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Abstract— Reduced-reference image quality assessment
(RR-IQA) provides a practical solution for automatic image
quality evaluations in various applications where only partial
information about the original reference image is accessible.
In this paper, we propose an RR-IQA method by estimating
the structural similarity index (SSIM), which is a widely used
full-reference (FR) image quality measure shown to be a good
indicator of perceptual image quality. Specifically, we extract
statistical features from a multiscale multiorientation divisive
normalization transform and develop a distortion measure by
following the philosophy in the construction of SSIM. We find
an interesting linear relationship between the FR SSIM measure
and our RR estimate when the image distortion type is fixed. A
regression-by-discretization method is then applied to normalize
our measure across image distortion types. We use six publicly
available subject-rated databases to test the proposed RR-SSIM
method, which shows strong correlations with both SSIM and
subjective quality evaluations. Finally, we introduce the novel
idea of partially repairing an image using RR features and use
deblurring as an example to demonstrate its application.

Index Terms— Divisive normalization transform, image deblur-
ring, image repairing, natural image statistics, reduced-reference
image quality assessment (RR-IQA), structural similarity.

I. INTRODUCTION

O
VER the past years, there has been an exponential

increase in the demand for image and video services.

Nevertheless, the networks in service are not designed to

accommodate the current trends of traffic. In practice, the

multimedia content delivered over the networks suffers from

various kinds of distortions on its way to the destination. It

is important for the service providers to be able to identify

and quantify the quality degradations in order to maintain

the required quality of service. This gives rise to the desire

of accurate and efficient perceptual image quality assessment

(IQA) algorithms that can estimate the subjective quality of

the image content under various kinds of distortions.

Much work has been done in the recent past to develop

objective quality assessment measures which can automati-

cally measure the perceived distortion in the visual content.
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The most prominent ones include the structure similarity index

(SSIM) [1] and its derivatives [2], [3], visual information

fidelity [4], visual signal-to-noise ratio [5], and the most

apparent distortion [6]. Among these methods, SSIM has often

been preferred because of its good tradeoff between accuracy,

simplicity, and efficiency [7].
√

1 − SSIM has been shown

to be a valid distance metric (that satisfies the identity and

symmetry axioms as well as the triangle inequality) and has

a number of useful local and quasi-convexity and distance-

preserving properties [8]. Besides IQA, SSIM has also found

a wide variety of applications, ranging from image coding,

restoration, and fusion to watermarking and biometrics [9]–

[14]. The success of SSIM motivated us to use it for visual

communication applications. The difficulty is that SSIM is

a full-reference IQA (FR-IQA) scheme that requires full

availability of the reference image in order to estimate the

quality of the distorted image. This makes it impractical in

visual communication applications, where we have no access

to the reference image at the receiver side. No-reference IQA

(NR-IQA) is highly desirable because it does not require

access to the reference image. In the literature, most NR-

IQA algorithms were designed for specific and limited types

of distortions [15]–[21]. They may not be good choices in

modern communication networks, where the distortions could

be a combination of lossy compression, scaling in bit rate and

spatial/temporal resolution, network delay and packet loss, and

various types of pre- and postprocessing filtering (e.g., error

concealment, deblocking filtering, sharpening). On the other

hand, general-purpose NR-IQA is still at an immature stage.

The reduced-reference IQA (RR-IQA) method only requires

a limited number features extracted from the reference for the

IQA task [22]. It provides an interesting compromise between

FR and NR approaches in terms of both quality prediction

accuracy and the amount of information required to describe

the reference. A general framework for the use of RR-IQA in

visual communications along with image-repairing capability

is shown in Fig. 1. An image x is transmitted to the receiver

via a transmission channel, which introduces distortions in

the received image y. Meanwhile, RR features X extracted

at the transmitter side are sent to the receiver through an

ancillary channel. The feature extraction unit at the receiver

side calculates the features Y from the received image y in a

similar fashion as in the transmitter side. X and Y are com-

pared at the quality assessment unit, which creates a quality

score S of the distorted image y. A good RR-IQA approach

should achieve a good tradeoff between the rate and accuracy.

In general, the larger the rate of the RR features, the more
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Fig. 1. General framework for the deployment of RR-IQA systems with image repairing capability.

accurate the RR-IQA measure can achieve. In the extreme,

when the rate is enough to fully reconstruct the reference,

RR-IQA converges to FR-IQA. The performance gap between

RR-IQA and FR-IQA may be reduced by selecting RR features

that are efficient, perceptually relevant, and sensitive to various

kinds of distortions. In addition, since the RR features provide

information about what the “correct” image is supposed to

look like, they may also be used as side information to repair

the received distorted image, as illustrated in Fig. 1.

Based on the underlying design philosophy, existing

RR-IQA algorithms may be loosely classified into three cat-

egories. The first type of methods are primarily built upon

models of the image source. Since the reference image is

not available in the deterministic sense, these models are

often statistical that capture a priori the low-level statistical

properties of natural images. The model parameters provide

a highly efficient way to summarize the image information,

and thus these methods often lead to RR-IQA algorithms

with low RR data rate. In [23] and [24], the marginal dis-

tribution of wavelet subband coefficients is modeled using

a generalized Gaussian density (GDD) function, and GGD

model parameters are used as RR features are employed

to quantify the variations of marginal distributions in the

distorted image. The model was further improved in [25]

by employing a nonlinear divisive normalization transform

(DNT) after the linear wavelet decomposition, which resulted

in enhanced quality prediction performance, especially when

images with different distortion types are mixed together.

