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Abstract

The rapid growth of third and development of future generation mobile systems has led to an increase in the
demand for image and video services. However, the hostile nature of the wireless channel makes the deployment of
such services much more challenging, as in the case of a wireline system. In this context, the importance of taking
care of user satisfaction with service provisioning as a whole has been recognized. The related user-oriented quality
concepts cover end-to-end quality of service and subjective factors such as experiences with the service. To monitor
quality and adapt system resources, performance indicators that represent service integrity have to be selected and
related to objective measures that correlate well with the quality as perceived by humans. Such objective perceptual
quality metrics can then be utilized to optimize quality perception associated with applications in technical systems.

In this paper, we focus on the design of reduced-reference objective perceptual image quality metrics for use in
wireless imaging. Specifically, the Normalized Hybrid Image Quality Metric (NHIQM) and a perceptual relevance
weighted Lp-norm are designed. The main idea behind both feature-based metrics relates to the fact that the human
visual system (HVS) is trained to extract structural information from the viewing area. Accordingly, NHIQM and
Lp-norm are designed to account for different structural artifacts that have been observed in our distortion model
of a wireless link. The extent by which individual artifacts are present in a given image is obtained by measuring
related image features. The overall quality measure is then computed as a weighting sum of the features with the
respective perceptual relevance weight obtained from subjective experiments. The proposed metrics differ mainly in
the pooling of the features and amount of reduced-reference produced. While NHIQM performs the pooling at the
transmitter of the system to produce a single value as reduced-reference, the Lp-norm requires all involved feature
values from the transmitted and received image to perform the pooling on the feature differences at the receiver. In
addition, non-linear mapping functions are developed that relate the metric values to predicted mean opinion scores
(MOS) and account for saturations in the HVS. The evaluation of prediction performance of NHIQM and the Lp-
norm reveals their excellent correlation with human perception in terms of accuracy, monotonicity, and consistency.
This holds not only for the prediction performance on images taken for the training of the metrics but also for the
generalization to unknown images. In addition, it is shown that the NHIQM approach and the perceptual relevance
weighted Lp-norm outperform other prominent objective quality metrics in prediction performance.
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1. Introduction

The development of advanced transmission tech-
niques for third generation mobile communication
systems and their long-term evolution has paved
the way for the delivery of mobile multimedia ser-
vices. Wireless imaging applications are among
those services that are offered on modern mobile
devices to support communication options beyond
the traditional voice services. As the bandwidth re-
sources allocated to mobile communication systems
are scarce and expensive, digital images and videos
are compressed prior to their transmission. In addi-
tion, the time-varying nature of the wireless channel
caused by multipath propagation, the changing in-
terference conditions within the system, and other
factors cause the channel to be relatively unreliable.
As a consequence, the quality of wireless imaging
services are impaired not only by the lossy compres-
sion technique adapted but also by the burst error
mechanisms induced by the wireless channel.
The performance evaluation of mobile multi-

media systems has conventionally been based on
link layer metrics such as the signal-to-noise ratio
(SNR) and the bit error rate (BER) [25]. Similarly,
performance of image compression techniques is of-
ten quantified by fidelity metrics such as the mean
squared error (MSE) and the peak signal-to-noise
ratio (PSNR) [46]. In the case of communicating
visual content, however, it has been shown that
these metrics do not necessarily correlate well with
the quality as perceived by the human observer
[13,45]. As a result, user-oriented assessment meth-
ods that can measure the overall perceived quality
have gained increased interest in recent years. It
is expected that these methods will facilitate more
efficient designs of mobile multimedia systems by
establishing trade-offs between the allocation of sys-
tem resources and Quality of Service (QoS) [27,33].
In other words, not only metrics associated with
the underlying technical system are considered but
also quality indicators that can accurately predict
the visual quality as perceived by human observers.

1.1. Visual quality assessment

A wide range of approaches has been followed
in the design of such visual quality metrics rang-
ing from simple numerical measures [8] to highly
complex models incorporating those characteristics
of the human visual system (HVS) that are con-

sidered as being crucial for visual quality percep-
tion [22,30,37]. Specifically, the phenomenon that
the HVS is adapted to extraction of structural in-
formation has received strong attention for metric
design [1,3,40]. These psychophysical approaches,
which are based on modeling various aspects of the
HVS, correlate well with human visual perception
and are usable over a wide range of applications.
However, these benefits often come at the expense of
high computational complexity. In contrast, meth-
ods following an engineering inspired approach are
mainly based on image or video analysis and feature
extraction, which does not exclude that certain as-
pects of the HVS are considered in the metric design.
Most of the proposed HVS based metrics are fol-

lowing the full-reference (FR) approach [6,20,34,43],
meaning, that they rely on the reference image be-
ing available for the quality assessment. Clearly, this
limits their applicability to wireless imaging as a ref-
erence image would generally not be available at the
receiver where quality assessment takes place. Thus,
a no-reference (NR) metric may be more appropri-
ate since it measures the quality solely based on the
received image. Although it is easy for humans to
judge the quality of an image without any reference,
it is extremely difficult for an automated algorithm
to execute.
As a consequence, metrics following the NR ap-

proach such as [11,24,36] usually provide inferior
quality prediction performance as compared to met-
rics that take into account some amount of reference
information from the transmitted image, or process
the whole original image itself as in case of FR met-
rics. Furthermore, as NR metrics provide an abso-
lute measure about the quality of a received image,
it may be difficult to distinguish quality degrada-
tions that have been induced during image transmis-
sion from those that have already been present in
the image prior to transmission. Hence, there would
be strong limitations to execute link adaptation and
resource management procedures based upon this
type of metrics.
In this respect, a good compromise between the

FR and NRmethods are the reduced-reference (RR)
metrics. These metrics rely only on a set of image
features, the reduced-reference, instead of the entire
reference image. These features are simply extracted
from an image prior to its transmission and used at
the receiver for detecting quality degradations. The
reduced-reference may then be transmitted over an
ancillary channel, piggy backed with the image, or
embedded into the image using data hiding tech-
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niques [42].
Wang et al. [41] have proposed a RR metric based

on a natural image statistic model in the wavelet
domain and Carnec et al. [2] define the C4 criterion
which is an RR metric based on an elaborate model
of the HVS. Both metrics have been shown to cor-
relate well with human perception, which comes at
the cost of a high computational complexity. This
may restrict their application in the context of wire-
less imaging where computational resources are very
limited, in particular in the mobile device. Yamada
et al. [47] and Chono et al. [5] propose RR metrics
that can accurately predict PSNR. The former met-
ric is based on a selection of representative lumi-
nance values whereas the latter metric utilizes dis-
tributed source coding to communicate the RR sig-
nal. These metrics may be applicable for usage in an
image communication context due to their low com-
putational complexity. However, the ability of these
metrics to accurately predict perceived visual qual-
ity is doubtful due to the poor quality prediction
performance of PSNR.

1.2. Overview of the proposed metric design

In view of the above, this paper focuses on the de-
velopment of RR objective perceptual image qual-
ity metrics that are applicable in a wireless imaging
context. As such, image impairments representative
for a wireless imaging system are produced to consti-
tute the basis of the design framework. In addition,
particular care has been taken to limit the overhead
needed for communicating reduced-reference infor-
mation and hence conserve the scarce bandwidth re-
sources allocated to wireless systems. Furthermore,
feature extraction algorithms are selected to have
small computation complexity in order not to drain
battery power at the wireless handheld device and
in turn support longer service time.
Specifically, images in the widely adopted Joint

Photographic Experts Group (JPEG) format are ex-
amined with typical impacts of a mobile communi-
cation system included through a simulated wire-
less link. This system under test enabled us to pro-
duce artifacts beyond those inflicted purely by lossy
source encoding but to account also for end-to-end
degradations caused by a transmission system. In
particular, the artifacts of blocking, blur, ringing,
masking, and lost blocks have been observed rang-
ing from extreme to almost invisible presence.
The information about the individual artifacts in

an image can be deduced from related image features
such as edges, image activity and histogram statis-
tics. The extent by which the considered artifacts
exist in a given image can therefore be quantified by
using selected image feature extraction algorithms.
As some artifacts influence the perceived quality
stronger than others, perceptual relevance weights
are given to the associated image features. Clearly,
subjective experiments and their analysis are not
only instrumental but critical in the process of re-
vealing the specific values of perceptual relevance
weights. For this reason, we conducted subjective
image quality experiments in two independent lab-
oratories. The particular values of the weights were
deduced as Pearson linear correlation coefficients be-
tween the related features and the Mean Opinion
Scores (MOS) from the subjective experiments. In
this respect, the perceptual relevance weights ob-
tained from analyzing the subjective data consti-
tute a key component in the transition from sub-
jective quality prediction methods to an automated
quality assessment that would be suitable for real-
time applications. Given these perceptual relevance
weights, an objective perceptual image quality met-
ric may then be designed to exploit image feature
values and their weights within a suitable pooling
process. In this paper, we consider two feature-based
objective perceptual quality metrics that mainly dif-
fer in the pooling process and the amount of reduced-
reference as follows.
Firstly, the Normalized Hybrid Image Quality

Metric (NHIQM) is designed. It operates on ex-
treme value normalized image features from which
it produces a weighted sum with respect to the rele-
vance of the involved features. The result is a single
value that can be communicated from transmitter
to receiver where it is utilized as reduced-reference
information. The same processing is performed on
the received image resulting in the related NHIQM
value. The absolute difference between the NHIQM
values of the transmitted and received image con-
stitutes the objective perceptual quality metric and
is used to detect distortions.
Secondly, we consider a perceptual relevance

weighted Lp-norm as a means of pooling the image
features. Specifically, the Lp-norm is applied here
to detect differences between features [7,10]. In this
case, the pooling at the transmitter is omitted but
requires the features being transmitted over the
channel to the receiver. At the receiver, the differ-
ence between the transmitted and received features
are combined to an overall quality metric. This ap-
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proach allows to track degradations for each of the
involved features. On the other hand, the amount of
reduced-reference overhead is increased compared
to the NHIQM-based approach.
The design of both feature-based RR metrics,

NHIQM and Lp-norm, follows the same methodol-
ogy. It comprises of the selection of suitable feature
extraction algorithms, the feature extraction for
image samples of a training set, normalization of
the calculated feature values, and the acquisition
of the perceptual relevance weights from the sub-
jective experiments. A non-linear mapping function
is derived in a final step that relates the objective
perceptual quality metric to predicted MOS. In this
way, non-linearities in the HVS with respect to the
processing of quality degradations can be accounted
for. The non-linear mapping function is derived us-
ing curve fitting methods where, again, the MOS
from the subjective experiments are essential in
deriving the parameters of the mapping functions.
A comprehensive evaluation of the prediction per-

formance of NHIQM and the Lp-norm is provided
in terms of accuracy, monotonicity, and consistency
[35]. These performance measures are given for the
metric design on a training set of images and the
generalization to unknown images. It turns out
that the proposed feature-based metrics outperform
other considered RR and FR metrics in the context
of wireless imaging distortions and with respect to
the above prediction performance measures.

