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Abstract—The human visual system (HVS) provides a suitable cue
for image quality assessment (IQA). In this paper, we develop a novel
reduced-reference (RR) IQA scheme by incorporating the merits from the
contourlet transform, contrast sensitivity function (CSF), and Weber’s law
of just noticeable difference (JND). In this scheme, the contourlet trans-
form is utilized to decompose images and then extract features to mimic
the multichannel structure of HVS. CSF is applied to weight coefficients
obtained by the contourlet transform to simulate the appearance of images
to observers by taking into account many of the nonlinearities inherent
in HVS. JND is finally introduced to produce a noticeable variation in
sensory experience. Thorough empirical studies are carried out upon the
Laboratory for Image and Video Engineering database against the sub-
jective mean opinion score and demonstrate that the proposed framework
has good consistency with subjective perception values and the objective
assessment results can well reflect the visual quality of images.

Index Terms—Contourlet transform, human visual system (HVS),
image quality assessment (IQA), reduced reference (RR).

I. INTRODUCTION

The objective of image quality assessment (IQA) [2], [4] is very
important for image retrieval and content analysis, multimedia in-
formation organization [18], watermarking [19], face image analysis
[20], [21], palmprint recognition [3], human motion analysis [1], and
motion-image-based gender recognition [22]. It provides computa-
tional models to measure the perceptual quality of an image. In recent
years, many methods have been designed to evaluate the quality of an
image, which may be distorted during acquisition, transmission, com-
pression, restoration, and processing (e.g., watermark embedding).
According to the availability of a reference image, existing objective
IQA methods can be categorized into three categories: full-reference
(FR), no-reference (NR) [16], and reduced-reference (RR) methods.
The focus of this paper is RR IQA because it is a compromise
between FR and NR and it is designed for IQA by employing partial
information of the corresponding reference.

Based on results in natural image statistics, Wang and Bovik [2]
proposed the wavelet-domain natural image statistic metric (WNISM),
which achieves promising performance for image visual perception
quality evaluation. The underlying factor in WNISM is that the mar-
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ginal distribution of wavelet coefficients of a natural image conforms
to the generalized Gaussian distribution. Based on this fact, WNISM
measures the quality of a distorted image by the fitting error between
the wavelet coefficients of the distorted image and the Gaussian
distribution of the reference.

Although WNISM has been recognized as the standard method for
RR IQA, it fails to consider the statistical correlations of wavelet co-
efficients in different subbands and the visual response characteristics
of the mammalian cortical simple cells. Moreover, wavelet transforms
cannot explicitly extract the image geometric information, e.g., lines
and curves, and wavelet coefficients are dense for smooth image edge
contours. Therefore, there is still a big room to further improve the
performance of RR IQA.

In this paper, to target the aforementioned problems in WNISM,
to further improve the performance of RR IQA, and to broaden RR-
IQA-related applications, a novel human visual system (HVS)-driven
scheme is proposed. This framework is constructed by pooling the
contourlet transform [7], contrast sensitivity function (CSF) [10], and
Weber’s law of just noticeable difference (JND) [10] together. In
2002, Do and Vetterli proposed the contourlet transform [7], which
is also termed the pyramidal directional filter bank, which has the
following two key characteristics: 1) the underlying multiresolution
mechanism can represent images in continuous resolution values,
which is normally called bandpass, and 2) the basis of the contourlet
transform are directional and local in time and frequency domains.
The new framework is consistent with HVS: the contourlet trans-
form decomposes images for feature extraction to mimic the multi-
channel structure of HVS, CSF reweights the contourlet-decomposed
coefficients to mimic the nonlinearities inherent in HVS, and JND
produces a noticeable variation in sensory experience. Extensive ex-
periments based on the Laboratory for Image and Video Engineer-
ing (LIVE) database [14] against the subjective mean opinion score
(MOS) have been conducted to demonstrate the effectiveness of the
new framework.

II. IQA IN THE CONTOURLET DOMAIN

In this paper, we develop a novel scheme for IQA by applying
the contourlet transform to decompose images and extract effective
features. This scheme quantifies the errors between the distorted and
the reference images by mimicking the error sensitivity function [2] in
HVS. The objective of this scheme is to provide IQA results, which
have good consistency with subjective perception values. This frame-
work incorporates merits from three components, i.e., the contourlet
transform, CSF, and Weber’s law of JND, to model the process of
image perception.