The second category of RR-IQA methods are oriented to

capture image distortions. These methods provide useful and

straightforward solutions when we have sufficient knowledge

about the distortion process that the images underwent, e.g.,

standard image or video compression [26]–[29]. The limitation

of such approaches is in their generalization capability. Gen-

erally, it is inappropriate to apply these methods beyond the

distortions they are designed to capture. The third category

of RR-IQA algorithms are based on models of the image

receiver [i.e., the hierarchical visualisation system (HVS)]

[30], [31], where computational models from physiological

and/or psychophysical vision studies may be employed. These

methods have demonstrated good performance for JPEG and

JPEG2000 compression [30], [31]. Among the three classes

of RR-IQA approaches, the first and third ones, i.e., methods

based on modeling the image source and the receiver, have

more potential to be extended for general-purpose applications

because the statistical and perceptual features being employed

are not restricted to any specific distortion process. There

are also interesting conceptual connections between these two

types of approaches, because it is a general belief in biological

vision science that the HVS is highly tuned for efficient

statistical encoding of the natural visual environment [32],

[33].

This paper focuses on a general-purpose RR-IQA based on

natural image statistics modeling. In addition, motivated by

the success of the FR SSIM index, we develop our method

as an attempt to estimate SSIM rather than directly predicting

subjective quality. The benefits of this approach are twofold.

First, the successful design principle in the construction of

SSIM can be naturally incorporated into the development of

the RR algorithm. Second, when the algorithm design involves

a supervised learning stage, it is much easier to obtain training

data, because SSIM can be readily computed, as opposed to

the expensive and time-consuming subjective evaluations. In

[34], an interesting RR video quality measure based on SSIM

estimation was proposed for quantifying visual degradations

caused by channel transmission errors. It is based on local

spatial statistical features and uses distributed source coding

techniques to reduce the required bandwidth to transmit RR

features. Our method differs from this approach in three

ways. First, our method is based on natural image statistical

modeling and makes use of the perceptually and statistically

motivated DNT transform. Second, instead of decomposing

the problem of SSIM estimation into many local problems

and estimating each component in SSIM expression separately,

our method uses global statistics to estimate global SSIM

value. This allows for a much more efficient description of the

image content, and thus significantly lowers the number of RR

features. Third, our approach aims for a general-purpose RR-

IQA that can be applied to assess images with a wide variety

of distortion types.

The value of RR-IQA measures is beyond quality evalu-

ations. As illustrated in Fig. 1, they may also be employed

to partially “repair” the distorted image. In this paper, we

attempt to repair an image by matching the subband statistical

properties of the distorted image with those of the reference,

and use deblurring as an example to demonstrate the idea.
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The interesting feature of this method is that it requires no

knowledge about the blur kernel. Instead, the same repairing

procedure is successful in correcting images of not only

homogeneous blur (e.g., out-of-focus blur) but also directional

blur (e.g., motion blur).

II. RR-SSIM ESTIMATION

The proposed RR-SSIM estimation algorithm starts with a

feature extraction process of the reference image based on a

multiscale multiorientation DNT. Divisive normalization was

found to be an effective mechanism to account for many

neuronal behaviors in biological perceptual systems [35]–[37].

It also provides a useful model to describe the psychophysical

visual masking effect [38], [39]. DNT is typically applied after

a multiscale linear transform (loosely referred to as wavelet

transform) that decomposes the image into transform coef-

ficients representing localized structures in space, frequency

(scale), and orientation. The DNT-domain representation of

the image is then calculated by dividing each coefficient by

a local energy measure based on its neighboring coefficients.

It was found that the histogram of DNT coefficients within

a wavelet subband can often be well fitted with a zero-mean

Gaussian density function [40], [41], which is a one-parameter

function that allows efficient summarization of the statistics of

the reference image.

In [25], the effect of image distortions on the statistics of

DNT coefficients was studied. It was found that different types

of distortions modify the statistics of the reference image in

different ways, and the levels of statistical differences may

be used to quantify image distortions. In order to estimate

FR SSIM, we desire the variations of the statistics of the

DNT coefficients with respect to different types and levels

of distortions to be coherent with the corresponding effects on

FR SSIM.

The Gaussian scale mixture (GSM) model provides a conve-

nient framework to define a DNT [40]. A vector Y of length N

is regarded as a GSM if it can be represented as the product of

two independent components: i.e., Y =̇zU , where z is a scalar

random variable called the mixing multiplier, and U is a zero-

mean Gaussian-distributed random vector with covariance CU .

In image processing applications, GSM may be used to model

a cluster of wavelet coefficients that are neighbors in space,

scale, and orientation. If we assume that z takes a fixed value

for each cluster but varies across the image, then putting all z

values together constitutes a variance field. DNT can then be

accomplished by ν = Y/z, which produces a random vector

that is Gaussian. This had been observed in empirical studies

in [40], where z is replaced by a local estimation ẑ using a

maximum-likelihood estimator [40]

ẑ = arg max
z

{log p(Y |z)} =
√

Y T C−1
U

Y

N
. (1)

The Gaussianization produced by the DNT process largely

reduces the complication in describing the distribution of the

subband coefficient x

pm(x) = 1√
2πσ

exp

(

− x2

2σ 2

)

(2)

where only a single parameter σ needs to be recorded for each

subband.

In addition to σ , the Kullback–Leibler divergence (KLD)

[42] between model Gaussian distribution, pm(x), and the true

probability distribution of the DNT-domain coefficients, p(x),

denoted by d(pm||p) is extracted as the second feature for

each subband

d(pm||p) =
∫

pm(x) log
pm(x)

p(x)
dx . (3)

This improves model accuracy when the probability distribu-

tion is not exactly Gaussian.