1.3. Contributions of this work

Considering the above, this paper contributes a
framework for image quality metric design in a wire-
less communication system. As such, the metrics
proposed in this paper have been designed to be able
to measure quality degradation during image trans-
mission using a RR approach. Unlike other RR met-
rics from the literature, the metrics in this paper
are designed based on a set of test images that take
into account the complex nature of a wireless com-
munication system, rather than just accounting for
source coding artifacts or additional noise. Further-
more, low computational complexity and low over-
head in terms of reduced-reference have been ma-
jor design issues in order to put low burdens on the
communication system.
A statistical analysis of experiments that we con-

ducted in two independent laboratories reveals in-
sight into the subjectively perceived quality of wire-

less imaging distortions. In addition, a statistical
and correlation analysis of objective feature metrics
provides further insight into the artifacts observed
in wireless imaging and the performance of the fea-
ture metrics that were used to quantify the related
artifacts. Comparison of the proposed RR quality
metrics to other contemporary quality metrics re-
veals the ability of the proposed metrics to predict
perceived quality in the context of wireless imaging.
This paper is organized as follows. Section 2 pro-

vides an overview of RR objective quality assess-
ment in wireless imaging and the particular system
under test as considered in this paper. A detailed de-
scription of the conducted subjective quality exper-
iments is contained in Section 3 along with a statis-
tical analysis of the experiment outcomes. The ob-
jective feature extraction metrics, which build the
very basis of the metric design, are discussed in Sec-
tion 4. An additional analysis of the feature metrics
provides insight into their performance to measure
artifacts in the images. On the basis of both the
subjective and objective data, the RR metric design
for objective perceptual quality assessment is then
described in detail in Section 5. In Section 6, the
prediction performance of NHIQM and Lp-norm is
evaluated and compared to other prominent objec-
tive quality metrics. Finally, conclusions are drawn
in Section 7.

2. Reduced-reference objective perceptual
quality assessment in wireless imaging

A typical link layer of a wireless communication
system is shown in Fig. 1. Here, the functional blocks
in shaded boxes relate to the components that would
need to be included for performing the operations
related to RR objective perceptual quality assess-
ment. As such, the system is able to monitor qual-
ity degradations that are incurred during transmis-
sion unlike in the case of deploying a NR quality as-
sessment method, where an absolute quality of the
received image would be obtained. Given the strict
limitations on system resources such as bandwidth,
the overhead induced by the reduced-reference be-
comes a critical metric design issue. It is therefore
beneficial to extract and pool representative fea-
tures of an image It at the transmitter (t) in or-
der to condense the image content and structure
to a few numerical values. The transmission of the
source encoded image may then be accompanied
by the reduced-reference, which could be communi-
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Fig. 1. Overview of reduced-reference objective perceptual quality assessment deployed in a wireless imaging system.

cated either in-band as an additional header or in
a dedicated control channel. Subsequently, channel
encoding, modulation and other wireless transmis-
sion functions are performed on the source encoded
image and the reduced-reference. At the receiving
side, the inverse functions are performed including
demodulation, channel decoding, and source decod-
ing. The reduced-reference features are recovered
from the received data and the related features of
the reconstructed image Ir at the receiver (r) are
extracted and pooled to produce the related metric
value. The difference between metric values for the
images It and Ir can then be explored for end-to-
end image quality assessment. The outcome of the
RR quality assessment may drive, for instance, link
adaption techniques such as adaptive coding and
modulation, power control, or automatic repeat re-
quest strategies provided a feedback link would be
available.

2.1. System under test

In the scope of this paper we consider a particular
setup of the wireless link model as shown in Fig. 1
which turned out to results in a set of test images
covering a broad range of artifact types and severi-
ties. In particular, the JPEG format has been chosen
to source encode the images prior to transmission.
It is noted that JPEG is a lossy image coding tech-
nique using a block discrete cosine transform (DCT)
based algorithm, thus, facilitating an easy transition
to state-of-the-art DCT based video codecs, such as
H.264. Due to the quantization of DCT coefficients,
artifacts may already be introduced during source

encoding. A (31, 21) Bose-Chaudhuri-Hocquenghem
(BCH) code was then used for error protection pur-
poses and binary phase shift keying (BPSK) for
modulation. An uncorrelated Rayleigh flat fading
channel in the presence of additive white Gaussian
noise (AWGN) was implemented as a simple model
of the wireless channel. Severe fading conditionsmay
cause bit errors or burst errors in the transmitted
signal which are beyond the correction capabilities
of the channel decoder and as a result, artifacts may
be induced in the decoded image in addition to the
ones purely caused by the source encoding. To pro-
duce severe transmission conditions, the average bit
energy to noise power spectral density ratio Eb/N0

was chosen as 5 dB.
It should be noted, that the RR objective quality

metric design is based upon this particular setup.
However, the proposed metric design framework
can be easily adopted to other specific system
components, given that the objective data (test
images) and subjective data (MOS) sets are avail-
able that are crucial for the metric design. This
may for instance include an extension from JPEG
to JPEG2000 or to measuring spatial artifacts in
video, such as H.264.

2.2. Artifacts in wireless imaging

The system under test as outlined in Section 2.1
turned out to be beneficial with respect to generat-
ing impaired images ranging from extreme artifacts
to images with almost invisible artifacts. Specifi-
cally, the range of artifacts spanned beyond those
typically induced by source encoding such as block-
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Fig. 2. Distorted image samples showing different artifacts:

“Lena” with blocking, “Goldhill” with blur in 8 × 8 blocks
(top); “Pepper” with ringing and intensity masking, “Bar-
bara” with extreme artifacts (bottom).

ing and blur but also comprised of ringing, inten-
sity masking, lost blocks, and combinations thereof.
These artifacts will be briefly discussed in the follow-
ing sections. In addition, some example images are
shown in Fig. 2 to illustrate the observed artifacts.

2.2.1. Blocking

Blocking artifacts are inherent with block-based
image compression techniques such as JPEG or
H.264. Blocking or blockiness can be observed as
surface discontinuity at block boundaries and is a
direct consequence of the independent quantization
of the individual blocks of pixels. In particular, in
JPEG compressed images blocking is present on the
8×8 block borders due to independent quantization
of the DCT coefficients.

2.2.2. Blur

Blur relates to the loss of spatial detail and is ob-
served as texture blur. In addition, blur may be ob-
served due to a loss of semantic information that
is carried by the shapes of objects in an image. In
this case, edge smoothness relates to a reduction of
edge sharpness and contributes to blur. In relation
to compression, blur is a consequence of the coarse
quantization of frequency components and the asso-
ciated suppression of high-frequency coefficients. In
case of JPEG compression blur is usually observed
within the 8×8 blocks rather than on a global scale.

2.2.3. Ringing

The artifact of ringing appears to the human ob-
server as periodic pseudo edges around the original
edges of the objects in an image. Ringing is caused by
improper truncation of high-frequency components,
which in turn can be noticed as high-frequency ir-
regularities in the reconstruction. Ringing is usually
more evident along high contrast edges, especially if
these edges are located in areas of smooth textures.

2.2.4. Intensity masking and lost blocks

In general, masking occurs when the visibility of
a stimulus is reduced due to the presence of another
stimulus [45]. In this context, intensity shifts in parts
of an image, or the whole image, may result in ei-
ther a darker or brighter appearance of the area as
compared to the original image and thus cause such
a reduction in visibility. This phenomenon, which
we refer to as intensity masking, is a typical artifact
in wireless image communication appearing in the
presence of strong multipath fading. In the worst
case, entire image blocks are lost resulting in parts
of the image being black.

3. Subjective image quality experiments

The methodology used for the subjective assess-
ment of image quality is described hereafter. In par-
ticular, the laboratory environment, the test mate-
rial, the panels of viewers, and the test procedure
adapted in the subjective experiments are given in
detail. According to the guidelines outlined in Rec-
ommendation BT.500-11 [17] of the radio commu-
nication sector of the International Telecommuni-
cation Union (ITU-R), subjective experiments were
conducted in two independent laboratories. The first
subjective experiment (SE 1) took place at theWest-
ern Australian Telecommunications Research Insti-
tute (WATRI) in Perth, Australia and the second
subjective experiment (SE 2) was conducted at the
Blekinge Institute of Technology (BIT) in Ronneby,
Sweden.

