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Summary. L-splines are a large family of smoothing splines defined in terms of a linear differential operator.
This article develops L-splines within the context of linear mixed models and uses the resulting mixed model
L-spline to analyze longitudinal data from a grassland experiment. In the spirit of time-series analysis, a
periodic mixed model L-spline is developed, which partitions data into a smooth periodic component plus
smooth long-term trend.
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1. Introduction

This article develops mixed model L-splines, motivated by
an experiment to investigate grassland response to different
treatment regimes. Within this experiment, data on available
pasture dry matter (termed food on offer) were collected from
individual plots over 4 years, which showed a strong seasonal
pattern as well as longer-term trend. The aim was to parti-
tion the data for each treatment into periodic and nonperiodic
components, both modeled as a continuous function of time.
As the plot profiles across time did not correspond to any sim-
ple parametric form, smoothing splines provided a convenient
method of curve fitting, which could be built into a standard
linear mixed model for longitudinal data.

Cubic smoothing splines were introduced into the mixed
model setting by Wang (1998), Zhang et al. (1998), Brumback
and Rice (1998), and Verbyla et al. (1999), who all used
the mathematical equivalence between the penalized sum of
squares used to fit a cubic spline and best linear unbiased
predictor (BLUP) estimation in a particular mixed model for
a given smoothing parameter. Within this mixed model, the
cubic spline corresponds to fitting a model with linear trend
plus a set of random covariates whose covariance matrix is
known apart from a scaling constant, called the smoothing
variance component. In addition, residual maximum likeli-
hood (REML) estimation of the smoothing variance compo-
nent in the linear mixed model is equivalent to the gener-
alized maximum likelihood method for smoothing parameter
estimation of Wahba (1990). Within the linear mixed model
context, a cubic spline can be included within a general treat-
ment structure and fitted at different levels of the structure,
for example, as a common spline across all treatments, or as
separate splines for different treatment combinations (Verbyla
et al., 1999). Additional random terms can easily be added
to the model to account for all sources of variation in the
data. Other types of smoothing splines have also been used

within mixed models, with the same motivation of building
nonparametric terms into a general and flexible family of mod-
els. Eilers and Marx (1996) developed P-splines, which used
a B-spline basis with an approximate discrete penalty and a
reduced set of knots. Although they fitted these models us-
ing cross-validation, Eilers noted in the discussion of Verbyla
et al. (1999) that P-splines could also be fitted as mixed model
splines with the smoothing parameter estimated by REML,
as demonstrated by Currie and Durban (2002). Parise et al.
(2001) proposed a slightly different mixed model spline, us-
ing truncated power basis functions for polynomial splines
with an identity penalty matrix, and called these functions
penalized splines. These spline models also used a reduced
set of knots and the smoothing parameter was estimated us-
ing REML. Wand (2003) gives a general review of penalized
spline models and some extensions.

In the mixed model context the cubic spline is partitioned
into a fixed linear component plus a random component, with
zero expectation, representing smooth deviations about the
linear trend. Although the standard interpretation of a spline
is as a single smooth trend, we find this partition useful to in-
terpret the difference between L-splines with polynomial and
periodic core functions. For a given value of the smoothing pa-
rameter, the fitted cubic spline is determined by minimizing
the residual sum of squares for the model subject to a penalty
consisting of the integrated squared second derivative of the
fitted curve, i.e., of deviations from linear trend, scaled by the
smoothing parameter. However, in many examples the under-
lying trend is not linear. In the grassland experiment consid-
ered later, the underlying pattern is a seasonal cycle with
some linear trend, which does not reflect the implicit assump-
tions of the mixed model cubic spline. It then seems more
natural to use L-splines that fit an appropriate underlying
form plus smooth deviations about this underlying form. The
amount of smoothing is controlled by a penalty constructed
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to penalize departures from the appropriate underlying form.
The theory behind L-splines is given briefly by Wahba (1990),
and more accessibly by Gu (2002) or Ramsay and Silverman
(1997). Ramsay and Dalzell (1991), Ramsay and Silverman
(1997), and Heckman and Ramsay (2000) all used L-splines
in preference to cubic splines where the underlying form of
the data was not linear, and particularly for periodic data.

In this article, we show that L-splines can be fitted as mixed
models and extend the model to partition deviations from the
underlying form into periodic and nonperiodic components.
We demonstrate our approach using mixed model L-splines
to model data from the grassland experiment described in
Section 2. Section 3 gives a brief overview of the construction
of L-splines, and Section 4 shows the mixed model form of the
L-spline, extends the definition to a reduced set of knots, and
evaluates the performance of an L-spline, in terms of mean
squared error of prediction, in a small simulation study. In
Section 5, the development of a periodic L-spline term is de-
scribed and its performance is evaluated. Finally, in Section 6
the methods are used to analyze data from the grassland ex-
periment and obtain results, with discussion in Section 7.