The subband distortion of the distorted image can be

evaluated by the KLD between the probability distribu-

tion of the original image, p(x), and that of the distorted

image, q(x)

d(p||q) =
∫

p(x) log
p(x)

q(x)
dx . (4)

Direct computation of this quantity requires full access to

p(x), which would require a large number of RR features

to be described. Fortunately, the Gaussian model of the DNT

coefficients (2) provides a good approximation. Therefore, we

can estimate p(x) by

d̂(p||q) =
∫

pm(x) log
p(x)

q(x)
dx (5)

= d(pm||q) − d(pm ||p) (6)

where d(pm||q) is the KLD between the model Gaussian

distribution and the distribution computed from the distorted

image. Although different types of distortions affect the

statistics of the reference image in different manners, they

are all summarized in (6) to a single distortion measure.

An added nice feature of this measure is that it equals

zero when the two distributions p(x) and q(x) are

identical.

At the receiver side, the KLD between the subband coef-

ficient probability distributions of the original and distorted

images is calculated as in (6). By assuming independence

between subbands, the subband-level distortion measure of (6)

can be combined to provide an overall distortion assessment

of the whole image by

D = log

(

1 + 1

D0

K
∑

k=1

∣

∣

∣d̂
k(pk ||qk)

∣

∣

∣

)

(7)

where K is the total number of subbands, pk and qk are the

probability distributions of the kth subband of the reference

and distorted images, respectively, d̂k represents the KLD

between pk and qk , and D0 is a constant to control the scale

of the distortion measure.

The limitation of the measure in (7) is that it does not

take into account the relationship (or structures) between the

distortions across different subbands. Such distortion struc-

ture is a critical issue behind the philosophy of the SSIM

approach [43], which attempts to distinguish structural and

nonstructural distortions. To understand this better, let us look

at the FR SSIM algorithm [1], which is based on measuring

the similarities of luminance, contrast, and structure between
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Fig. 2. Equal-distortion contours with respect to the central reference vectors.
(a) MSE measure. (b) SSIM measure.

local image patches x and y extracted from a reference and a

distorted images

l(x, y) = 2µxµy + C1

µ2
x + µ2

y + C1
(8)

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(9)

s(x, y) = 2σxy + C3

σxσy + C3
(10)

where µ, σ , and σ represent the mean, standard derivation, and

covariance of the image patches, respectively, and C1, C2, and

C3 are positive constants used to avoid instability when the

denominators are close to zero. Subsequently, the local SSIM

index is defined as the product of the three components, which

gives

SSIM(x, y) =
[

l(x, y)
]α[

c(x, y)
]β[

s(x, y)
]γ

. (11)

The SSIM index of the whole image is obtained by averaging

(or weighted averaging) the local SSIM indices obtained using

a sliding window that runs across the image.

Fig. 2 gives a graphical explanation in the vector space

of image components, where the image components can be

pixels, wavelet coefficients, or extracted features from the

reference image. For the purpose of illustration, 2-D diagrams

are shown here. However, the actual dimensions may be equal

to the number of pixels or features being compared. The

three vectors represent three reference images and the contours

around them represent the images with the same distortion

level using (a) MSE and (b) SSIM as the distortion/quality

measures, respectively. The critical difference is in the shapes

of the contours. Unlike MSE (where all three contours have

the same size and shape), SSIM is adaptive according to the

reference image. In particular, if the “direction” of distortion

is consistent with the underlying reference (aligned with the

direction of the reference vector), the distortion is nonstruc-

tural and is much less objectionable than structural distortions

(the distortions perpendicular to the reference vector direc-

tion). The formulation of SSIM in (11) provides a flexible

framework to adjust the relative importance between structural

(last term) and nonstructural (first two terms) distortions.

Here we borrow the design philosophy of FR SSIM, but

apply it to a completely different domain of image repre-

sentation. In particular, we attempt to distinguish structural
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Fig. 3. Relationship between Dn and SSIM for blur, JPEG compression,
JPEG2000 compression, and noise contamination distortions.

and nonstructural changes of the cluster of statistical features

extracted from the DNT coefficients from different subbands.

This is intuitively sensible because the distortion that is con-

sistent with the underlying signal in the feature vector space

needs to be treated differently as compared to nonstructural

distortions. For example, in the case where the distorted

image is a globally contrast-scaled (contrast reduction or

enhancement) version of the reference image, then the standard

deviations of all subbands should scale by the same factor,

which is considered consistent nonstructural distortion and is

less objectionable than the case where the subband standard

deviations change in different ways.

Let σ r and σ d represent the vectors containing the standard

deviation σ values of the DNT coefficients from each subband

in the reference and distorted images, respectively. We define

a new RR distortion measure as

Dn = g(σ r , σ d) log

(

1 + 1

D0

K
∑

k=1

∣

∣

∣d̂
k(pk ||qk)

∣

∣

∣

)

. (12)

Compared with (7), the key difference here is the added

function g(σ r , σ d) in the front. This function should serve the

purpose of differentiating nonstructural from structural distor-

tion directions in the feature vector space of subband σ values,

so as to scale the distortion measure D in a way that penalizes

more on structural than nonstructural distortions. Motivated

by the successful normalized correlation formulation in SSIM

[43], we define

g(σ r , σ d) = ‖σ r‖2 + ‖σ d‖2 + C

2(σ r · σ d ) + C
(13)

where a positive constant C is included to avoid instability

when the dot product σ r · σ d is close to 0. This function is

lower-bounded by 1 when σ r and σ d are fully correlated, or in

other words, when their directions in the feature vector space

are completely aligned (corresponding to nonstructural distor-

tions). With the decrease of correlation, g(σ r , σ d) increases,

and thus imposes more penalty to structural distortions.

