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Reduced representation bisulphite
sequencing of ten bovine somatic tissues
reveals DNA methylation patterns and
their impacts on gene expression
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Leeson J. Alexander4, Tad S. Sonstegard5, Curtis P. Van Tassell2, Hong Chen1* and George E. Liu2*

Abstract

Background: As a major epigenetic component, DNA methylation plays important functions in individual

development and various diseases. DNA methylation has been well studied in human and model organisms,

but only limited data exist in economically important animals like cattle.

Results: Using reduced representation bisulphite sequencing (RRBS), we obtained single-base-resolution maps of

bovine DNA methylation from ten somatic tissues. In total, we evaluated 1,868,049 cytosines in CG-enriched

regions. While we found slightly low methylation levels (29.87 to 38.06 %) in cattle, the methylation contexts

(CGs and non-CGs) of cattle showed similar methylation patterns to other species. Non-CG methylation was

detected but methylation levels in somatic tissues were significantly lower than in pluripotent cells. To study the

potential function of the methylation, we detected 10,794 differentially methylated cytosines (DMCs) and 836 differentially

methylated CG islands (DMIs). Further analyses in the same tissues revealed many DMCs (including non-CGs) and DMIs,

which were highly correlated with the expression of genes involved in tissue development.

Conclusions: In summary, our study provides a baseline dataset and essential information for DNA methylation profiles

of cattle.
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Background
DNA methylation has been widely recognized as a regula-

tory epigenetic mechanism that is crucial for cellular

reprogramming, tissue differentiation and normal devel-

opment [1–5]. Aberrant methylation patterns may lead to

numerous diseases [6, 7]. However, to date, DNA methyla-

tion patterns have been well characterized in only a few

species, including Arabidopsis, human and rodents

[8–13]. Moreover, different methylation mechanisms

have been proposed for mammals versus plants [14].

Unlike plants, DNA methylation in mammals almost

exclusively occurs in the CG context while DNA

methylation in the non-CG context was thought to be

nearly absent in somatic tissues except for pluripotent

stem cells, brain and oocytes [1, 10, 15, 16]. Only a

few human and rodent studies have focused on non-

CG methylation in germline cells [11, 16–19]. Re-

cently, epigenome maps of the human body showed

unexpected presence of non-CG methylation in all

somatic tissues [11]. However, the functional aspects

of this methylation are not yet well understood.

Mammalian DNA methylation patterns were thought

to be initiated by de novo DNA methyltransferases

DNMT3a/3b and maintained by DNMT1 during

DNA replication [20, 21]. However, this “two step”
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model does not explain non-CG methylation beyond

the symmetric context of CG methylation [22]. More-

over, demethylation mechanisms have been reported

to be different between the CG and non-CG context

[14]. Thus, CG and non-CG methylation have been

thought to undergo different mechanisms [22].

Our knowledge of DNA methylation pattern in live-

stock, even for CG context, is still limited when com-

pared to humans and rodents. A few genome-wide DNA

methylation studies were reported with limited tissue

types and low resolution in cattle, pigs, sheep and horses

[23–28]. Two studies reported the genome-wide

methylation of several pig tissues at single-base reso-

lution using the reduced representation bisulfite sequen-

cing (RRBS) method [29, 30]. In cattle, we found a

couple of studies for placental and muscle tissues using

methylated DNA immunoprecipitation combined with

high-throughput sequencing (MeDIP-seq) which did not

provide a single-base resolution [23, 24, 31]. Recently, an

evolutionary analysis of gene body DNA methylation

patterns was reported in mammalian placentas using

whole genome bisulfite sequencing (WGBS) [32]. How-

ever, for cattle samples, due to their low genome cover-

age (up to 1.25×), this study only offered a coarse

resolution instead of a single-base resolution. Therefore,

knowledge of how DNA methylation affects gene

expression, phenotype, animal health and production is

urgently needed. In line with the Functional Annotation

of Animal Genome (FAANG) project [33], the present

study is an important step towards understanding DNA

methylation patterns and their functions.