The scheme works with the following stages: 1) The contourlet
transform is utilized to decompose both the reference image at the
sender side and the distorted image at the receiver side. 2) CSF
masking is utilized to balance subband coefficients in different scales
obtained by the contourlet transform. With this stage, we can simulate
the appearance of images to observers by taking into account many
of the nonlinearities inherent in HVS. 3) JND produces a noticeable
variation in sensory experience. 4) A histogram is constructed for
image representation, each bin of the histogram corresponds to the
amount of visually sensitive coefficients of a selected subband, and
finally, the normalization step is applied to the histogram. 5) The IQA
result is the transformed city-block distance between the normalized
histograms of the reference and distorted images. In this section, these
five stages are detailed as follows.
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Fig. 1. Illustration of the contourlet transform.

A. Contourlet Transform

Wavelet transform has successfully been applied in a wide variety
of signal processing tasks, e.g., speech signal compression and voice-
based person identification, because it is an optimal greedy approx-
imation to extract a singularity structure for 1-D piecewise smooth
signals. Although the 2-D extension, i.e., 2-D wavelet transform, can
also be applied to image-processing-relevant applications, e.g., com-
pression, denoising, restoration, segmentation, and structure detection,
it can only deal with the singularity problem of a point [5]. To our
knowledge, images contain rich and varied information, e.g., texture
and edges, and wavelet transform is not effective in dealing with
directional information. Therefore, it is essential to develop a direc-
tional representation framework for precisely detecting orientations of
singularities like edges in a 2-D image while providing near-optimal
sparse representations.

The contourlet transform [7] is such a method for optimally rep-
resenting a high-dimensional function. It can detect, organize, rep-
resent, and manipulate data, e.g., edges, which nominally span a
high-dimensional space but contain important features approximately
concentrated on lower dimensional subsets, e.g., curves. The con-
tourlet transform is constructed via filter banks and can be viewed
as an extension of wavelets with directionality. For implementation,
it utilizes the Laplacian pyramid [8] to capture point discontinuities
and directional filter banks [9] to link point discontinuities into linear
structures, as shown in Fig. 1. Based on these two steps, it captures
the intrinsic geometrical structure of an image. In the proposed frame-
work, image is decomposed into three pyramidal levels. Based on the
characteristics of directional filter banks (“9-7” biorthogonal filters
[9]) for decomposition, coefficients in half of the directional subbands
are selected for further processing. As shown in Fig. 1, contourlet
transform is utilized to decompose an image, and a set of selected
subbands are marked with white-dashed boxes and numerals.

B. CSF Masking

The contourlet transform is introduced to decompose images and
then extract features to mimic the multichannel structure of HVS,
i.e., HVS [10], [11] works similar to a filter bank (containing filters
with various frequencies). CSF [10], [13] measures how sensitive we
are to the various frequencies of visual stimuli, i.e., we are unable
to recognize a stimuli pattern if its frequency of visual stimuli is
too high. For example, given an image consisting of horizontal black
and white stripes, we will perceive it as a gray image if stripes
are very thin; otherwise, we can distinguish these stripes. Because
coefficients in different frequency subbands have different perceptual
importance, it is essential to balance the contourlet decomposed co-
efficients via a weighting scheme, CSF masking. In this framework,

the CSF masking coefficients are obtained by the modulation transfer
function [17], i.e.,

H(f) = a(b + cf) exp(−cf)d (1)

where f = fn · fs, the center frequency of the band, is the radial
frequency in cycles per degree of the visual angle subtended, fn is the
normalized spatial frequency in cycles per pixel, and fs is the sampling
frequency with in pixels per degree. According to [12], a, b, c, and d
are 2.6, 0.192, 0.114, and 1.1, respectively.