Fig. 3 plots the Dn values computed using distorted images

from the LIVE database [44] for four common distortion

types at different distortion levels, and compares them with

the corresponding FR SSIM values. Interestingly, for each
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fixed distortion type, Dn exhibits a nearly perfect linear

relationship with SSIM. We regard this as a consequence of

the similarity between their design principle, even though the

principle is applied to completely different domains of signal

representation. The clean linear relationship helps in reducing

the SSIM estimation problem to the estimation of the slope

factor. Once the slope is determined, we can then use the

following straight-line relationship to estimate SSIM:

Ŝ = 1 − αDn . (14)

The slope factor α in (14) varies across distortion types

and needs to be learned from examples. Specifically, we

adopt a regression-by-discretization approach [45], which is

a regression scheme that employs a classifier on a copy of the

data that has the class attribute discretized, and the predicted

value is the expected value of the mean class value for each

discretized interval. The training images were obtained from

six image databases described in Section III. The classification

is performed using random forests [46], which are built using

|σr − σd | and |kr − kd | values in each subband as the

attributes, where kr and kd are the kurtosis values of the DNT

coefficients computed from the reference and distorted images,

respectively. It has been observed with the help of ground-truth

data that the values of α tend to lie in various closely packed

clusters. Each cluster may contain images belonging to one

distortion type. It provides a natural order to the distortion

types and therefore does not require an undesirable distortion

classification stage which limits the generalization capability

of the proposed method. Therefore, the proposed method has

the potential to extrapolate to extended distortion types that

may not be included in the training samples.

The specification of our implementation is as follows. To

extract RR features, the reference image is first decomposed

into 12 subbands using a three-scale four-orientation steerable

pyramid decomposition [47], which is a type of redundant

wavelet transform that avoids aliasing in subbands. DNT is

then performed using 13 neighboring coefficients, including

9 spatial neighbors from the same subband, 1 from parent

subband, and 3 from the same spatial location in the other

orientation bands at the same scale. The value of the constant

C in (13) is set to 0.1, which is found to be an insensitive

parameter in terms of the performance of the proposed IQA

measure. Three features, σr , kr , and d(pm ||p), are extracted

for each subband, resulting in a total of 36 scalar RR features

for a reference image.

III. VALIDATION OF RR-IQA ALGORITHM

Six databases were used to test the proposed algorithm

and compare its performance with other IQA algorithms. The

databases include.

1) The LIVE database [44] contains seven datasets of 982

subject-rated images, including 779 distorted images

with five types of distortions at different distortion

levels. The distortion types include: a) JPEG2000

compression (2 sets); b) JPEG compression (2 sets);

c) white noise contamination (1 set); d) Gaussian blur (1

set); and e) fast fading channel distortion of JPEG2000

compressed bitstream (1 set). The subjective test was

carried out with each dataset individually, and a cross-

comparison set that mixes images from all distortion

types is then used to align the subject scores across

datasets. The alignment process is rather crude, but the

aligned subjective scores (all data) are still useful ref-

erences for testing general-purpose IQA algorithms, for

which cross-distortion comparisons are highly desirable.

2) The Cornell-A57 database [48] contains 54 distorted

images with six types of distortions: a) quantization

of the LH subbands of a five-level discrete wavelet

transform, where the subbands were quantized via uni-

form scalar quantization with step sizes chosen such

that the RMS contrast of the distortions was equal;

b) additive Gaussian white noise; c) baseline JPEG

compression; d) JPEG2000 compression without visual

frequency weighting; e) JPEG2000 compression with the

dynamic contrast-based quantization algorithm, which

applies greater quantization to the fine spatial scales

relative to the coarse scales in an attempt to preserve

global precedence; and f) blurring by using a Gaussian

filter.

3) The IVC database [49], [50] includes 185 distorted

images with four types of distortions, which are:

a) JPEG compression; b) JPEG2000 compression:

c) local adaptive resolution (LAR) coding: and

d) blurring.

4) The Toyama-MICT database [51] contains 196 images,

including 168 distorted images generated by JPEG and

JPEG2000 compression.

5) The Tampere Image database 2008 (TID2008) [52],

[53] includes 1700 distorted images with 17 distortion

types at four distortion levels. The types of distortions

are: a) additive Gaussian noise; b) additive noise in

color components more intense than additive noise in

the luminance component; c) Spatially correlated noise;

d) masked noise; e) high-frequency noise; f) impulse

noise; g) quantization noise; h) Gaussian blur; i) image

denoising; j) JPEG compression; k) JPEG2000 Com-

pression; l) JPEG transmission errors; m) JPEG2000

transmission Errors, n) Non-eccentricity pattern noise;

o) local block-wise distortions of different intensity;

p) mean shift (intensity shift); and q) contrast change.

6) The Categorical Image Quality (CSIQ) database [54]

contains 866 distorted images of six types of distortions

at 4 and 5 distortion levels. The distortion types include

JPEG compression, JPEG2000 compression, global con-

trast decrements, additive pink Gaussian noise, and

Gaussian blurring.