RRBS is an effective method to describe the methyla-

tion patterning on a genome-wide level [34]. Unlike

MeDIP-seq and methyl-binding domain sequencing

(MBD-seq), RRBS can detect methylation in a single-

base resolution including information about all three

methylation contexts (CG, CHG and CHH). On the

other hand, WGBS is the most comprehensive method

for describing DNA methylation. Compared to the high

cost of WGBS, RRBS enriches for high CG regions,

which range from 5.3 % in zebrafish 8.3 % in pig of total

genome CG sites, and has been proven as a less expen-

sive method to study DNA methylation in the presumed

functionally most important part of a genome [29].

Here, we constructed the genome methylation profiles

of ten diverse tissues of cattle using the RRBS method.

We describe the landscapes of the DNA methylome and

common methylation patterns among the tissues. To

assess non-CG methylations, we compared distributions

between the somatic tissues and published WGBS data

of bovine oocytes [32]. We further studied differential

methylation, which may be involved in tissue develop-

ment, by detecting differentially methylated cytosines

(DMCs) and differentially methylated CG islands (DMIs)

and comparing methylation levels among these tissues.

By combining RNA-Seq data from the same tissues, we

detected many DMCs and DMIs that may affect tissue

development through regulating gene expression. This

study supplies essential information on the cattle methy-

lome and provides a reference dataset for further study

of DNA methylation.

Results

Assessment of the RRBS data

To characterize DNA methylation patterns in cattle, we

applied RRBS analysis for ten different tissues

(Additional file 1: Table S1) from the Hereford cow L1

Dominette 01449 and her progeny/relatives. Dominette

was the cow whose genome was sequenced to construct

the cattle genome reference assembly [35, 36]. The ten

tissues were chosen from the previous Bovine Gene

Altas study [37]. They were distributed in different sim-

plex clusters and spanned different development stages

and physiological periods. A total of ten libraries were

constructed with 150–400 bp DNA fragments and each

produced a minimum of 3 Gb clean reads, an average of

41 % of which were uniquely mapped to the cattle refer-

ence assembly (UMD3.1). To guarantee the quality and

quantity for each cytosines at the same time, we first

selected the threshold we would use to filter cytosines

with low confidence. The common shared cytosines with

less than 0.2 standard deviations from the average

methylation level among the ten samples were selected

for cluster analysis at different filtering thresholds (3 to

10 × coverage). The cluster results became stable after

removing cytosines with coverage below 8 ×. Moreover,

the cytosines with 8 × coverage distributed almost same

as the cytosines above 8 ×, indicating the influence of

low-coverage cytosines was suppressed (Additional file

2: Figure S1). Thus, only the cytosines with at least eight

reads were considered for further study. RRBS is known

to enrich for high CG density regions of the genome. In

our study, the distribution of the detected cytosine num-

ber per 20 Kb was consistent with that of the CG density

on the genome (Fig. 1a). Totally, we obtained 1,868,049

cytosines in the CG-enriched region throughout the

whole genome for further study. The relative prevalence

of each sequence context detected throughout the gen-

ome was assessed, revealing that 25 % were in the CG

context, 28 % were in the CHG context and 47 % were

in the CHH context (Fig. 1b). This result illustrates that

there were a considerable number of cytosines located in

a non-CG context captured by the RRBS method. We

further validated 19 randomly selected CG sites in four

regions using four tissues and achieved a 62 % success

rate, which is defined as CG with methylation level

difference less than 0.2 between RRBS and bisulfite PCR

sequencing results (Additional file 1: Table S2).
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Global DNA methylation in diverse cattle tissues

The methylation profiles of different contexts in cattle

were consistent with other species. The ten bovine

somatic tissues showed similar global methylation,

with Pearson’s correlation scores ranging from 0.93 to

0.98. While in the pig study [29], closely related tis-

sues were used and yielded slightly higher Pearson’s

correlations (>0.95). The CGs were either enriched at

a low methylation level (<20 %) or high methylation

level (>80 %), while both non-CG contexts were

enriched only at a low methylation level (Additional

file 2: Figure S2a, b, c). Totally, we observed average

genome-wide levels of 33.5 % CG, 1.1 % CHG and

1.5 % CHH methylation in CG-enriched regions. The

CG methylation levels ranged from 29.87 to 38.06 %

among different tissues (Table 1). Unexpectedly, we

did not detect a significantly higher non-CG methyla-

tion level in the frontal cortex, which in the adult

stage generally is greater than in other tissues [38].

One explanation was that our frontal cortex sample

was collected from a juvenile stage.