The sampling frequency fs is defined as

fs =
2 · v · tan(0.5◦) · r

0.0254
(2)

where v is the viewing distance in meters, and r is the resolution
power of the display in pixels per inch. In this framework, v is 0.8 m
(about 2–2.5 times the height of the display), the display is 21 in
with a resolution of 1024 × 768, and r =

√
10242 + 7682/21 =

61 pixels/in. According to the Nyquist sampling theorem, f changes
from 0 to fs/2, so fn changes from 0 to 0.5. Because the contoured
transform is utilized to decompose an image into three scales from
coarse to fine, we have three normalized spatial frequencies, i.e., fn1 =
32/3, fn2 = 16/3, and fn3 = 8/3. Weighting factors are identical for
coefficients in an identical scale.

In detail, when the contourlet transform is utilized to decompose
an image, we obtain a series of contourlet coefficients ck

i,j , where
k denotes the level index (the scale sequence number) of contourlet
transform, i stands for the serial number of the directional subband
index at the kth level, and j represents the coefficient index. By using
CSF masking, the coefficient ck

i,j is scaled to xk
i,j = H(fk) · ck

i,j .

C. JND Threshold

Because HVS is sensitive to coefficients with a larger magnitude, it
is valuable to preserve visually sensitive coefficients. JND, a research
result in psychophysics, is a suitable way for this function. It measures
the minimum amount by which stimulus intensity must be changed
to produce a noticeable variation in the sensory experience. In our
framework, the contourlet transform is introduced to decompose an
image, high-pass subbands contain the primary contour and texture
information of the image, CSF masking makes coefficients have sim-
ilar perceptual importance in different frequency subbands, and then
JND is calculated to obtain a threshold to remove visually insensitive
coefficients. The amount of visually sensitive coefficients reflects
the visual quality of the reconstructed images. The lower the JND
threshold is, the more coefficients are utilized for image reconstruction
and the better visual quality of the reconstructed image is. Therefore,
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TABLE I
COMPARISON OF CONSISTENCY BETWEEN SUBJECTIVE AND OBJECTIVE ASSESSMENT

the normalized histogram reflects the visual quality of an image. Here,
the JND threshold is defined as

T =
α

M

M∑
i=1

√√√√ 1

Ni − 1

Ni∑
j=1

(xi,j − xi)2 (3)

where xi,j is the jth coefficient of the ith subband in the finest scale, xi

is the mean value of the ith subband coefficients, M is the amount of
selected subbands in the finest scale, Ni is the amount of coefficients of
the ith subband, and α is a tuning parameter corresponding to different
types of distortion.

D. Normalized Histogram for Image Representation

By using JND threshold T , we can count the number of visually
sensitive coefficients in the nth selected subband and define the value
as CT (n), which means the number of coefficients in the nth selected
subband that are larger than T obtained from (3). The number of
coefficients in the nth selected subband is C(n). Therefore, for a given
image, we can obtain the normalized histogram with L bins (L − 1
subbands are selected, and the other bin consists of the threshold value)
for representation, and the nth entry is given by

P (n) =
CT (n)

C(n)
(4)

where L is 17. Fig. 1 shows that the contourlet transform decomposes
an image into 4 levels with 33 subbands. The right-hand side of the
figures shows that 16 particular subbands are selected to form P (n).

E. Sensitive Errors Pooling

Based on (4), we can obtain the normalized histograms for both the
reference and the distorted images as PR(n) and PD(n), respectively.
In this framework, we define the metrics of the distorted image
quality as

Q =
1

1 + log2

(
S

Q0
+ 1

) (5)

where S =
∑L

n=1
|PR(n) − PD(n)| is the city-block distance be-

tween PR(n) and PD(n), and Q0 is a constant used to control the scale
of the distortion measure. In this framework, we set Q0 as 0.1. The
log function is introduced here to reduce the effects of a large S and
enlarge the effects of a small S, so that we can conveniently analyze a
large scope of S. There is no particular reason for choosing the city-
block distance, which can be replaced by others, e.g., Euclidean norm.
The same goes for the base 2 for the logarithm. The entire function
preserves the monotonic property of S.

III. EXPERIMENTS

We design two sets of experiments to demonstrate the effectiveness
of the proposed RR IQA scheme. The first set of experiments aims to
examine the scheme by a single distortion (e.g., JPEG and JPEG2000),
while the second set focuses on mixed distortions in different images.
Note that most of the existing metrics do not work well under a mixed-
distortion situation.