3.1. Laboratory environment

The general viewing conditions were arranged as
specified in the ITU-R Recommendation BT.500-11
[17] for a laboratory environment.
The subjective experiments were conducted in

a room equipped with two 17” cathode ray tube
(CRT) monitors of type Sony CPD-E200 (SE 1)
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and a pair of 17” CRT monitors of type DELL
and Samtron 75E (SE 2). The ratio of luminance of
inactive screen to peak luminance was kept below
a value of 0.02. The ratio of the luminance of the
screen given it displays only black level in a dark
room to the luminance when displaying peak white
was approximately 0.01. The display brightness and
contrast was set up with picture line-up generation
equipment (PLUGE) according to Recommenda-
tions ITU-R BT.814 [14] and ITU-R BT.815 [15].
The calibration of the screens was performed with
the calibration equipment ColorCAL from Cam-
bridge Research System Ltd., England, while the
DisplayMate software was used as pattern genera-
tor.
Due to its large impact on the artifact perceivabil-

ity, the viewing distance must be taken into consid-
eration when conducting a subjective experiment.
The viewing distance is in the range of four times
(4H) to six times (6H) the height H of the CRTmoni-
tors, as stated in Recommendation ITU-R BT.1129-
2 [16]. The distance of 4H was selected here in order
to provide better image details to the viewers.

3.2. Test material

Seven reference images of dimension 512 × 512
pixels and represented in gray scale have been cho-
sen to cover a variety of textures, complexities, and
arrangements. The images are shown in Fig. 3 and
Fig. 4 where the images in Fig. 3 represent humans
and human faces and the images in Fig. 4 represent
more complex structures and natural scenes. The
wireless link simulation model as explained in Sec-
tion 2.1 has then been utilized to create test images
that exhibit the wide variety of distortions as dis-
cussed in Section 2.2. In particular, two sets of forty
images each, ℐ1 and ℐ2, were created to be used in
the two subjective experiments SE 1 and SE2, re-
spectively. The images were chosen such as to cover
a wide variety of artifacts and also a broad range
of severities for each of the artifacts, from almost
invisible to highly distorted. Thus, the metric de-
sign is based on a set of test images that incorpo-
rates distortions near the just noticeable differences
regime to artifacts widely covering the suprathresh-
old regime.

Fig. 3. Reference images showing low texture human faces:
“Lena”, “Elaine” (top); “Tiffany”, “Barbara” (bottom).

Fig. 4. Reference images showing complex textures: “Gold-
hill”, “Pepper”, and “Mandrill” (left to right).

3.3. Viewers

The viewers are the respondents in the exper-
iment. Experienced viewers, i.e. individuals that
are professionally involved in image quality evalu-
ation/assessment at their work, are not eligible to
participate in the subjective experiments. As such,
only inexperienced (or non-expert) viewers were
allowed to take part in the conducted subjective
experiments. In order to support generalization of
results and statistical significance of the collected
subjective data, the experiments were conducted in
two different laboratories involving 30 non-expert
viewers in each experiment. Thus, the minimum re-
quirement of at least 15 viewers, as recommended in
[17], is well satisfied. In order to support consistency
and eliminate systematic differences among results
at the different testing laboratories, similar panels
of test subjects in terms of occupational category,
gender, and age were established. In particular, 25
males and 5 females, participated in SE 1. They
were all university staff and students and their ages
were distributed in the range of 21 to 39 years with
the average age being 27 years. In the second exper-
iment, SE 2, 24 males and 6 females participated.
Again, they were all university staff and students
and their ages were distributed in the range of 20
to 53 years with the average age being 27 years.
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3.4. Test procedure

3.4.1. Selection of test method

Different test methodologies are provided in de-
tail in [17] to best match the objectives and circum-
stances of the assessment problem. The method-
ologies are mainly classified into two categories,
as double-stimulus and single-stimulus. In double-
stimulus, the reference image is presented to the
viewer along with the test image. On the other hand,
in single-stimulus, the reference image is not ex-
plicitly presented and may be shown transparently
to the subject for judgement consistency observa-
tion purpose. As we consider RR metric design in
this paper, where partial information related to the
reference image is available, we chose to deploy a
double-stimulus method, the double-stimulus con-
tinuous quality scale (DSCQS). Moreover, DSCQS
has been shown to have low sensitivity to contex-
tual effects [17,35]. Contextual effects occur when
the subjective rating of an image is influenced by
presentation order and severity of impairments.
This relates to the phenomenon that test subjects
may tend to give an image a lower score than it
might have normally been given if its presentation
was scheduled after a less distorted image.

3.4.2. Presentation of test material

The test sessions were divided into two sections.
Each section lasted up to 30 minutes and consisted
of a stabilization and a test trial. The stabilization
trials were used as a warm-up to the actual test trial
in each section. In addition, one training trial was
conducted at the very beginning of the test session
to demonstrate the test procedure to the viewer and
allow them to familiarize themselves with the test
mechanism. Clearly, the scores obtained during the
training and stabilization trials are not processed
but only the scores given during the test trials are
analyzed. In order to reduce the viewer’s fatigue, a
15 minutes break was given between sections.
Given the DSCQS method, pairs of images A and

B are presented in alternating order to the viewers
for assessment, with one image being the original,
undistorted image and the other being the distorted
test image. As the DSCQS method is quite sensitive
to small quality differences, it is well suited to not
just cope with highly distorted test images but also
with cases where the quality of original and distorted
image is very similar.

3.4.3. Grading scale

The grading is performed with reference to a five-
point quality scale (Excellent, Good, Fair, Poor,
Bad), which is used to divide the continuous grad-
ing scale into five partitions of equal length. Given
the pair of images A and B, the viewer is requested
to assess their quality by placing a mark on each
quality scale. As the reference and distorted image
appear in pseudo random order, A and B may refer
to either the reference image or the distorted image,
depending on the actual arrangement of images in
an assessment pair.

3.5. Subjective data analysis

The outcomes of the subjective experiments are
discussed in the following by means of a statistical
analysis. In this respect, a concise representation of
the subjective data can be achieved by calculating
conventional statistics such as the mean, variance,
skewness, and kurtosis of the related distribution of
opinion scores. The statistical analysis of this data
reflects the fact that perceived quality is a subjective
measure and hence may be described statistically.

3.5.1. Statistical measures

Let the MOS value for the ktℎ image in a set K of
size K be denoted here as �k. Then, we have

�k =
1

N

N
∑

j=1

uj,k (1)

where uj,k denotes the opinion score given by the
jtℎ viewer to the ktℎ image and N is the number of
viewers. The confidence interval associated with the
MOS of each examined image is given by

[�k − �k, �k + �k] (2)

The deviation term �k can be derived from the stan-
dard deviation �k and the number N of viewers and
is given for a 95% confidence interval according to
[17] by

�k = 1.96
�k√
N

(3)

where the standard deviation �k for the ktℎ image
is defined as the square root of the variance

�2
k =

1

N − 1

N
∑

j=1

(uj,k − �k)
2 (4)
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The skewness measures the degree of asymmetry
of data around the mean value of a distribution of
samples and is defined by the second and third cen-
tral moments m2 and m3, respectively, as

� =
m3

m
3/2
2

(5)

where the ltℎ central moment ml is defined as

ml =
1

N

N
∑

j=1

(uj − �)l (6)

The peakedness of a distribution can be quanti-
fied by the kurtosis, which measures how outlier-
prone a distribution is. The kurtosis is defined by
the second and fourth central moments m2 and m4,
respectively, as

 =
m4

m2
2

(7)

It should be mentioned that the kurtosis of the
normal distribution is obtained as 3. If the consid-
ered distribution is more outlier-prone than the nor-
mal distribution, it results in a kurtosis greater than
3. On the other hand, if it is less outlier-prone than
the normal distribution, it gives a kurtosis less than
3. A distribution of scores is usually considered as
normal if the kurtosis is between 2 and 4.

3.5.2. Statistical analysis

Figs. 5(a)-(b) show the scatter plots of MOS for
SE 1 and SE 2, respectively. The forty images in each
experiment are ordered with respect to decreasing
subjective ratings in MOS. It can be seen from the
figures that the material presented to the viewers re-
sulted in a wide range of perceptual quality ratings
indeed for both subjective experiments. As such,
both experiments contained the extreme cases of ex-
cellent and bad image quality while the intermedi-
ate quality decreases approximately linearly in be-
tween. It is also observed that the spread of ratings
around the MOS in terms of the 95% confidence in-
terval is generally narrower for the images at the
upper and lower end of the perceptual quality scale.
Thus, the viewers seemed to be more confident with
giving their quality ratings in case that the quality
of the presented images was either of very high or
very low quality. On the other hand, in the middle
ranges of quality the confidence of viewers on the
quality of an image was significantly lower.
Figs. 6(a)-(d) show the MOS, variance, skewness,

and kurtosis, respectively, for each image sample
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Fig. 5. Perceived quality ordered according to decreasing

MOS with error bars indicating the 95% confidence intervals:
(a) SE 1, (b) SE 2.

that was rated in the two subjective experiments.
The image samples in all four figures are, as in Fig. 5,
ordered with respect to decreasingMOS. In addition
to the image samples the figures depict the related
fits to these statistics, which reveal good agreement
among the data for the two subjective experiments
as the fits progress closely in the same manner over
the ordered image samples. This indicates that the
two experiments have been very well aligned with
each other and also that the two viewer panels, even
though originating from different countries, seem to
have given similar quality scores for the test images
they have been shown.
Fig. 6(a) depicts the impaired image samples with

respect to decreasing MOS along with the linear fit
through this data. It can be seen from the figure,
that the linear fit for both experiments are very close
indicating that the set of image samples used in the
two independent experiments at WATRI and BIT
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Fig. 6. Statistics of opinion scores for the impaired image samples: (a) MOS, (b) Variance, (c) Skewness, and (d) Kurtosis.