Comparison of the CG and non-CG methylation patterns

in cattle somatic tissues

In mouse oocytes, non-CG methylation showed high

correlation with CG methylation at the genome-wide

level and was enriched in high CG regions [16]. We con-

firmed this correlation between CG and non-CG methy-

lation in bovine oocytes using WGBS data downloaded

from a recent publication [32] (Fig. 2a, Additional file 2:

Figure S3). However, within the dataset obtained from

bovine somatic tissues, we did not detect significant cor-

relation between them. This may indicate that non-CG

methylation levels were too low to measure reliably in

somatic tissues as compared to oocytes (Fig. 2a).

To better understand the methylation patterns of CG

and non-CG contexts in this study, we first annotated

the cytosines within different genomic structures or fea-

tures. For example, we detected not only the cytosines

present in the nuclear genome but also the cytosines in

the mitochondrial genome and the unplaced sequences

(chrUn) (Additional file 2: Figure S4). DNA methylation

in the mitochondrial genome was extremely low. On the

Fig. 1 Chromosomal distribution and context percentage of detected cytosines. a The density distribution of cytosines on chr1 using

20-Kb non-overlapping windows. The green line represents the density distribution of CG in the CG island calculated using the UMD3.1

bovine reference genome assembly; and the red line represents the density distribution of cytosines detected in the BGA14 (testis) on

chr1. b The fraction of cytosines within different contexts detected by RRBS for all ten tissues

Zhou et al. BMC Genomics  (2016) 17:779 Page 3 of 11



other hand, both the CG context and CHG context

showed the highest methylation level on chrUn. This is

consistent with the notion that chrUn contains the

sequences which cannot be placed on the chromosomes

due to their repetitive nature, and high DNA methylation

can help to repress those repeats to maintain genome sta-

bility and integrity [39, 40]. Further methylation analysis

of repeat elements supported this observation. But the

three methylation contexts appeared to have different dis-

tributions on different repeat elements (Additional file 2:

Table 1 Sequencing and mapping summary

Tissue ID Tissue name Clean reads Unique
mapped
reads

Unique
mapping
rate (%)

CG
methylation
(%)

Non-CG
methylation
(%)

Bisulfite
conversion
rate (%)

BGA13 Skeletal muscle near ceasarian 62,431,346 27,615,411 44.23 33.87 1.45 99.38

BGA14 Whole testesa 65,883,038 23,323,753 35.40 37.00 0.94 99.45

BGA19 Mammary/parenchymaa 61,978,584 27,862,415 44.95 30.50 1.31 99.28

BGA22 Uterus intercarunculara 62,431,548 26,830,069 42.98 33.22 1.45 99.41

BGA47 Frontal cortexa 63,601,202 22,808,676 35.86 30.89 1.48 99.30

BGA60 Abomasuma 62,173,874 28,496,274 45.83 38.06 1.04 99.25

BGA62 Ileuma 65,228,026 23,666,863 36.28 33.54 1.50 99.04

BGA81 Rumena 62,646,332 25,923,247 41.38 29.87 1.44 99.28

BGA135 Nucleated blood cellsa 63,611,924 23,184,841 36.45 36.03 1.54 99.07

BGA173 D 90 lactating mammary gland 62,474,748 28,581,463 45.75 32.04 1.36 99.33

aTissues with RNA-seq data

Fig. 2 Different methylation patterns between oocyte and somatic tissues in cattle. a Correlation analysis of CG and non-CG methylation

using 1-Mb non-overlapping windows. b Methylation distributions of the three methylation contexts in genic regions and CG islands.

Note: all figures for somatic tissues were from the merged data after examining results individually that did not show differences

between them
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Figure S5). Among the tested repeat elements, CG methy-

lation was the most abundant while the non-CG methyla-

tion was lowest in SINEs. Additionally, we examined the

methylation levels separately within the ± 10 Kb windows

around the genic regions and the CG islands (Fig. 2b,

Additional file 2: Figure S6). The CG methylation

displayed the same patterns near the genic regions and

the CG islands between oocytes and somatic tissues.

Around the genic regions, the CG methylation level was

lowest immediately upstream of the transcription start site

(TSS) and increased towards the end of the last exon.