To validate the proposed RR-SSIM algorithm, we first test

how well it predicts FR SSIM. Fig. 4 shows the scatter plots

obtained using all six databases, where each point in the plots

represents one test image, and the vertical and horizontal axes

are FR-SSIM and RR-SSIM, respectively. If the prediction is

perfect, then the point should lie on the diagonal line. To pro-

vide a quantitative measure, Table I shows the mean absolute

error (MAE) and Pearson linear correlation coefficient (PLCC)

between FR SSIM and our RR-SSIM estimate. It can be
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Ŝ

S
S
IM

(d)

0.7 0.75 0.8 0.85 0.9 0.95 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Ŝ

S
S
IM

(e)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Ŝ
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Fig. 4. Scatter plots of SSIM versus RR-SSIM estimation Ŝ for six test databases. (a) LIVE Image Database. (b) Cornell A57 Database. (c) CSIQ Database.
(d) IVC Database. (e) Toyama-MICT Database. (f) TID 2008 Database.

TABLE I

MAE AND PLCC COMPARISONS BETWEEN SSIM AND

RR SSIM ESTIMATION FOR SIX DATABASES

Database MAE PLCC

LIVE [44] 0.0317 0.9432

Cornell A57 [48] 0.0266 0.9299

IVC [49], [50] 0.0244 0.9211

Toyama-MICT [51] 0.0119 0.9405

TID2008 [52], [53] 0.0303 0.9004

CSIQ [54] 0.0339 0.9243

observed that, for all databases, the points are scattered close to

the diagonal lines in Fig. 4 and the correlation coefficients are

above 0.9, indicating good prediction accuracy of the proposed

method. The breakdown prediction performance for individual

distortion types in different databases are provided in Table II.

The ultimate goal of RR-IQA algorithms is to predict

subjective quality evaluation of images. Therefore, the more

important test is to evaluate how well they predict subjective

scores. For this purpose, we use five evaluation metrics to

assess the performance of IQA measures.

1) PLCC after a nonlinear mapping between the subjective

and objective scores. For the i th image in an image

database of size N , given its subjective score oi [mean

opinion score (MOS) or difference of MOS (DMOS)

between reference and distorted images] and its raw

objective score ri , we first apply a nonlinear function

to ri given by [55]

q(r) = a1

{

1

2
− 1

1 + exp [a2(r − a3)]

}

+a4r +a5 (15)

where a1–a5 are model parameters found numeri-

cally using a nonlinear regression process in MATLAB

optimization toolbox to maximize the correlations

between subjective and objective scores. The PLCC

value can then be computed as

PLCC =
∑

i (qi − q̄) ∗ (oi − ō)
√

∑

i (qi − q̄)2 ∗
∑

i (oi − ō)2
. (16)

2) MAE is calculated using the converted objective scores

after the nonlinear mapping described above

MAE = 1

N

∑

|qi − oi |. (17)

3) Root mean-squared (RMS) error is computed similarly

as

RMS =
√

1

N

∑

(qi − oi )2. (18)

4) Spearman’s rank correlation coefficient (SRCC) is

defined as

SRCC = 1 −
6

∑N
i=1 d2

i

N(N2 − 1)
(19)

where di is the difference between the i th image’s ranks

in subjective and objective evaluations. SRCC is a non-

parametric rank-based correlation metric, independent of

any monotonic nonlinear mapping between subjective

and objective scores.

5) Kendall’s rank correlation coefficient (KRCC) is another

nonparametric rank correlation metric given by

KRCC = Nc − Nd

1
2 N(N − 1)

(20)

where Nc and Nd are the number of concordant and

discordant pairs in the dataset, respectively.
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TABLE II

DISTORTION TYPE BREAKDOWN FOR MAE AND PLCC COMPARISONS

BETWEEN SSIM AND RR-SSIM ESTIMATION

Distortion type Database MAE PLCC

Additive Gaussian noise

LIVE 0.0340 0.9903

TID2008 0.0185 0.9522

CSIQ 0.0274 0.9771

Noise in color comp. TID2008 0.0080 0.8978

Spatially corr. noise TID2008 0.0331 0.9580

Masked noise TID2008 0.0057 0.5982

High frequency noise TID2008 0.0227 0.9621

Additive pink noise CSIQ 0.0212 0.9712

Impulse noise TID2008 0.0222 0.9667

Quantization noise TID2008 0.0316 0.7584

Gaussian blur

LIVE 0.0412 0.8973

IVC 0.0342 0.9288

TID2008 0.0416 0.8892

CSIQ 0.0260 0.9783

Image denoising TID2008 0.0444 0.8721

JPEG compression

LIVE (Set 1) 0.0214 0.9867

LIVE (Set 2) 0.0235 0.9840

IVC 0.0141 0.9476

Toyama-MICT 0.0144 0.9007

TID2008 0.0253 0.9325

CSIQ 0.0490 0.8895

JPEG2000 compression

LIVE (Set 1) 0.0197 0.9820

LIVE (Set 2) 0.0229 0.9792

IVC 0.0296 0.9321

Toyama-MICT 0.0093 0.9472

TID2008 0.0482 0.9009

CSIQ 0.0452 0.9223

LAR compression IVC 0.0227 0.9426

JPEG trans. error TID200 0.0420 0.8990

JPEG2000 trans. error
LIVE 0.0434 0.9138

TID2008 0.0601 0.9074

Non-ecc. patt. noise TID2008 0.0149 0.8863

Local blockwise dist. TID2008 0.0117 0.8837

Mean shift TID2008 0.0367 0.8205

Contrast change
TID2008 0.0485 0.7085

CSIQ 0.0372 0.9486

Among the above metrics, PLCC, MAE, and RMS are

adopted to evaluate prediction accuracy [56], and SRCC

and KRCC are employed to assess prediction monotonicity

[56]. A better objective IQA measure should have higher

PLCC, SRCC, and KRCC, with lower MAE and RMS val-

ues. All these evaluation metrics are adopted from previous

IQA studies [55]–[57]. Only the distorted images in the six

databases were employed in our tests (i.e., reference images

are excluded). This avoids several difficulties in computing

the evaluation metrics. Specifically, the reference images have

infinite peak signal-to-noise-ratio (PSNR) values, making it

hard to perform nonlinear regression and compute PLCC,

MAE, and MSE values. In addition, since all reference images

are assumed to have perfect quality, there are no natural

relative ranks between them, resulting in ambiguities when

computing SRCC and KRCC metrics.