comprised of a similar range of quality impairments.
Fig. 6(b) shows the variance of all opinion scores

for each image sample. The variance can be regarded
as a measure of how much the viewers agree on
the perceived quality of a certain image sample. In
other words, the smaller the variance, the more pro-
nounced the agreement between all viewers. It can
clearly be seen from the figure that the variance is
relatively small for images that have obtained either
excellent or bad subjective quality ratings. In con-
trast, in the region where perceptual quality of the
impaired images ranges between good and poor, the
variance tends to be larger with the peak at about
the middle of the quality range. This is an interest-
ing result since it indicates that the viewers appear
to be rather sure whether an image sample is of ex-
cellent or bad quality while opinions about images
of average quality differ to a wider extent. These
conclusions are supported by the confidence inter-
vals shown in Fig. 5(a)-(b), which are narrower for

images rated as being excellent and bad.
Fig. 6(c) shows the skewness of the opinion scores

distribution for each image sample. In the context
of the subjective ratings of image quality, a nega-
tive or positive skewness translate to the subjective
scores being more spread towards lower or higher
values than the MOS, respectively. For the images
that were perceived as being of high quality, the neg-
ative skewness indicates that subjective scores tend
to be asymmetrically spread around the MOS to-
wards lower opinion scores and thus, that a number
of viewers gave significantly lower quality scores as
compared to theMOS. In the other extreme of image
quality being perceived as bad, the positive skew-
ness points to an asymmetrically spread around the
MOS towards higher opinion scores. However, the
positive skewness is not as distinct as the negative
skewness at the high quality end, indicating that the
agreement of low quality was higher as compared
to the agreement about high quality. The asym-
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Table 1
Image features, feature extraction algorithms, and related artifacts

Feature Algorithm Related artifact

f̃1 Block boundary differences Wang et al. [39] Blocking

f̃2 Edge smoothness Marzilliano et al. [23] Blur

f̃3 Edge-based image activity Saha et al. [31] Ringing

f̃4 Gradient-based image activity Saha et al. [31] Ringing

f̃5 Image histogram statistics Kusuma et al. [19] Intensity masking, lost blocks

metry in subjective scores for the extreme cases of
excellent and bad quality is thought to be due to
the rating scale being limited to 100 and 0, respec-
tively. As such, subjective scores have to approach
the maximal and minimal possible rating from be-
low or above, respectively. The skewness of around
zero for the middle range of qualities reveals that
the subjective scores seem to be symmetrically dis-
tributed with respect to MOS, even though the vari-
ance for images of average quality is larger.
Fig. 6(d) provides the kurtosis for each impaired

image sample. It can be seen from the figure, that the
distribution of subjective scores for some of the im-
ages scoring high MOS values in both experiments
give kurtosis values much greater than of a normal
distribution. This is a strong indication for outliers,
meaning, that a few of the viewers gave the image
quality a low rating whereas the majority of viewers
agreed on a high image quality. With the progres-
sion of images towards decreasing MOS, the associ-
ated kurtosis fits quickly level out around the value
3, pointing to a normal distribution of the opinion
scores around MOS. It is interesting to point out,
that the high kurtosis in the high quality end does
not occur at the bad quality end. This means that
the entire viewer panel agreed on the bad quality im-
ages with no outlier scores being present. This result
is also evident in the skewness distribution where
the decline towards lower values at the high quality
end is much more pronounced as compared to the
incline of the skewness at the low quality end.

4. Objective structural degradation metrics

The design of the RR metrics proposed in this pa-
per is based on the extraction of structural informa-
tion from the images. In this section we will discuss
the objective feature metrics that were deployed to
measure the artifacts as observed in the test images
(see Section 2.2). An analysis of the objective mea-
sures provides further insight into the feature met-

rics performance of quantifying the artifacts.

4.1. Feature metrics

Given the set of artifacts as observed in the test
images, algorithms for feature extraction can be de-
ployed to capture the amount by which each of the
artifacts is present in the images. The selection of
the algorithms to be used is driven by three con-
straints, namely, a reasonable accuracy in capturing
the characteristics of the associated artifact, a rep-
resentation of the feature that incurs low overhead
in terms of reduced-reference (conserve bandwidth),
and computational inexpensiveness (conserve bat-
tery power). The features and feature extraction al-
gorithms deployed here to measure and quantify the
presence of the related artifacts are listed in Table 1
and will be described in the following sections.

4.1.1. Feature f̃1: Block boundary differences

The first feature metric f̃1 is based on the algo-
rithm by Wang et. al. [39] and comprises of three
measures. The first measure, B, estimates block-
ing as average differences between block boundaries.
Two image activity measures (IAM), A and Z, are
applied as indirect means of quantifying blur. The
former IAM computes absolute differences between
in-block image samples and the latter IAM com-
putes a zero-crossing rate. All three measures are
computed in both horizontal and vertical direction
and combined in a pooling stage as follows

f̃1 = �+ �B1A2Z3 (8)

where the parameters �, �, 1, 2, and 3 were es-
timated in [39] using MOS from subjective experi-
ments. Despite the two IAM incorporated in f̃1, we
found that this metric accounts particularly well for
blocking artifacts in JPEG compressed images. This
might be due to the magnitude of 1, being reported
in [39] as relatively large compared to 2 and 3,
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giving the blocking measure a higher impact on the
metric f̃1.

4.1.2. Feature f̃2: Edge smoothness

The extraction of feature metric f̃2 relates purely
to measuring blur artifacts and follows the work of
Marziliano et. al. [23]. It accounts for the smooth-
ing effect of blur by measuring the distance between
edges. It was found that it is sufficient to measure
the blur along vertical edges, which allows for sav-
ing computational complexity as compared to com-
putation on all edges. Therefore, a Sobel filter is ap-
plied to detect vertical edges in the image. The edge
image is then horizontally scanned. For pixels that
correspond to an edge point, the local extrema in the
corresponding image are used to compute the edge
width. The edge width then defines a local measure
of blur. Finally, a global blur measure is obtained
by averaging the local blur values over all edge lo-
cations. This metric was chosen to complement the
IAM in f̃1 since it does not just account for in-block
blur but rather contributes a global blur measure.

4.1.3. Features f̃3 and f̃4: Image activity

Ringing artifacts are observed as periodic pseudo-
edges around original edges, thus increasing the ac-
tivity within an image. The feature metrics f̃3 and
f̃4 provide an indirect means of measuring ringing
artifacts and are based on two IAM by Saha and
Vemuri [31].
Here, f̃3 quantifies image activity (IA) based on

normalized magnitudes of edges in an edge image
B(i) as follows

f̃3 =

(

1

M ×N

M×N
∑

i=1

B(i)

)

× 100 (9)

whereM andN denote the image dimensions. Since
f̃3 does not depend on the direction of the edge, it
also very well complements the blocking measure in
f̃1, which is purely designed to measure on the 8×8
block boundaries in JPEG coded images.
On the other hand, f̃4 measures IA in an image

I(i, j) based on local gradients in both vertical and
horizontal direction as follows

f̃4 =
1

M ×N

(

M−1
∑

i=1

N
∑

j=1

∣I(i, j)− I(i+ 1, j)∣

+
M
∑

i=1

N−1
∑

j=1

∣I(i, j)− I(i, j + 1)∣
)

(10)

In [31], the IAM were evaluated and in particular
f̃4 has been found to quantify IA very accurately.We
have further identified that both f̃3 and f̃4 account
well for measuring ringing artifacts and also other
high frequency changes within the image.

4.1.4. Feature f̃5: Image histogram statistics

Finally, feature metric f̃5 accounts for intensity
masking and lost blocks using an original algorithm
[19]. Both these artifacts cause an intensity shift in
parts of an image or the whole image, which may
result in either a darker or brighter appearance of
the area as compared to the original image. As such
we found that a simple computation of the standard
deviation in the first-order image histogram provides
an adequate measure of both intensity masking and
lost blocks. We have thus adapted feature metric f̃5
as follows

f̃5 =

√

√

√

⎷

1

L

L
∑

i=0

(ℎi − ℎ)2 (11)

where ℎi denotes the number of pixels at grey level i,
ℎ denotes themean grey level, andL is themaximum
grey level of 255 when using 8 bits per pixel.

4.2. Feature normalization

The proposed NHIQM follows the design phi-
losophy of our previous work that resulted in the
Hybrid Image Quality Metric (HIQM) [18,19]. Al-
though HIQM inherently uses feature relevance
weights, the actual feature values f̃i have generally
different meaning and different value ranges. As a
consequence, it may be difficult to explore the re-
sulting feature space for classification purposes and
quality assessment if only relevance weighting was
used as with HIQM. It is therefore suggested here
to perform also an extreme value normalization to
the features. This allows for a more convenient and
meaningful comparison of the contribution of each
normalized feature fi to the overall metric, as they
are then taken from the same value range as

0 ≤ fi ≤ 1 (12)

Specifically, let us distinguish among I different
image features. The related feature values f̃i, i =
1, . . . , I, shall be normalized as follows [26]:
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fi =

f̃i − min
k=1,...,K

(f̃i,k)

�i
, i = 1, . . ., I (13)

where the feature values f̃i,k, k = 1, . . . ,K are taken
from a set K of size K. In our case, these features
were extracted from the images used in the subjec-
tive experiments, including all reference images and
test images. Furthermore, the normalization factor
�i in (13) is given by

�i = max
k=1,...,K

(f̃i,k)− min
k=1,...,K

(f̃i,k) (14)

As far as the extreme value normalized features
defined by (13) are concerned, it should be men-
tioned that the boundary conditions apply to those
normalized feature values fi,k which are associated

with the feature values f̃i,k ∈ K of the images used
in the experiments. In a practical system, it may also
be beneficial to clip the normalized feature values
that are actually calculated in a real-time wireless
imaging application to fall in the interval [0, 1] as
well. For instance, severe signal fading in a wireless
channel can result in significant image impairments
at particular times causing the user-perceived qual-
ity to fall in a region where the HVS is saturated to
notice further degradation.

4.3. Feature metrics performance analysis

In order to gain deeper knowledge and under-
standing about the feature extraction, it is of inter-
est to examine the extent to which different features
are present in the stimuli and to quantify a relation-
ship between the feature metrics and MOS. Given
the context of RR metric design in wireless imaging,
where we are interested in the difference between
the quality of the received image as compared to the
quality of the transmitted image, let us in the fol-
lowing consider the magnitude of normalized feature
differences

Δfi = ∣ft,i − fr,i∣, i = 1, . . . , 5 (15)

where ft,i and fr,i denote the i
tℎ feature value of the

transmitted and received image, respectively.