Within the CG islands, the CG methylation level was

lower than the level in the neighboring regions. On the

contrary, when we compared oocytes to somatic tissues,

non-CG methylation displayed different patterns near the

genic regions and the CG islands. In oocytes, the patterns

of non-CG methylation were similar to those of CG

methylation in both genic regions and CG islands. How-

ever, in somatic tissues, overall non-CG methylation was

decreased to almost the same level as the TSS. For somatic

tissues, we did not observe large changes for the non-CG

methylation either in the genic regions or CG islands.

RRBS allowed us to assess single-base methylation

events in a region, which made it possible to evaluate

the relationship between the methylation levels of adja-

cent cytosines. We examined the correlation between

methylation patterns at adjacent cytosines using an auto-

correlation method among different sequence contexts

in ten somatic tissues (Additional file 2: Figure S7). In

Arabidopsis, positive correlations were found between

the two strands in both the CG contexts and the non-

CG contexts [41]. In this study, we found highly positive

correlations between the methylation levels of adjacent

CGs on either same or different strands. The correlation

level decreased as the distance increased between the

two CGs, but its R value was still greater than 0.8 as the

distance reached over 40 bp. This was probably a reflec-

tion of regional foci of methylation for the CG context

[8]. Large differences were detected for the non-CG con-

texts where we saw a medium correlation (R = 0.7) for

the two cytosines in the two neighboring CHH (or

CHHCHH) motifs on one sense strand, and a further

decreased correlation as the distance increased. More-

over, we did not observe high correlations across the

different contexts.

Characterization of CG island methylation

The CG island has been described as one of the most

important methylation features of the genome. It was

thought to be methylated differently from the non-CG

island region in mammals [42]. In CG islands, CGs usu-

ally remain unmethylated or lowly methylated while in

the non-CG island regions, CGs are heavily methylated.

In cattle somatic tissues, the average methylation level of

CG in non-CG islands was 72.02 % while that in CG

islands was 24.22 %, which was lower than the average

methylation (51.59 %) of CG at CG island shores

(Additional file 2: Figure S7a). However, there were still

13 % of CG islands which had a methylation level over

80 % (Additional file 2: Figure S8b). It is noted that this

uneven distribution might also be related to the bias of

RRBS, as the CG density normally is high near both

centromeric and telomeric regions. To decrease the

effects of tissue differences and the RRBS method, we

selected 3761 CG islands within less than 0.2 standard

deviations of the average methylation level among the

ten samples and calculated their average methylation

levels in non-overlapped windows of 10 % length of the

corresponding chromosome. The results showed that

the average methylation levels of CG islands within both

terminal windows were higher than other internal win-

dows (Additional file 2: Figure S8c). The chromosome

ends like telomeres were known to be enriched for telo-

mere repeats, whose methylations were thought to be

related to telomerase activity [43]. The adjacent subtelo-

meric regions were enriched with a high density of CG

sequences and high methylation levels. We suspect that

the highly methylated CG islands may be involved in

controlling genome terminal stability.

Identification of differentially methylated cytosines

(DMCs) and differentially methylated CG islands (DMIs)

related to gene expression

Differentially methylated cytosines (DMCs) in the CG

context have been widely known to play important roles

in tissue development while DMCs in non-CGs are not

well studied and usually are ignored for their low methy-

lation level in somatic tissues. Here, we merged both the

CG and non-CG contexts together, and identified 10,794

DMCs between at least two samples among the ten sam-

ples. We found 94.34 % of the DMCs were in the CG

context, which supports the predominant role of CG

methylations in somatic tissues (Fig. 3a, Additional file 1:

Table S3). The DM non-CGs took 5.66 % of the DMCs

and were enriched at the high methylation level, which

illustrates that differences should be real. There were 4495

DMCs successfully annotated in the regions of 1500 bp

upstream of the TSS and gene bodies.

Because RNA-Seq data were generated for eight out of

ten tissues (Additional file 1: Table S1), we also gener-

ated DMCs derived from only these eight tissues. To de-

tect the effects of a single cytosine methylation on gene

expression, we applied Pearson correlation analysis to

compare DMCs and RNA-Seq results from these eight

shared tissues. We ultimately obtained 3181 cytosines

overlapped with 793 genes having both data for correl-

ation analysis. We found that DMCs were divided into

two types: 1) DMCs located within 1500 bp upstream of
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the TSS and enriched in negative correlation with gene

expression, and 2) DMCs in the gene body regions

showing no obvious correlation preference (Fig. 3b).