The test results are given in Tables III and IV. To provide

background comparisons, we have also included in the tables

four other objective IQA algorithms, among which two are FR-

IQA measures, i.e., PSNR and SSIM, and three are RR-IQA

measures, i.e., wavelet marginal-based method [23], [24] and

DNT marginal-based method [25]. Other RR-IQA methods are

not included in the comparison because they are not designed

and tested for general-purpose applications. Although it is

unfair to compare RR-IQA with FR-IQA measures, the PSNR

and SSIM results supply useful references on the current status

of RR approaches. To provide an overall evaluation of the IQA

algorithms, we also calculate the direct and weighted average

of PLCC, SRCC, and KRCC values across all six databases

(where the weight assigned to a database is determined by the

number of test images in a database). The average results are

given in Table IV. It can be seen that, in general, the proposed

RR-SSIM method performs slightly inferior to SSIM (which

is as expected) but significantly outperforms PSNR and the

other RR-IQA methods under comparison.

Statistical significant analysis has been carried out based on

variance-based hypothesis testing, which follows the approach

introduced in [55] and subsequently adopted by many later

papers in the literature. Specifically, the residual difference

between the DMOS and the predicted quality given by each

objective IQA algorithm is assumed to be Gaussian-distributed

and F-statistic is employed to compare the variances of two

sets of sample points. With such a test, we can make a

statistically sound judgment of the superiority or inferiority

of one IQA algorithm over another. A statistical significance

matrix is calculated and given in Table V. Each entry in the

table consists of six characters which correspond to the six

publicly available databases in the order of {LIVE, A57, CSIQ,

IVC, Toyama, TID2008}. The symbol “-” denotes that the two

IQA methods are statistically indistinguishable, “1” denotes

that the IQA method of the row is statistically better than that

of the column, and “0” denotes that the IQA method of the

column is better than that of the row. It can be observed that

FR-SSIM performs the best among the IQA algorithms under

comparison and the performance of the proposed RR-SSIM

algorithm is quite close to that of SSIM and is superior to all

other IQA methods being compared.

The assumption of Gaussianity is verified with the help

of kurtosis values obtained from the prediction residuals. As

in [55], the residual values are considered to be Gaussian-

distributed if the kurtosis value lies between 2 and 4. The

results of Gaussianity tests are given in Table VI, where

“1” means the distribution is considered Gaussian and “0”

otherwise. It can be observed that the assumption is met in

most cases with only a few exceptions.

To examine how the proposed RR-SSIM method performs

for different distortion types, we compare it with five other

recently proposed RR-IQA algorithms using individual distor-

tion types as well as the “All data” case of the LIVE database.

The results are given in Table VII, where the best results

for each distortion type are highlighted in bold. It can be

observed that the proposed method exhibits highly competitive

performance in most cases.

Finally, we compare the computational complexity of the

proposed RR-SSIM method with five other RR-IQA algo-

rithms. The results are reported in Table VIII, where we

present the average time taken per image, over all the

images in the LIVE database, using a computer with Intel i7

processor at 2.67 GHz (the only exception is the method by



REHMAN AND WANG: REDUCED-REFERENCE SSIM ESTIMATION 3385

TABLE III

PERFORMANCE COMPARISONS OF IQA MEASURES USING SIX DATABASES

LIVE database (779 Images) [44] Cornell A57 database (54 Images) [48]

IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.8721 10.5248 13.3683 0.8755 0.6863 0.6346 0.1606 0.1899 0.6188 0.4309

SSIM [1] FR 0.9448 6.9324 8.9455 0.9479 0.7962 0.8017 0.1209 0.14688 0.8066 0.6058

Wavelet marginal [24] RR 0.8226 10.5248 13.3683 0.8755 0.6863 0.5125 0.1971 0.2317 0.31398 0.2210

DNT marginal [25] RR 0.8949 9.7321 11.7862 0.8882 0.7126 0.5474 0.1659 0.2057 0.5058 0.3638

RR-SSIM RR 0.9194 9.1889 11.3026 0.9129 0.7349 0.7044 0.1433 0.1744 0.7301 0.5345

IVC database (185 Images) [49], [50] Toyama-MICT database (168 Images) [51]

IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.6719 0.7190 0.9023 0.6884 0.5217 0.6329 0.7817 0.9688 0.6131 0.4442

SSIM [1] FR 0.9119 0.3776 0.4999 0.9018 0.7223 0.8886 0.4385 0.5738 0.8793 0.6939

Wavelet marginal [24] RR 0.5311 0.8550 1.0322 0.4114 0.2907 0.6542 0.7742 0.9464 0.6322 0.4570

DNT marginal [25] RR 0.6316 0.7842 0.9446 0.6099 0.4364 0.6733 0.7507 0.9253 0.6521 0.4764