4.3.1. Feature magnitudes over MOS

Figs. 7(a)-(b) show the magnitudes of the normal-
ized feature differences Δfi for the image samples
that were presented in SE 1 and SE 2. For each ex-
periment, the related forty feature differences are
ranked with respect to image samples of decreasing
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Fig. 7. Magnitude of differences between normalized feature
values for the considered image samples ranked according to
decreasing MOS: (a) SE 1, (b) SE 2.

MOS. It can be seen from these figures that the wire-
less link scenario indeed inflicted all five features but
with different degrees of severity. While for the im-
age samples of high perceptual quality ratings, fea-
ture differences are almost absent, the feature dif-
ferences tend to increase with decreasing MOS. Es-
pecially, the level of Δf1, relating to blocking, con-
tained in the image samples shows the widest spread
and becomes more pronounced when progressing
from images of excellent to bad perceptual quality.
A similar behavior is observed for edge-based image
activity Δf3 but appears not as pronounced as for
Δf1. As far as the remaining three features are con-
cerned, these become less prevalent for most of the
images but large for some of the stimuli. In particu-
lar, gradient-based image activity Δf4 and intensity

13



masking Δf5 occur very distinctively with selected
image samples while being almost absent from the
majority of image samples.

4.3.2. Feature statistics

As with theMOS gathered from the subjective ex-
periments, the statistical analysis may be extended
to the actual feature differences in order to obtain
a better understanding of the underlying objective
quality degradations. However, overall statistics for
the whole set of data, instead of image dedicated
statistics, shall be presented hereafter. Accordingly,
for all five feature differences Δfi the mean, vari-
ance, skewness, and kurtosis have been computed
over all images that have been shown in experiments
SE 1 and SE2 (see Fig. 7). The results of all statis-
tics are presented for both experiments in Tables 2
and 3.
From comparison of the two tables one can ob-

serve that for all four statistics and for all five fea-
ture differences, the magnitudes of the values are
very much in alignment between the two experi-
ments SE 1 and SE2. This indicates that the stim-
uli, in terms of the distorted test images, had similar
characteristics in both experiments. Thus, not only
subjective data is in alignment but also the com-
position of objective features among the test mate-
rial. In particular, it can be seen from both tables
that the mean of the blocking differences dominates
over the other features. This is a direct result of the
JPEG source encoding of which it is well known that
blocking artifacts are dominant over other artifacts
such as blur. The mean values of feature differences
Δf4 and Δf5 are particularly small, however, these
features exhibit instead a very high skewness and
kurtosis as compared to the other features. Clearly,
this quantifies the progression of feature differences
in the stimuli as shown in Figs. 7(a)-(b) Δf4 and
Δf5 being either negligibly small or distinctively de-
veloped.

4.3.3. Feature cross-correlations

Even though the feature metrics were selected to
account for a particular artifact, one may expect
some overlap in quantifying the different artifacts.
To further understand the performance of the fea-
ture metrics in comparison to each other, Tables 4
and 5 show the Pearson linear correlation coefficient
between each of the feature metrics for both SE 1
and SE2. In this context, the cross-correlation mea-
sures the degree to which two features are simulta-

Table 2
Statistics of magnitudes of feature differences Δfi for SE 1

Δf1 Δf2 Δf3 Δf4 Δf5

Mean 0.253 0.120 0.102 0.053 0.022

Variance 0.043 0.017 0.014 0.015 0.009

Skewness 0.627 1.425 1.124 3.518 6.015

Kurtosis 2.082 4.120 3.241 15.010 37.466

Table 3
Statistics of magnitudes of feature differences Δfi for SE 2

Δf1 Δf2 Δf3 Δf4 Δf5

Mean 0.263 0.094 0.115 0.049 0.061

Variance 0.029 0.013 0.010 0.021 0.035

Skewness 1.066 2.495 1.072 5.461 3.785

Kurtosis 4.056 9.531 3.843 32.434 17.063

Table 4

Correlations between feature differences for SE 1

Δf1 Δf2 Δf3 Δf4 Δf5

Δf1 1.000 0.625 0.821 0.016 0.027

Δf2 1.000 0.440 0.649 0.112

Δf3 1.000 0.056 −0.061

Δf4 1.000 0.000

Δf5 1.000

Table 5
Correlations between feature differences for SE 2

Δf1 Δf2 Δf3 Δf4 Δf5

Δf1 1.000 0.376 0.640 −0.014 0.115

Δf2 1.000 0.486 0.753 0.316

Δf3 1.000 0.323 −0.272

Δf4 1.000 0.170

Δf5 1.000

neously affected by a certain type and severity of
an artifact. As expected, the correlation of a feature
with itself exhibits the maximum magnitude of 1.
It can be seen from the tables that the cross-

correlations between the features vary strongly in
their magnitudes. A particularly pronounced cross-
correlation can be observed between feature metrics
Δf1 (block boundary differences) and Δf3 (edge-
based IA) for both SE 1 and SE 2. This is thought
to be due to both metrics being based on measuring
edges of an image. However, it should be noted again
that feature metric Δf1 only considers the 8 × 8
block borders of the JPEG encoding whereas fea-
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ture metric Δf3 quantifies image activity based on
edges in all spatial locations and directions. Further-
more, feature metrics Δf2 (edge smoothness) and
Δf4 (gradient-based IA) exhibit pronounced cross-
correlations in the test sets of both experiments
whichmay be a result of bothmetrics being designed
to quantify smoothness in images based on gradi-
ent information. As for feature metric Δf5 (image
histogram statistics), it can be seen that this met-
ric is only negligibly correlated to any of the other
feature metrics. This is a highly desired result since
the feature metrics other than Δf5 should be widely
unaffected by intensity shifts.

5. Objective perceptual metric design

In this section we will in detail describe the RR
objective quality metric design. In this respect, the
quality ratings obtained in the subjective experi-
ments are instrumental for the transition from sub-
jective to objective quality assessment.

5.1. Metric training and validation

As foundation of the metric design, the 80 images
in ℐ1 (SE 1) and ℐ2 (SE 1) from the two experiments
were organized into a training set ℐT containing 60
images and a validation set ℐV containing 20 images.
For this purpose, 30 images were taken from ℐ1 and
30 images from ℐ2 to form ℐT while the remaining 10
images of each set compose ℐV . Accordingly, a train-
ing set and a validation set were established with
the corresponding MOS, here referred to as MOST

and MOSV . The training sets, ℐT and MOST , are
then used for the actual metric design. The valida-
tion sets, ℐV and MOSV , are used to evaluate the
metrics ability to generalize to unknown images.

5.2. Metric design framework

A block diagram of the framework used in this pa-
per to design RR objective perceptual image quality
metrics is shown in Fig. 8. A brief overview of the
design process is given in the sequel with reference
to this figure.
The first key operation in the transition from

subjective to objective perceptual image quality as-
sessment is executed within the process of feature
weights acquisition. As a prerequisite of weights ac-
quisition, the different features of the transmitted
and received image are extreme value normalized
to allow for a meaningful weight association. As
the RR design is focused on detecting distortions
between related features, the weights acquisition is
performed with respect to feature differences Δfi,
i = 1, . . . , 5. Given the MOS values MOST for
the images in the training set ℐT and the related
feature differences Δfi for each image, correlation
coefficients between subjective ratings and feature
differences are computed as weights wi, i = 1, . . . , 5
to reveal the feature relevance to the subjectively
perceived quality. It is then straightforward to com-
pute a feature-based objective quality metric by
applying a pooling function to condense the in-
formation to a single value x. Here, two metrics
are proposed, namely ΔNHIQM and the relevance
weighted Lp-norm.
The second essential component in moving from

subjective to objective quality assessment relates to
the curve fitting block as shown in Fig. 8. Its inputs
are the MOS values MOST for the images in the
training set ℐT and the values of the objective per-
ceptual quality metric x for each of these images.
The relationship between subjective quality given
byMOST and objective quality represented by x, is
then modeled by a suitable mapping function. The
parameters of potential mapping functions can be
obtained by using standard curve fitting techniques.
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The selection of suitable mapping functions is typ-
ically based on both goodness of fit measures and
visual inspection of the fitted curve. The obtained
mapping function f(x) can then be used to calcu-
late predicted MOS values, MOSx, for given values
of the quality metric value x.