Totally, there were 408 DMC methylation levels which

were significantly (FDR corrected < 0.05) correlated with

117 gene expression levels, and 77.5 % of DMCs showed

significant negative correlation (Additional file 1: Table

S4). Among all the significant DMCs, 14 non-CG

contexts were significantly correlated with gene expres-

sion. Gene ontology (GO) analysis of those significantly

correlated genes showed no significant GO terms, which

was consistent with a similar study in pigs [29].

As expected, most of the significantly correlated CGs

were clustered in the genome as they had been proven

to be highly correlated with each other within a certain

genomic interval. Thus we further detected and analyzed

the effects of DMIs related to gene expression levels.

Similarly, only the CG islands that overlapped by at least

1 bp with the regions of 1500 bp upstream of the TSS

and gene bodies were kept for analysis. In total, we

found 836 DMIs wherein 239 of them overlapped with

genes that had RNA-Seq information (Additional file 1:

Table S5). We found 31 DMIs showed significant correl-

ation with gene expression (Additional file 1: Table S6).

To further evaluate tissue-specific methylation, we con-

sidered the DMCs and DMIs in one tissue that appeared

different from all other tissues. We detected 798 tissue-

specific DMCs (tDMCs) including 75 non-CG tDMCs

and 131 tissue-specific DMIs (tDMIs) (Additional file 1:

Tables S7, S8). Among the ten samples, the testis (BGA14)

displayed the highest counts of tDMCs and tDMIs, which

was supported by our clustering results based on DNA

methylation patterns (Fig. 3c, Additional file 2: Figure S9)

and the previous Bovine Gene Altas study at the transcrip-

tome level [37]. Moreover, we checked the tDMIs whose

methylation levels were significantly correlated with gene

expression levels and found that all of them belonged to

testis. Almost all the testis-specific DMIs showed lower

Fig. 3 Analysis of different methylated cytosines (DMCs) and differential methylated CG islands (DMIs). a Fractions of DMCs in the CG and

non-CG contexts. b Correlation between CG methylation and gene expression in the regions of 1500 bp upstream of the TSS and gene

bodies. c Hierarchical cluster analysis for different tissues by methylation level. d The effect of DMI methylation on bta-mir-202 expression,

top: methylation distribution of CGs in DMIs by tissue, bottom: expression level of bta-mir-202 by tissue. BGA13: skeletal muscle near ceasarian; BGA14:

whole testes; BGA19: mammary gland/parenchyma; BGA22: uterus (intercaruncular); BGA47: frontal cortex; BGA60: abomasum; BGA62: ileum; BGA81:

rumen; BGA135: nucleated blood cells; and BGA173: d 90 lactating mammary gland
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methylation levels than other somatic tissues. Certain

“testis-specific antigen” genes, which contain CGIs not

methylated in testis but methylated in all other somatic

tissues, have been reported to be expressed only in testis

[44]. One of the significantly correlated genes, bta-mir-

202, was reported to be only expressed in testis and ovary

of cattle [45]. Here, we also found it to be highly expressed

in testis tissue but not in all other tissues. The average

methylation level of the CG island was 52.11 % in BGA14

while in all the other tissues, the methylation levels ranged

from 88.10 to 95.10 % (Fig. 3d). Thus, our results

supported the negative correlation between a reduced CG

island methylation and an increased expression of bta-

mir-202 in the testis.

Discussion
In this study, we constructed DNA methylation profiles

of bovine somatic tissues at a single-base resolution

using RRBS to provide foundational information for

improving our understanding in this area. We found

methylation patterns of cattle were similar to those of

other species. For example, the mitochondrial genome

was comparatively less methylated than the nuclear gen-

ome, and the repetitive sequences were highly methyl-

ated. The global CG methylation levels detected ranged

from 29.87 to 38.06 % among the ten diverse cattle

tissues sampled, which were lower than data from pig

using RRBS (approximately 40–50 %) [29, 30]. Addition-

ally, a previous study of cattle placenta using WGBS

showed the lowest methylation level among all of the

mammals they compared [32]. It should be noted that

the global methylation level reported by RRBS largely

depends on the fraction of DNA methylation within the

subset of the genome assessed. The CG island was gen-

erally less methylated than the non-CG island [42].

