0.001 r = 0.58, P5 0.001

Number of terminations r = 0.59, P5 0.001

Dendritic spine density (mm�1)

r = Spearman’s correlation coefficients.
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these changes provide new evidence of a pervasive abnormality of

Purkinje cell biology in this disease.
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