RR-SSIM RR 0.8177 0.5619 0.7014 0.8154 0.6164 0.8051 0.5648 0.7423 0.8003 0.6090

TID 2008 database (1700 Images) [52], [53] CSIQ database (866 Images) [54]

IQA measure Type PLCC MAE RMS SRCC KRCC PLCC MAE RMS SRCC KRCC

PSNR FR 0.5232 0.8683 1.1435 0.5530 0.4027 0.7512 0.1366 0.1732 0.8058 0.6083

SSIM [1] FR 0.7731 0.6546 0.8510 0.7749 0.5767 0.8612 0.0991 0.1334 0.8756 0.6906

Wavelet marginal [24] RR 0.5891 0.8666 1.0843 0.5119 0.3589 0.7124 0.1492 0.1842 0.7431 0.5457

DNT marginal [25] RR 0.5964 0.8287 1.0772 0.5722 0.4188 0.7009 0.1535 0.1872 0.7027 0.5176

RR-SSIM RR 0.7231 0.7190 0.9270 0.7210 0.5236 0.8426 0.1092 0.1413 0.8527 0.6540

TABLE IV

AVERAGE PERFORMANCE OF IQA MEASURES OVER SIX DATABASES

Direct average Database-size weighted average

IQA measure Type PLCC SRCC KRCC PLCC SRCC KRCC

PSNR FR 0.6811 0.6924 0.5157 0.6622 0.6887 0.5172

SSIM [1] FR 0.8636 0.8643 0.6809 0.8416 0.8455 0.6615

Wavelet marginal [24] RR 0.6371 0.5813 0.4266 0.6651 0.6383 0.4691

DNT marginal [25] RR 0.6741 0.6552 0.4876 0.6870 0.6724 0.5053

RR-SSIM RR 0.8021 0.8054 0.6121 0.7995 0.7996 0.6061

TABLE V

STATISTICAL SIGNIFICANCE MATRIX BASED ON IQA − DMOS RESIDUALS

Model PSNR SSIM Wavelet marginal [24] DNT marginal [25] RR-SSIM

PSNR - - - - - - 0 - 0 0 0 0 1 - - - - 0 0 - 1 - - 0 0 - 0 0 0 0

SSIM 1 - 1 1 1 1 - - - - - - 1 1 1 1 1 1 1 1 1 1 1 1 1 - - 1 - -

Wavelet Marginal [24] 0 - - - - 1 0 0 0 0 0 0 - - - - - - 0 - - - - - 0 0 0 0 0 0

DNT Marginal [25] 1 - 0 - - 1 0 0 0 0 0 0 1 - - - - - - - - - - - 0 - 0 0 0 0

RR-SSIM 1 - 1 1 1 1 0 - - 0 - - 1 1 1 1 1 1 1 - 1 1 1 1 - - - - - -

Ma et al. [60], which was tested on a slightly faster computer).

This measurement provides a rough estimate of the relative

computational complexity between different RR-IQA algo-

rithms, as no code optimization has been done. It can be seen

that the proposed method takes only slightly more time than

most of the other methods under comparison, mainly due to the

computation of the DNT. The additional computational cost is

compensated by the improved quality prediction performance,

as shown in Table VII.

IV. IMAGE REPAIRING USING RR FEATURES

Since the RR features reflect certain properties about the

reference image and these properties may be altered in the

distorted image, they may be employed to partially “repair”

the distorted image. Here we provide an example that uses

DNT-domain RR features to correct blurred images without

any knowledge about the blur kernel.

Since blur reduces energy at mid- and high-frequencies,

the subband standard deviation σd of DNT coefficients in the

distorted image is smaller than that of the reference image σr .

A straightforward way to enforce a “corrected” image to have

the same statistical properties as the reference image is to scale

up all DNT coefficients in the subband of the distorted image

by a fixed scale factor, followed by an inverse DNT to create

a reconstructed image. In practice, however, inverting a DNT

transform is a nontrivial issue that requires specific conditions

of the coefficients and may involve computationally expensive

algorithms [61].

Here we propose a different approach that attempts to match

DNT-domain statistics but avoids direct inversion of DNT. The

idea is to use the DNT-domain statistics to estimate the scale

factors and then apply them in the wavelet domain rather than

DNT domain. As a result, only inverse wavelet transform is

necessary, and the remaining question becomes whether the
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TABLE VI