RRBS focuses on the CG-enriched regions which are

mostly located in the CG islands [17, 34]. Therefore, the

global methylation level reported by RRBS is largely

determined by the ratio of detected CGs in CGI regions

and non-CG island regions. It is important to point out

that RRBS only reports on a small subset of the genome,

and more extensive studies like WGBS are needed to

confirm these initial RRBS results.

Among the three DNA methylation contexts, CG

undoubtedly plays the dominant role in mammals [1]. In

the cattle genome, the CG context was the primary con-

tributor to DNA methylation and comprised over 90 %

of the DMCs. Among the cytosines detected, 75 %

belonged to non-CG contexts which had long been rec-

ognized as rarely methylated in mammalian somatic tis-

sues (Fig. 1b). We found that over 10 % of possible

cytosine positions within non-CG contexts could be

detected as methylated nonredundantly by count, but

they were mainly enriched at a low methylation level in

cattle somatic tissues. During early embryo development,

mammalian genomes undergo a few waves of nearly

complete demethylation and remethylation, and DNA

methylation statuses differ across tissues and develop-

mental stages [46, 47]. In cattle, the non-CG methylation

levels in ten somatic tissues were lower than that in

oocytes. We failed to find that non-CG methylation was

correlated with the CG methylation in somatic tissues. It

is possible that due to the low methylation level of the

non-CG, we could not detect changes as observed for

the CG methylation levels in the genic and CG island

intervals. It is also noted that complete 100 % bisulfite

conversion is difficult to achieve without severely

degrading DNA. Our data could overestimate non-CG

methylation levels and therefore should be treated with

caution when used as a reference in future studies. In a

pig methylation study, lower methylation was similarly

found at the TSS and 5′ end of the gene, however, no

obvious methylation difference was found between gene

body and non-gene body [30]. The standard model for

DNA methylation in mammals is that de novo methyl-

transferases DNMT3a/3b establish the methy-CG land-

scape in the genome and DNMT1 maintains the CG

methylation from the parental strand to the daughter

strand at replication forks [20, 21]. However, unlike the

CGs, a non-CG motif does not always have a symmetric

corresponding non-CG counterpart on the other strand.

The proposed “two-step” model cannot fully explain

non-CG methylation [10, 22]. Therefore, the non-CG

might be mediated by a distinct mechanism as compared

to the CGs.

DNA methylation is important for gene expression

and plays a critical role in tissue-specific processes

[48]. Previous studies focused on the CG context and,

thus, the function of non-CG methylation remains

unclear [14]. Even though the methylated non-CGs

were sparsely distributed within the cattle genome

and the global methylation level was low, there were

some non-CGs with high methylation levels and

differential methylation among tissues. Here, we

included the non-CG context when we examined the

DMCs. Among the DMCs, we found 611 sites belong-

ing to non-CG context. Correlation analysis also de-

tected 14 non-CG methylations that were significantly

associated with gene expression. This implied that the

non-CG methylation, along with the CG methylation,

may participate in regulating tissue development in

cattle. Besides DMCs, we also detected DMIs because

most of the differentially methylated CGs were clus-

tered and showed similar distribution among the ten

diverse tissues. In the promoter regions, DNA methy-

lation is associated with gene silencing while its func-

tion in gene bodies is still controversial [38, 49, 50].

This was supported by our results in which DNA
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methylation in the upstream 1500-bp regions of TSS

showed largely negative correlation with gene expres-

sion, while DNA methylation in gene bodies showed

a mixed trend. Additionally, a large percentage of

DMCs and DMIs were far away from annotated

genes. This does not mean that they did not contrib-

ute to the tissue differences. A minor reason for this

observation may be related to incomplete gene anno-

tation in the cattle genome. Several previous studies

support the so-called “orphan CGIs” exhibiting a high

degree of tissue-specific methylation regulating gene

expression indirectly [51]. Thus our result provided a

rich data set of DMCs and DMIs potentially involved

in cattle tissue development. It is important to note

that due to low methylation levels in the non-CG

context (1 to 2 %) and incomplete bisulfite conversion

rates (0.45 to 0.97 %), our result and conclusion

about methylation in non-CG contexts should be

interpreted with caution. Future WGBS experiments

with deep coverage are warranted.