5.3. Perceptual relevance of features

The Pearson linear correlation coefficient rP has
been chosen to reveal the extent by which the indi-
vidual feature differences contribute to the overall
perception of image quality. In this sense, it captures
prediction accuracy referring here to the ability of
a feature difference to predict the subjective ratings
with minimum average error. Given a set of K data
pairs (uk, vk), this ability can be quantified by

rP =

K
∑

k=1

(uk − ū)(vk − v̄)

√

K
∑

k=1

(uk − ū)2

√

K
∑

k=1

(vk − v̄)2

(16)

where uk and vk are the feature difference and the
subjective rating related to the ktℎ image, respec-
tively, and ū and v̄ are the means of the respective
data sets.
This choice is motivated by the fact that the cor-

relation coefficient explicitly characterizes the asso-
ciation between two variables, which are given here
by pairs of ratings and difference feature metrics.
The sign of the correlation value may be neglected as
it only represents the direction (increase/decrease)
in which one variable changes with the change of
the other variable. In view of the above, the abso-
lute values of the Pearson linear correlation coeffi-
cients rP are computed as the perceptual weights wi

of the related features. A higher correlation coeffi-
cient then corresponds to a feature that more signifi-
cantly contributes to the overall quality as perceived
by the viewer, while a lower correlation coefficient
means less perceptual significance. Also, if the cor-
relation coefficient approaches to the zero value, the
relationship between the perceptual quality and the
examined feature is not strongly developed.
Table 6 shows the values of the Pearson linear cor-

relation coefficients, or feature weights, that were
obtained for each of the five feature differences Δfi,
i = 1, . . . , 5 for the training set when correlated
to the associated MOST values. Accordingly, block
boundary differences (Δf1) appear to be the most

Table 6
Perceptual relevance weights of feature differences Δfi for
the images in the training set

Metric Weight Value

Δf1 w1 0.819

Δf2 w2 0.413

Δf3 w3 0.751

Δf4 w4 0.182

Δf5 w5 0.385

relevant feature followed by edge-based image activ-
ity (Δf3), edge smoothness (Δf2), image histogram
statistics (Δf5), and gradient-based image activity
(Δf4). This relates to blocking being the most an-
noying artifact followed by ringing due to edge-based
image activity, blur, intensity masking, and ringing
due to gradient-based image activity. Similar find-
ings have also been made by Farias et al. [9] who
observed that blocking is more annoying than blur.
The same group also found [10] that ringing is the
least annoying artifact. This agrees with our feature
metric Δf4 which also received the smallest weight.
On the other hand, the feature metric Δf3 deployed
in our paper measures ringing as well but received
a higher weight. We believe that this outcome can
be related to Δf3 having a strong correlation with
Δf1 (see Tables 4 and 5), thus not only accounting
for ringing but also for blocking artifacts.
It should be noted here that the relevance weights

in Table 6 were obtained for the particular case of
JPEG source encoding where blocking artifacts are
predominant over other artifacts such as blur. This
may also contribute to the higher correlation weights
for the edge based features Δf1 and Δf3 as com-
pared to the gradient based features Δf2 and Δf4.
Hence, the relevance weights may not be purely re-
lated to the perceptual relevance but also to the
particular artifacts that are observed in the visual
content. As such, one may obtain different relevance
weights in case of other source encoders, such as
JPEG2000.

5.4. RR objective metric computation

In the following two sections, we will consider
two different pooling functions that are based
on weighted combinations of the feature metrics.
Firstly, we introduce NHIQM, which linearly com-
bines extreme value normalized image features to
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a single quality value. Secondly, a perceptual rele-
vance weighted version of the Lp-norm is proposed,
which calculates a weighted sum of image feature
differences between original and impaired image.
In both cases, the respective image features are
extracted with the metrics as summarized in Sec-
tion 4.1, while the actual weights used for feature
combination have been deduced as discussed in
Section 5.3.

5.4.1. Normalized hybrid image quality metric

The proposed NHIQM is defined as a weighted
sum of the extreme value normalized features as

NHIQM =

I
∑

i=1

wifi (17)

where wi denotes the relevance weight of the as-
sociated feature fi. Clearly, this RR metric is par-
ticularly beneficial for objective perceptual quality
assessment in wireless imaging, as the reduced-
reference is represented by only one single value
for a given image. Accordingly, NHIQM can be
communicated from the transmitter to the receiver
whilst imposing very little stress on the bandwidth
resources.
Regarding applications in wireless imaging,

NHIQM can be calculated for the transmitted
image It and received image Ir, resulting in the
corresponding values NHIQMt and NHIQMr at
the transmitter and receiver, respectively. Provided
that the NHIQMt value is communicated to the
receiver, structural differences between the images
at both ends may simply be represented by the
absolute difference

ΔNHIQM = ∣NHIQMt −NHIQMr∣ (18)

5.4.2. Perceptual relevance weighted Lp-norm

The Lp-norm, also referred to as Minkowski met-
ric, is a distance measure commonly used to quantify
similarity between two signals or vectors. In image
processing it has been applied, for instance, with the
percentage scaling method [29] and the combining
of impairments in digital image coding [28].
In this paper, we incorporate the relevance weight-

ing for the extreme value normalized features into
the calculation of the Lp-norm. This modification of
the Lp-norm shall be defined as follows:

Lp =

[

I
∑

i=1

wp
i ∣ft,i − fr,i∣p

]

1
p

(19)

where ft,i and fr,i denote the i
tℎ feature value of the

transmitted and the received image, respectively.
TheMinkowski exponent pmay be determined ex-

perimentally [29]. Alternatively, the Minkowski ex-
ponent p may be assigned a fixed value. In both
cases, a higher value of p increases the impact of the
dominant features on the overall metric. In the limit
of p approaching infinity, we obtain

L∞ = max
i=1,⋅⋅⋅ ,I

∣ft,i − fr,i∣ (20)

meaning that the largest absolute feature value dif-
ference solely dominates the norm. We have found
[7] that values beyond p = 2 do not improve the
quality prediction performance of the modified Lp-
norm given in (19). We believe that this character-
istic is because of the perceptual relevance weights
obtained for each feature inherently accounting for
the dominance of the particular features. In the se-
quel, we therefore consider the modified Lp-norm for
Minkowski exponents of p = 1 and p = 2 only.
Although the Lp-norm belongs to the class of

RR metrics, it requires more transmission resources
compared to ΔNHIQM , as all feature values need
to be communicated from the transmitter to the
receiver. On the other hand, the information about
each of the feature degradations may provide fur-
ther insights into the channel induced distortions.
Hence, overhead may be traded off at the expense
of a reduction about structural degradation infor-
mation by neglecting feature metrics that received
low perceptual relevance weights.

5.5. Mapping functions

Due to non-linear quality processing in the HVS,
artifacts and quality do not follow a linear relation-
ship. To account for this phenomenon, a mapping
function is applied to the quality metrics. In general,
an objective quality metric x may be mapped using
a non-linear mapping function f(x). The mapping
function may then be used to determine the pre-
dicted mean opinion score MOSx for a given x as

MOSx = f(x) (21)

Specifically, we will consider the following three
classes of mapping functions:
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(22)

where the coefficients p0, . . . , pm of the polynomial
function of degreem, the initial value a1 . . . , am and
growth/decay b1 . . . , bm of the exponential function
of order m, and the parameters l1, l2 of the logis-
tic function are to be determined through curve fit-
ting based on the given experimental data from the
training set.
These three classes of mapping functions have

been chosen as candidates for quality prediction
due to the following reasons:

∙ Polynomial functions provide sufficient flexi-
bility to support simple empirical prediction.

∙ Exponential functions are imposed to enable a
good fit to experimental data over the middle-to-
upper range of the quality impairment measure
[21] and may be less prone to overfitting compared
to functions with many parameters.

∙ Logistic functions facilitate the mapping of
quality impairment measures into a finite inter-
val. They produce scale compressions at the high
and low extremes of quality while progressing
approximately linear in the range between these
extremes.

Standard curve fitting techniques have been used
to deduce the parameters of the mapping functions
that mathematically describe best the relationship
between subjective ratings and objective perceptual
quality metric with respect to a given goodness of
fit measure. A mapping function obtained in this
way translates an objective perceptual quality met-
ric x into predicted MOS, MOSx. The goodness of
fit between MOS and predicted MOS, can be speci-
fied by either of the following statistics:

∙ R2 captures the degree by which variations in the
MOS values are accounted for by the fit. It can
assume any value in the interval [0, 1] with a good
fit being close to 1.

∙ Rootmean squared error (RMSE) is referred
to as the standard error of the fit with a good fit
indicated by an RMSE value close to 0.

∙ Sum of squares due to error (SSE) represents
the total deviation between predicted MOS and
MOS from the experiments. The smaller the SSE

Table 7
Mapping functions f(x) = MOSNHIQM , x = ΔNHIQM

and their goodness of fit.

Polynomial Parameters R2 RMSE SSE

p1x+p0 p1=−97.8 0.71 12.78 9472

p0=77.45

p2x2+p1x+p0 p2=149.5 0.79 11.07 6982

p1=−199.4

p0=87.88

p3x3+p2x2+p1x+p0 p3=−493.9 0.82 10.17 5792

p2=672.2

p1=−338.3

p0=94.87

Exponential function

a1eb1x a1=88.79 0.79 10.76 6714

b1=−2.484

a1eb1x+a2eb2x a1=69.76 0.83 10.01 5612

b1=−1.719

a2=32.05

b2=−17.39

a1eb1x+a2eb2x+a3eb3x a1=63.18 0.80 11.12 6678

b1=−3.056

a2=−175

b2=0.1434

a3=198.2

b3=0.041

Logistic function

100/[1+e−l1(x−l2)] l1=−4.613 0.72 12.63 9263

l2=0.262

value, the better the fit.

The Matlab Curve Fitting Toolbox was used to
find the parameters of the considered mapping func-
tions. The mapping functions have been derived for
bothΔNHIQM and the relevance weightedLp-norm,
however, only the results for ΔNHIQM will be pre-
sented in the following. The results are provided in
Table 7 along with the different goodness of fit mea-
sures. A visual examination of the fitted mapping
functions is supported by the Figs. 9-11, which also
show the 95% confidence interval for each fit.
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Fig. 9. Polynomial mapping functions: (a) Linear, (b)
Quadratic, (c) Cubic.

As far as the polynomial functions are concerned,
it could be concluded at first sight from looking only
at the goodness of fit statistics that the cubic poly-
nomial would perform similarly favorable in percep-
tual quality prediction as the exponential functions.
However, visual inspection of Fig. 9 suggests the op-
posite as the good fit applies only for the given data
range but tends to diverge outside this range. For ex-
ample, an increase of the objective perceptual qual-
ity metric beyond the value of 0.8 would actually
predict “negative” MOS values (see Fig. 9 (c)). As
higher-degree polynomials may even result in more
severe overfitting, the class of polynomials has lit-
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Fig. 10. Exponential mapping functions: (a) Exponential,
(b) Double exponential, (c) Triple exponential.

tle to offer for use in objective perceptual quality
assessment.
In contrast to the polynomial functions, favorable

fitting has been obtained for all three considered ex-
ponential mapping functions, not only in terms of
goodness of fit measures but also confirmed by visual
inspection (see Fig. 10). However, it can be observed
that the triple exponential function performs simi-
larly to the exponential function but at the price of
a larger computational complexity due to its more
involved analytical expression. As such, the triple
exponential function may not be considered further.
As for the logistic mapping function, the good-
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Fig. 11. Logistic mapping function.

ness of fit measures indicate a rather poor fit to the
data from the subjective experiments. Especially,
the compression at the high end of the quality scale
produces disagreement with MOS (see Fig. 11).
In light of the above findings, both the exponen-

tial and double exponential mapping are selected for
further consideration in the metric design.