All reported experiments were carried out upon the LIVE databases
constructed at the University of Texas [14]. The LIVE database in-
cludes 29 high-resolution 24-b/pixel red–green–blue images (typically
768 × 512) and a series of corresponding distorted images after
JPEG and/or JPEG2000 compression. As a result, the LIVE database
contains 175 JPEG images (the bit rates in the range of 0.150–
3.336 b/pixel) and 169 JPEG2000 images (the bit rates in the range of
0.028–3.150 b/pixel). The database also provides subjective evaluation
results, e.g., MOS, for evaluating the consistency of objective IQA
metrics against the human perception. In detail, each JPEG com-
pressed image was viewed by 13–20 subjects, and each JPEG2000
image was viewed by 25 subjects. Each subject was asked to mark
“bad,” “poor,” “fair,” “good,” or “excellent” to a compressed image.
The raw scores of each subject were normalized and rescaled from 1
to 100. Afterward, MOS was obtained.

After calculating IQA scores of distorted images, we choose three
measurements to test the consistency of the proposed method and
subjective perception [15]: 1) the correlation coefficient (CC), which
expresses the accuracy of objective metrics; 2) the rank order CC
(ROCC), which expresses the monotonic property of objective metrics;
and 3) the outlier ratio (OR), which expresses the stability of objective
metrics. In addition, to further evaluate the proposed metric, we also
report the RMS and mean absolute error (MAE) values between
objective and subjective sensitivity.

A. Test 1: Different Images With an Identical Distortion

We first utilize consistency experiments between subjective and
objective assessments for performance evaluation in comparing the
proposed scheme with peak signal-to-noise ratio (PSNR) [4] and
WNISM [2]. Experiments independently test JPEG and JPEG2000
images in LIVE IQA databases. The comparison results are shown
in Table I and Fig. 2. The proposed scheme contains only one free
parameter, i.e., α, which corresponds to different distortions, for cal-
culating the JND threshold. In an identical distortion, α is identical to
different images. Empirical studies show that by tuning α to different
distortions, we can achieve better performances for IQA. In addition,
if we set α as a constant for different distortions, the IQA performance
is still acceptable. In our experiments, we tune α from {1, 2, 3, . . . , 9}
and choose the one corresponding to the best performance, as shown
in experiments. We set α as 3 for the JPEG distortion and as 2 for
JPEG2000 distortion.
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Fig. 2. Prediction of MOS by IQA metrics with an identical distortion.

TABLE II
RESULTS OF PSNR, WNISM, AND THE PROPOSED SCHEME

Fig. 3. Prediction of MOS by different IQA metrics with mixed distortions.

B. Test 2: Different Images With Mixed Distortions

Apart from the identical distortion in the aforementioned experi-
ments, we also design a set of experiments for different images with
mixed distortions. Similar to test 1, we use the LIVE IQA database
and consider CC, ROCC, OR, MAE, and RMS as measurements for
evaluation. The difference is that images are changed to JPEG and
JPEG2000 mixed images. The experimental results are showed in
Table II and Fig. 3.

As shown in both sets of experiments, the proposed RR IQA
scheme performs better than PSNR and WNISM not only on the
identical-distortion test but also on the mixed-distortion test in
terms of: 1) accuracy (CC); 2) monotonic property (ROCC); and
3) stability (OR).

IV. CONCLUSION

In this paper, an RR IQA scheme has been proposed by incorpo-
rating merits of the contourlet transform, CSF, and Weber’s law of
JND. In comparing with existing IQA approaches, the proposed one
has strong links with HVS: the contourlet transform, which aims to
achieve an optimal approximation rate of piecewise smooth functions
with discontinuities along twice continuously differentiable curves, is
utilized to mimic the multichannel structure of HVS, CSF is utilized to
balance magnitude of coefficients obtained by the contourlet transform
to mimic the nonlinearities of HVS, and JND is utilized to produce a
noticeable variation in sensory experience. In this scheme, images are
represented by normalized histograms, which correspond to visually
sensitive coefficients. The quality of a distorted image is measured
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by comparing the normalized histogram of the distorted image and
that of the reference image. Thorough empirical studies show that
the novel scheme performs better than the conventional standard RR
method, i.e., WNISM. Since RR methods require limited information
of the reference image, which could be a serious impediment for many
applications, it is desirable to extend the proposed method to the NR
[16] circumstance in the future.
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