Conclusions
In summary, this study provided baseline methylation

profiles for selected cattle genomic regions at a

single-base resolution. We characterized the DNA

methylome and assessed DNA methylation patterns in

ten diverse cattle somatic tissues. We reported many

DMCs and DMIs across different tissues and detected

a subset correlated with gene expressions. Our study

contributes to the understanding of cattle DNA

methylation patterns and provides foundational infor-

mation for further investigations.

Methods
Tissues and data collection

The tissues were snap frozen in liquid N2 immedi-

ately after excision and kept at −80 °C until use. We

selected ten tissues including skeletal muscle near

ceasarian, whole testes, mammary gland/parenchyma,

uterus (intercaruncular), frontal cortex, abomasum,

ileum, rumen, nucleated blood cells and d 90 lactat-

ing mammary gland (Additional file 1: Table S1).

They were coded as BGA13, BGA14, BGA19, BGA22,

BGA47, BGA60, BGA62, BGA81, BGA135 and

BGA173, respectively, according to the previous

Bovine Gene Altas study [37]. The WGBS data for

cattle oocyte were downloaded from NCBI GEO data-

set under accession number GSE63330. Using a simi-

lar collection of tissues as described by Harhay et al.

[37], RNA-Seq data were generated on the Illumina

HiSeq2000 platform (Illumina, San Diego, CA) using

the single end (SE) 100 chemistry. RNA-Seq datasets

(at least 2 Gb each) for eight of the ten selected

tissues were used for further analysis (Table 1).

Library construction and sequencing

Genomic DNA for each tissue was isolated according to

the QIAamp DNA Mini Kit protocol (QIAGEN, Valencia,

CA). RRBS libraries were constructed according to the

manufacturer’s instructions. In detail, 3 μg of genomic

DNA was digested with the methyl insensitive MspI en-

zyme (CCGG site) at 37 °C for 16 h for each sample. The

digested DNA products were purified using the QIAquick

PCR Purification Kit (QIAGEN) and single A nucleotides

were added to the blunt-end, which were then ligated to a

methylated adapter with T overhangs. Ligated products

corresponding to DNA fragments 150–400 bp long were

isolated and purified using 2.5 % agarose gel electrophor-

esis. The recovered DNA was treated with the EZ DNA

Methylation-Gold Kit (Zymo Research Corp., Irvine, CA)

for the bisulfite conversion. DNA with known methylation

level was used as a spike control, and all conversion rates

were >99 %, ranging from 99.07 to 99.45 % (Table 1). The

bisulfite-converted DNA was finally amplified by PCR to

construct the RRBS libraries. The Agilent 2100 bioanaly-

zer instrument (Agilent DNA 1000 Reagents, Agilent,

Santa Clara, CA) and real-time quantitative PCR (qPCR,

TaqMan Probe) were used to quantitate and quantify the

RRBS libraries, respectively. The qualified libraries were

amplified on cBot to generate the cluster on the flowcell

(TruSeq PE Cluster Kit V3-cBot-HS, Illumina). The HiSeq

2000 system (Illumina) was uses for paired-end sequen-

cing with a 49-bp read length.

Reads alignment and bioinformatics analysis

Raw sequencing data were processed by an Illumina

base-calling pipeline. Raw reads were trimmed for Q

score of 20 as the minimum, removing the adapter se-

quences and multiple N reads. Clean reads were then

aligned to the modified cattle reference genome

(UMD3.1) by a modified pipeline based on SOAPaligner

(version 2.21) in BGI-Shenzhen (Shenzhen, China) as de-

scribe previously [52–54]. This modified pipeline ignores

all C to T conversions induced by bisulfite treatment

and uses three nucleotides alignment strategy and is

similar to other bisulphite sequencing alignment soft-

ware. Only the cytosines with at least eight reads cover-

age were used for further analysis. We used R (version

3.1.1) script to perform the following statistical analysis

[55] . The methylation level of each cytosine site was cal-

culated as the percentage of methylated cytosines to the

total cytosines. The methylation levels of each genome

feature were defined as the average methylation level of

all the annotated cytosines. Only the genes in the RefSeq

database were used in the methylation analysis of genic

regions to improve the accurate of the genic methylation

evaluation. For DMIs, we only kept the CG islands with

five or more detected CG sites. We then used the aver-

age value of these detected CG sites to represent the
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whole CG island’s methylation level. The methylKit R

package was used to detect DMCs and DMIs with cutoff

value of 25 % methylation difference (q-value < 0.01)

[56]. GO analysis was performed by using the protein

IDs to quarry gene ontology terms in AgriGo website

software with Fisher’s exact test (http://bioinfo.cau.edu.cn/

agriGO/) [57].