GAUSSIANITY OF IQA−DMOS RESIDUALS

LIVE A57 CSIQ IVC Toyama TID 2008

PSNR 1 1 1 1 1 1

SSIM 1 1 0 0 1 1

Wavelet Marginal [24] 1 1 1 1 1 1

DNT Marginal [25] 1 1 1 1 1 1

RR-SSIM 1 1 1 0 1 1

TABLE VII

PERFORMANCE COMPARISON OF RR-IQA ALGORITHMS USING LIVE DATABASE

Distortion JP2(1) JP2(2) JPG(1) JPG(2) Noise Blur FF All data

PLCC

Wavelet marginal [24] 0.9339 0.9488 0.8278 0.9566 0.8769 0.8395 0.9230 0.8284

DNT marginal [25] 0.9470 0.9625 0.8228 0.9627 0.9598 0.9523 0.9438 0.8949

βW-SCM [58] 0.9514 0.9569 0.8673 0.9568 0.9755 0.9454 0.9243 0.8353

Zhang et al. [59] 0.9087 0.9511 0.9094 0.9777 0.8623 0.9234 0.9392 0.8744

Ma et al. [60] 0.8065 0.8819 0.8180 0.9663 0.8769 0.9092 0.9178 0.8841

RR-SSIM 0.9597 0.9632 0.9448 0.9761 0.9772 0.9154 0.9315 0.9194

SRCC

Wavelet marginal [24] 0.9370 0.9419 0.8109 0.8936 0.8600 0.8757 0.9212 0.8270

DNT marginal [25] 0.9439 0.9556 0.8246 0.8853 0.9508 0.9599 0.9431 0.8882

βW-SCM [58] 0.9495 0.9517 0.8535 0.8705 0.9715 0.9371 0.9258 0.8391

Zhang et al. [59] 0.9134 0.9495 0.9105 0.9294 0.8417 0.9265 0.9365 0.8832

Ma et al. [60] 0.7945 0.8717 0.8042 0.9100 0.8619 0.9214 0.8866 0.8807

RR-SSIM 0.9555 0.9539 0.9493 0.8978 0.9642 0.8692 0.9137 0.9129

TABLE VIII

COMPARISON OF COMPUTATION TIME USING LIVE DATABASE (SECONDS/IMAGE)

Model Wavelet marginal [24] DNT marginal [25] βW-SCM [58] Zhang et al. [59] Ma et al. [60] RR-SSIM

Time 6.3719 10.3843 6.6258 3.4937 18 11.2309
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Fig. 5. DNT-coefficient histograms of original, distorted, and repaired images.

desired scale ratio in the DNT domain can be well matched

by scaling in the wavelet domain. To ensure this, we apply our

approach in an iterative manner, and the resulting algorithm

is given by Algorithm 1. In our experiment, we find that

this iterative algorithm converges quickly, and typically three

iterations are enough to reconstruct a stable repaired image

(and thus J = 3 in Algorithm 1) that matches the DNT-

domain statistics quite well. This is demonstrated in Fig. 5,

which compares the subband histograms of the reference,

distorted, and repaired DNT coefficients. It can be observed

that the histogram of the scaled DNT coefficients very well

approximates that of the reference image. A similar design

philosophy of iteratively synthesizing images by matching

desirable statistical features has been used before in the

literature for texture synthesis, e.g., [62].

Algorithm 1 Iterative image repairing algorithm

1) Initialization: Let j = 0, x̂(0) = y, where y is the

distorted image

2) Repeat J times

a) Wavelet transform: Compute wavelet transform of

x̂( j ), resulting in wavelet coefficients ω

b) DNT stage: Compute DNT from ω, resulting in

DNT coefficients ν; For all i , in the i th subband,

calculate std of DNT coefficients σ i
ν

c) Scaling factor calculation: For all i , in the i th

subband, compute the scale factor si = σ i
r /σ i

ν ,

where σ i
r is the std of DNT coefficients of the

reference image (obtained as RR features)

d) Wavelet coefficient scaling: For all i , in the i th

subband, let ωnew = siω

e) Image reconstruction: Compute inverse wavelet

transform of ωnew, resulting in x̂( j+1)

f) Increase j by 1

3) Report reconstructed image: x̂ = x̂(J )

An interesting feature of the above image deblurring process

is that it does not require any information about the blur

kernel. Depending on the nature of the blur process, the energy

reductions at different subbands are different. For example,

out-of-focus blur may lead to uniform energy reduction in
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Fig. 6. Repairing homogeneously and directionally burred images using RR features. (a) Original “building” image (cropped for visibility). (b) Homogeneously
blurred image, SSIM = 0.7389, (Ŝ) = 0.7118. (c) Repaired image SSIM = 0.9142, (Ŝ) = 0.9327. (d) Directionally blurred image (0 degree), SSIM = 0.6734,
(Ŝ) = 0.6821. (e) Repaired image SSIM = 0.7991, (Ŝ) = 0.8063. (f) Directionally blurred image (45 degree), SSIM = 0.6612, (Ŝ) = 0.6324. (g) Repaired
image SSIM = 0.7896, (Ŝ) = 0.8135.

all orientation subbands, while motion blur could result in

more significant energy reduction along one orientation against

another. Since the scale factor s in our algorithm is computed

for individual subbands independently, it could automatically

adapt the energy correction factors based on the energy

reduction occurred in individual subbands. Fig. 6 provides

an example, where the homogeneously Gaussian blurred and

directionally motion blurred images at different angles are

deblurred using exactly the same image repairing algorithm

described above. All repaired images appear to be much

sharper and have higher contrast than their blurred versions.

The visual effect is also reflected by both FR-SSIM and the

proposed RR-SSIM evaluations.

One needs to be aware that the RR features only provide

limited amount of additional information about the reference

image and such information is global in the current imple-

mentation (due to the nature of the extracted RR features).

Therefore, the same repairing process may or may not work

as effectively as we observe in Fig. 6 for the types of image

distortions other than linear blur. In the future, more advanced

image repairing methods may be developed that make the

best use of the RR features as side information in the image

repairing process, though these methods are beyond the scope

of this paper.

V. CONCLUSION

We proposed an RR-IQA algorithm in an attempt to

approximate FR-SSIM by making use of DNT-domain image

statistical properties and the design principle of the SSIM

approach. Experimental results using six publicly available

subject-rated image databases showed that the proposed RR-

SSIM method exhibits good correlations with not only FR-

SSIM but also subjective evaluations of image quality over

a wide variety of image distortions. We also demonstrated

the concept of image repairing by iteratively matching the

DNT-domain statistical properties (available as RR features)

of the reference image. The proposed method has a fairly

low RR data rate (36 scalar features per image in the current

implementation) and has good potential to be employed in

visual communications applications for quality monitoring,

streaming, and image repairing tasks.
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