6. Evaluation of image quality metrics

With the exponential and double exponential
mapping being identified as suitable models for
objectively predicting perceptual image quality,
an evaluation of the prediction performance of
ΔNHIQM and Lp-norm on the training set (60
images in ℐT and related MOST ) and its general-
ization to the validation set (20 images in ℐV and
related MOSV ) is given in this section.

6.1. Other objective quality metrics for comparison

We have selected contemporary quality metrics
that have been proposed in recent years to allow
for a performance comparison with the proposed
feature-based ΔNHIQM and the Lp-norm. Specif-
ically, the reduced-reference image quality assess-
ment (RRIQA) technique proposed in [41] is chosen
as a prominent member of the class of RR metrics.
In addition, the structural similarity (SSIM) index
[40], the visual information fidelity (VIF) criterion
[32], the visual signal-to-noise ratio (VSNR) [4], and
the peak signal-to-noise ratio (PSNR) [26] are cho-
sen as the FR metrics. It is noted that FR metrics
would not be suitable for the considered wireless
imaging scenario but rather serve to benchmark
prediction performance, which can be expected to
be high due to the utilization of the reference image.

∙ RRIQA: This metric [41] is based on a natural
image statistic model in the wavelet domain. The
image distortion measure is obtained from the es-
timation of the Kullback-Leibler distance between
the marginal probability densities of wavelet co-
efficients in the subbands of the reference and dis-
torted images as follows

D = log2

(

1 +
1

D0

K
∑

k=1

∣d̂k(pk∥qk)∣
)

(23)

where the constant D0 is used as a scaler of the
distortion measure, d̂k(pk∥qk) denotes the estima-
tion of the Kullback-Leibler distance between the
probability density functions pk and qk of the ktℎ

subband in the transmitted and received image,
and K is the number of subbands. The overhead
needed to represent the reduced-reference is given
as 162 bits [41].
∙ SSIM: The SSIM index [40] is based on the
assumption that the HVS is highly adapted to
the extraction of structural information from the
visual scene. As such, SSIM predicts structural
degradations between two images based on simple
intensity and contrast measures. The final SSIM
index is given by

SSIM(x, y) =
(2�x�y + C1)(2�xy + C2)

(�2
x + �2

y + C1)(�2
x + �2

y + C2)
(24)

where �x,�y and �x,�y denote the mean inten-
sity and contrast of image signals x and y, respec-
tively. The constants C1 and C2 are used to avoid
instabilities in the structural similarity compari-
son that may occur for certain mean intensity and
contrast combinations (�2

x+�2
y = 0, �2

x+�2
y = 0).

∙ VIF: The VIF criterion [32] approaches the im-
age quality assessment problem from an informa-
tion theoretical point of view. In particular, the
degradation of visual quality due to a distortion
process is measured by quantifying the informa-
tion available in a reference image and the amount
of this reference information that can be still ex-
tracted from the test image. As such, the VIF cri-
terion measures the loss of information between
two images. For this purpose, natural scene statis-
tics and, in particular, Gaussian scale mixtures
(GSM) in the wavelet domain, are used to model
the images. The proposed VIF metric is given by
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VIF =

∑

j∈subbands I(
−→
CN,j ;

−→
F N,j ∣sN,j)

∑

j∈subbands I(
−→
CN,j ;

−→
EN,j ∣sN,j)

(25)

where
−→
C denotes the GSM, N denotes the num-

ber of GSM used, and
−→
E and

−→
F denote the visual

output of a HVS model, respectively, for the ref-
erence and test image.
∙ VSNR: The VSNR [4] metric deploys a two-
stage approach based on near-threshold and
suprathreshold properties of the HVS to quantify
image fidelity. The first stage determines whether
distortions are visible in an image. For this pur-
pose, contrast thresholds for distortion detection
are determined using wavelet-based models of
visual masking. If the distortions are below the
threshold, the quality of the image is assumed to
be perfect and the algorithm is terminated. If the
distortions are visible, a second stage implements
perceived contrast and global precedence proper-
ties of the HVS to determine the impact of the
distortions on perceived quality. The final VSNR
metric is then given as

VSNR = 20 log10

(

C(I)

� dpc + (1− �)
dgp√

2

)

(26)

where C(I) denotes the root-mean-squared con-
trast of the original image I, dpc and dgp are,
respectively, measures of perceived contrast and
global precedence disruption, and � is a weight
regulating the relative contributions of dpc and
dgp.
∙ PSNR: Image fidelity is an indication about
the similarity between the reference and distorted
images and measures pixel-by-pixel closeness be-
tween those pairs. The PSNR [26] is the most
commonly used fidelity metric. It measures the fi-
delity difference of two image signals IR(x, y) and
ID(x, y) on a pixel-by-pixel basis as

PSNR = 10 log
�2

MSE
(27)

where � is the maximum pixel value, here 255.
The mean square error is given as

MSE =
1

XY

X
∑

x=1

Y
∑

y=1

[IR(x, y)− ID(x, y)]2 (28)

where X and Y denote horizontal and vertical
image dimensions, respectively. Despite being an
FR metric, PSNR usually does not correlate well

Table 8
Computational complexity of the metrics and amount of
reference information needed.

Metric Computation Reference

Type Name time/image information

RR ΔNHIQM 1.55 sec 17 bits

Lp-norm 1.55 sec 85 bits

RRIQA 7.12 sec 162 bits

FR SSIM 0.37 sec Full image

VIF 0.92 sec Full image

VSNR 0.33 sec Full image

PSNR 0.05 sec Full image

with the visual quality as perceived by a human
observer [38].

6.2. Computational complexity and amount of

reference information

In the following, we will discuss the computa-
tional complexity of the considered metrics and the
amount of reference information that is needed in
order to assess the quality of a test image. The de-
tails are summarized in Table 8.
The computational complexity is measured in

terms of the time that each of the metrics needs
to assess the quality of a single image in our sets
ℐ1 and ℐ2. Here, we have computed each metric
over all 80 images and then determined the average
time. The metrics were run on a laptop computer
containing an Intel T2600 Dual Core processor with
2.16GHz and 4GB of RAM. In order to allow for a
fair comparison, the publicly available Matlab im-
plementation of each metric was used even though
there may be other implementations available for
some of the metrics. It can be seen from Table 8 that
the computational complexity of all FR metrics is
lower as compared to the RR metrics. Amongst the
FR metrics, PSNR outperforms by far the other
considered metrics in terms of computational com-
plexity. Regarding the RR metrics, it is observed
that both ΔNHIQM and Lp-norm are significantly
less complex than RRIQA.
In the context of wireless imaging, the amount of

reference information needed for quality assessment
determines the overhead of data that needs to be
transmitted over the channel along with the actual
image. From Table 8 one can see that the reference
information is significantly lower for both ΔNHIQM
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and Lp-norm as compared to RRIQA. The partic-
ularly small reference information for ΔNHIQM re-
sults from the fact that only a single valueNHIQMt

needs to be transmitted. On the other hand, with
the Lp-norm five features need to be transmitted re-
sulting in a five times higher overhead. However, as
discussed in Section 5.4.2, the number of features
used may be traded off with the transmission over-
head by neglecting features of low perceptual rele-
vance. As for the FR metrics, the reference image is
needed for the quality assessment and as such, the
size of the image determines the amount of reference
information. Independent of the image size, how-
ever, the amount of reference information would be
magnitudes higher as compared to the RR metrics.

6.3. Prediction performance measures

The quality prediction performance of the con-
sidered objective metrics will be quantified in terms
of accuracy, monotonicity, and consistency as rec-
ommended by the Video Quality Experts Group
(VQEG) [35].
The prediction accuracy of each objective quality

metric will be quantified using the Pearson linear
correlation coefficient as defined in (16). The pre-
diction monotonicity will be measured by the non-
parametric Spearman rank order coefficient

rS =

K
∑

k=1

(�k − �̄)(k − ̄)

√

K
∑

k=1

(�k − �̄)2

√

K
∑

k=1

(k − ̄)2

(29)

where �k and k denote the ranks of the predicted
scores and the subjective scores, respectively, and
�̄ and ̄ are the midranks of the respective data
sets. This measure is used to quantify if changes
(increase or decrease) in one variable is followed by
changes (increase or decrease) in another variable,
irrespective of the magnitude of the changes.
The prediction consistency is identified by the

outlier ratio. A data pair (uk, vk) may be declared as
an outlier when the absolute difference between uk

and vk is greater than a certain threshold. As sug-
gested in [35], the threshold shall be chosen at least
twice as much as the MOS standard deviation �vk

such that

∣uk − vk∣ > 2�vk (30)

Then, the outlier ratio can be calculated as
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Fig. 12. MOS versus predicted MOS, MOSNHIQM : (a) Ex-
ponential mapping, (b) Double exponential mapping.

rO = RO/R (31)

where RO denotes the total number of outliers and
R is the size of the data set.