PCR-Sanger sequencing validations of the RRBS results

We performed experimental validations of RRBS results

for 66 CG sites distributed in four tissues (whole testes,

frontal cortex, ileum and rumen). The primer informa-

tion can be seen in Additional file 1: Table S9. Three

PCR primer pairs were designed using MethPrimer

(http://www.urogene.org/cgi-bin/methprimer). The gen-

omic DNA was treated with the EZ DNA Methylation-

Gold Kit (Zymo Research Corp.) to apply for bisulfite

conversion. PCR was performed in a 25-μl reaction vol-

ume according to the Taq DNA polymerase manufac-

turer’s instructions (QIAGEN instruction (QIGEN, Taq

PCR Master Mix Kit). PCR products were purified using

QIAquick PCR Purification Kit (QIAGEN) and cloned

into T-vector, which was then transformed into E. coli.

We selected approximately 20 single clones for each

PCR product for Sanger sequencing.

RNA-Seq data and WGBS data analysis

All the collected raw data (RNA-seq and WGBS) were

filtered for removing the adapter sequences, contamin-

ation and low-quality reads, and the clean reads were

aligned to the modified cattle reference genome

(UMD3.1). For RNA-Seq data, we applied Tophat (Ver-

sion 2.0.13) and Cufflink (Version 2.2.1) protocols ac-

cording to the previously published paper using the

default parameters [58]. For WGBS data of oocytes, we

aligned the clean reads on the two modified references

with Bismark (Version 0.14.5) using Bowtie 2 which

allowed no mismatch [59]. Only uniquely aligned reads

were used to determine the methylation status. The

methylation status were extracted using the Bismark

methylation extractor with optional genome-wide cyto-

sine report output.

Additional files

Additional file 1: Table S1. Tissue samples used in the RRBS analysis.

Table S2. RRBS validation results. Table S3. Different methylated

cytosine information. Table S4. Significantly correlated DMCs and gene

information. Table S5. Different methylated CpG island information.

Table S6. Significantly correlated DMIs and gene information. Table S7.

Tissue-specific different methylated cytosine information. Table S8.

Tissue-specific different methylated CpG island information. Table S9.

Primers used for validation of RRBS results. (XLS 2962 kb)

Additional file 2: Figure S1. Distribution for the percentage of cytosine

with 2 to 11 reads. Figure S2. Methylation of different methylation

contexts for cattle somatic tissues. (a) CG percentages with different

methylation levels; (b) CHG percentages with different methylation levels;

(c) CHH percentages with different methylation levels. Note: the error bar

represents the standard deviation among the 10 tissues. Figure S3.

Correlation analysis of CG and non-CG methylation using 1-Mb non-

overlapping windows for oocyte overlapped with the RRBS data. Note:

Only the cytosines that overlapped with the RRBS data in oocyte WGBS

were used for plotting. Figure S4. Methylation levels for different

genomes. Note: the error bar represents the standard deviation among

the 10 tissues. Figure S5. Methylation levels for different repetitive

sequences. Note: the error bar represents the standard deviation among

the 10 tissues. Figure S6. Methylation distributions of the 3 methylation

contexts in genic regions and CG islands for oocyte overlapped with the

RRBS data. Figure S7. Autocorrelation analysis for different methylation

contexts on genome. Chr1 was used to calculate the correlation of

different methylation contexts with different distances. Note: all figures

for somatic tissues were from the merged data after examining results

individually that did not show differences between them. Figure S8. CG

island methylations in cattle somatic tissues. (a) Average methylation

levels of CG islands, CG island shores and non-CG island regions. (b)

Distribution of CG islands at different methylation levels. (c) CG island

methylation levels within every window of 10 % length of all chromosomes.

The x-axis is the interval of all chromosomes from 5′ to 3′. Figure

S9. Clustering of 10 tissues based on 131 tissue-specific DMIs (tDMIs).

(PDF 896 kb)
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