6.4. Linear regression

Prior to the evaluation of prediction performance
for the considered objective image quality metrics,
the favorable mapping functions will be used to re-
late the predicted MOS values to the actual MOS
values from the subjective experiments. The pre-
dicted scores, MOST and MOSV , respectively, are
calculated for each image in the training set ℐT and
the validation set ℐV .
As an example, Fig. 12 shows the result for

ΔNHIQM using the exponential and double expo-
nential mapping functions. Here, the MOS values
from the subjective experiments are plotted versus
the predicted MOS values, MOSNHIQM , for the
images in the training set ℐT . In addition, a lin-
ear function has been fitted to the data set and is
presented along with the 95% confidence interval.
It should be mentioned that the fitting curves for
both exponential and double exponential mapping
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Table 9
Parameters of prediction functions for objective quality metrics using exponential and double exponential mapping

Metric Exponential Double exponential

Type Name a1 b1 a1 b1 a2 b2

RR ΔNHIQM 88.79 −2.484 69.76 −1.720 32.04 −17.39

L1-norm 87.63 −1.840 68.15 −1.251 34.31 −13.46

L2-norm 90.20 −2.820 69.83 −1.950 32.28 −16.24

RRIQA 102.1 −0.160 101.3 −0.157 −3.486 ⋅ 10−14 3.701

FR SSIM 13.91 1.715 31.34 0.446 3.964 ⋅ 10−7 18.58

VIF 4.291 2.886 14.06 1.366 7.721 ⋅ 10−14 33.98

VSNR 25.662 0.033 21.964 0.041 −1.388 ⋅ 10−6 0.387

PSNR 18.33 0.036 22.68 0.029 0 0.029

produce the desired linear relationship between
predicted MOS and MOS. Specifically, the range
between 0 and 100 is nicely captured for predicted
MOS and MOS. The prediction performance mea-
sures will be calculated for these post-mapped rela-
tionships in addition to the actual metric values.

6.5. Analysis of mapping parameters

The evaluation of the prediction performance of
ΔNHIQM , L1-norm, and L2-norm will be presented
here and compared to RRIQA, SSIM, VIF, VSNR,
and PSNR. For this purpose, the parameters of the
exponential and double exponential mapping func-
tions have been derived for all of these metrics, fol-
lowing the methodology as outlined in Section 5.5.
Table 9 presents the parameters of the prediction

functions deduced from curve fitting of the consid-
ered quality metrics to the MOS values in the train-
ing set of images using the exponential and double
exponential mapping. It can be seen from the nu-
merical values of the parameters that distinct ex-
ponential mapping functions are produced in terms
of growth and decay. The negative decay parame-
ter for the feature-based objective perceptual qual-
ity metrics ΔNHIQM , L1-norm, L2-norm, as well
as RRIQA relate to the fact that these RR metrics
represent image degradation. Thus, larger values of
these metrics correspond to lower perceptual qual-
ity. In contrast, the FR metrics SSIM, VIF, VSNR,
and PSNR measure image similarity of some sort,
which is represented by the positive decay parame-
ter in their exponential mapping functions. In these
cases, a larger metric value corresponds to higher
perceptual quality. As for the double exponential

mapping functions, these are pronounced only for
the feature-based objective perceptual quality met-
rics of ΔNHIQM and the L1- and L2-norm. Specifi-
cally, the growth and decay parameters for both in-
volved exponential functions are substantially dif-
ferent to zero. This is not the case for the other
considered quality metrics, RRIQA SSIM, VIF, and
VSNR, with the double exponential mapping func-
tions degenerating to an exponential function for
small metric values. Due to the initial value a2 be-
ing close to zero, the second exponential function
can contribute to the prediction only for extremely
large metric values although this may still be in-
significant to the first exponential function involved.
In the case of PSNR, the initial value of the second
exponential function is actually obtained from the
curve fitting as being zero. Accordingly, the double
exponential mapping function in fact degenerates to
an exponential mapping function.

6.6. Evaluation of quality prediction performance

Given the parameters of the prediction functions
for the examined quality metrics, the prediction per-
formance of these metrics is presented in Table 10.
In particular, the prediction accuracy is quantified
by the Pearson linear correlation coefficient. It has
been calculated on the basis of the 60 images in the
training set ℐT and the 20 images of the validation
set ℐV . Moreover, prediction accuracy has been cal-
culated for the relationship between MOS and the
pure metric as well as for the relationship between
MOS and predicted MOS using exponential map-
ping and double exponential mapping.
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Table 10
Prediction performance of objective quality metrics, predicted MOS using exponential mapping, and predicted MOS using
double exponential mapping

Metric Accuracy Monotonicity Consistency

Type Name Metric Exponential 2-exponential Metric, Mapping Exponential 2-exponential

rP,T rP,V rP,T rP,V rP,T rP,V rS,T rS,V rO,T rO,V rO,T rO,V

RR ΔNHIQM 0.843 0.840 0.892 0.888 0.910 0.860 0.867 0.892 0.017 0 0 0.050

L1-norm 0.833 0.841 0.873 0.897 0.895 0.893 0.854 0.901 0.017 0 0.017 0

L2-norm 0.845 0.846 0.888 0.884 0.903 0.878 0.875 0.890 0.017 0 0 0

RRIQA 0.821 0.772 0.829 0.749 0.831 0.752 0.786 0.758 0.050 0.050 0.050 0.050

FR SSIM 0.582 0.434 0.632 0.511 0.701 0.605 0.558 0.347 0.117 0.050 0.100 0.050

VIF 0.713 0.737 0.789 0.788 0.877 0.795 0.813 0.729 0.083 0 0.033 0

VSNR 0.766 0.696 0.758 0.686 0.783 0.686 0.686 0.510 0.083 0 0.050 0.050

PSNR 0.742 0.712 0.738 0.709 0.741 0.711 0.638 0.615 0.100 0 0.150 0

As can be seen from the numerical results in
Table 10 for the metric training, the prediction
accuracy of the feature-based metrics, ΔNHIQM ,
L1-norm, and L2-norm, outperform the other con-
sidered metrics, RRIQA, SSIM, VIF, VSNR, and
PSNR. This applies for the training with respect to
all three cases, i.e. the pure metric prior to mapping
and after mapping with exponential and double ex-
ponential functions. The comparison between the
feature-based quality metrics indicate the compa-
rable performance of ΔNHIQM and the Lp-norms.
Similar observations about accuracy can be made

for metric validation. In terms of metric general-
ization to these unknown images from the valida-
tion set, the feature-based quality metrics signifi-
cantly outperform the other considered metrics in
accuracy. While ΔNHIQM and the Lp-norms pro-
vide an accuracy over 80% and in some cases close
to 90%, all other considered metrics fall below the
80% threshold of generalization accuracy. It is also
observed that the largest accuracy being rp = 0.91
for ΔNHIQM on the training set using double expo-
nential mapping does not generalize as well as for
the pure metric or exponential mapping. This in-
dicates that fitting ΔNHIQM to a double exponen-
tial mapping may already produce some degree of
overfitting. Similar trends to overfitting using dou-
ble exponential mapping can be observed with the
L2-norm and VIF. In view of this and the degener-
ation of double exponential mapping to exponential
mapping with some metrics, the exponential func-
tion may in fact constitute the most preferred map-
ping in the considered context of wireless imaging.

Let us now compare the prediction monotonic-
ity of the proposed image quality metrics with the
other state of the art image quality metrics. As all
relationships follow strictly decreasing or increasing
functions, differentiation between metric, exponen-
tial, and double exponential mapping is not required
as ranks are kept the same for all three cases. The re-
sults shown in Table 10 reveal that the feature-based
ΔNHIQM approach and the Lp-norms perform fa-
vorably over the remaining four metrics with pre-
diction monotonicity well above 80% for both met-
ric training and validation. From the other metrics,
only VIF shows a satisfactory prediction monotonic-
ity of rS = 0.813 for the training but does not gen-
eralize well to the unknown images.
Finally, the prediction consistency for the train-

ing of both feature-based metrics, ΔNHIQM and Lp-
norms, is superior compared to the other four met-
rics. It is also observed that the prediction consis-
tency for the validation of ΔNHIQM is better when
using the exponential mapping compared to the dou-
ble exponential mapping.

7. Conclusions

In this paper, the design of RR objective percep-
tual image quality metrics for wireless imaging has
been presented. Instead of focusing only on artifacts
due to source encoding, the design follows an end-to-
end quality approach that accounts for the complex
nature of artifacts that may be induced by a wire-
less communication system. As such, the proposed
image quality metrics constitute alternatives to tra-

24



ditional link layer metrics and may readily be uti-
lized for in-service quality monitoring and resource
management purposes. Specifically, both ΔNHIQM

and the perceptual relevance weighted Lp-norm are
designed with respect to low computational com-
plexity and low overhead, to measure quality degra-
dations in a wireless communication system, and to
account for different structural artifacts that have
been observed in our distortion model of a wireless
link. Here, structural artifacts are detected by re-
lated feature metrics.
The general framework for the design of RR ob-

jective perceptual image quality metrics is outlined.
It comprises of feature extraction, feature normal-
ization, calculation of difference features, relevance
weight acquisition, and feature pooling. In addition,
curve fitting techniques are used to find the parame-
ters of suitable mapping functions that can translate
objective quality metrics into predicted MOS. The
transition from subjective to objective perceptual
quality is executed in the process of relevance weight
acquisition and the derivation of the mapping func-
tions. In both these parts of the design framework,
the results of subjective experiments are engaged to
train our feature-based quality metrics. Moreover,
a detailed description and statistical analysis of the
subjective data gathered in these experiments and
related objective feature data is provided.
The evaluation of the quality prediction perfor-

mance reveals that ΔNHIQM and the perceptual rel-
evance weighted Lp-norm both correlate similarly
well to human perception on images. This holds not
only for the training of the metrics but also for the
generalization to unknown images. Furthermore, the
numerical results show that both feature-based RR
metrics outperform even the considered state of the
art FR metrics in prediction performance. As the
reduced-reference overhead associated with the cal-
culation of ΔNHIQM is condensed to only a sin-
gle number, this approach may be the more favor-
able choice for use in wireless imaging applications
compared to the perceptual relevance weighted Lp-
norm, which requires all involved features to be com-
municated from the transmitter to the receiver.
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