2. Grassland Experiment

The data that motivated the analysis in this article were
kindly provided by D. L. Garden of NSW DPI (Canberra)
and arose from a grassland experiment designed to investi-
gate the effects of superphosphate application and grazing on

Figure 1. Log(FOO) measurements (as log kg dry matter per hectare) across time for each plot of each treatment (× =
replicate 1, ◦ = replicate 2) with predictive component of the final model from Table 3 (solid line = replicate 1, dashed line =
replicate 2).

the production of native grasslands in the high rainfall zone
of south-eastern Australia. Further details of the experimen-
tal approach, design, and analysis of additional variables can
be found in Garden et al. (2003). The experiment was de-
signed to test the effect of six fertilizer treatments: four levels
of superphosphate application (nil, low, medium, high), high
superphosphate application with lime, or sewage ash appli-
cation. The experimental design was laid out in the field as
a randomized block design with two replicates of six plots.
The plots were grazed continuously with a similar stocking
rate across all plots at the start of the experiment. Stocking
rates were adjusted from time to time for each treatment with
the aim of maintaining individual sheep liveweights at simi-
lar levels across treatments so that increases in productivity
were reflected in the number of animals per hectare. Fertil-
izer treatment and stocking rates were therefore confounded.
However, the amount of food on offer (FOO) per plot in the
presence of grazing was still of interest as a measure of the
success of the stocking rate strategy for each treatment. FOO
was defined as herbage mass in kg dry matter per hectare
(DM/ha) and was measured by sampling 30 0.5 m× 0.5 m
quadrats per plot on eight occasions, 6–7 weeks apart, within
each year. All plots were sampled on each occasion and
the samples were taken at approximately the same dates
within each year. The log-transformed FOO data are shown in
Figure 1, which clearly shows yearly cycles with substantial
downward trend.
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3. L-Splines

Suppose we have data y (n × 1) and an explanatory variable
x observed at unique values x1, x2, . . . ,xn in the range [a, b].
An L-spline is defined in terms of the underlying form of the
data, described by a set of core functions {fj ; j = 1, . . . ,m},
and associated linear differential operator L of order m, which
annihilates the core functions, i.e., Lf = 0 if and only if f is a
linear combination of the fj or f ≡ 0. For example, the linear
differential operator L = D4 + ω2D2 annihilates the set of
core functions

f1(t) = 1; f2(t) = t; f3(t) = cos(ωt); f4(t) = sin(ωt).

The polynomial splines (of odd degree k = 2m − 1) form a
subset of L-splines where L = Dm for positive integers m. In
general, the functions f may depend on unknown parameters.
In this article, we assume that all such parameters (e.g., the
period parameter ω) are known.

For a single spline term, we fit a model

y = g + e,

where g is the realization of an unknown smooth function g(t)
at the data points x, i.e., g = g(x), and e is a vector of errors
with e ∼ N(0, σ2R), for some general covariance matrix R.
The L-spline is the function g(t) that minimizes the penalized
sum of squares,

(y − g)′R−1(y − g) + λ

∫ b

a

[Lg(s)]2 ds, (1)

for a given value of λ, the smoothing parameter. The smooth-
ing parameter determines the balance between fidelity to the
data (measured by the first term, a residual sum of squares)
and fidelity to the underlying form (measured by the second
term). Ramsay and Silverman (1997, Section 15.2) prove that,
for any basis {fj ; j = 1, . . . ,m} for the set of core functions,
the function g minimizing the penalized sum of squares (1)
has the form

g(t) =

m
∑

j=1

τjfj(t) +

n
∑

i=1

cik2(xi, t),

where k2 is the reproducing kernel function for a subspace
defined in terms of the operator L and a set of boundary
conditions. We used initial value boundary constraints (see
Ramsay and Silverman, 1997, Section 13.5.1). Ramsay and
Silverman (1997, Section 15.3) further show that equation (1)
can then be reexpressed as

(y −Xτ −Kc)′R−1(y −Xτ −Kc) + λc′Kc, (2)

where [X]ij = fj (xi ) for i = 1, . . . , n, j = 1, . . . ,m, [K]ij =
k2(xj , xi ) for i , j = 1, . . . ,n, τ = (τ 1, . . . , τm)′, and c =
(c1, . . . , cn)

′. Gu (2002) shows that the symmetric matrix K

is nonnegative definite. Heckman and Ramsay (2000) and
Dalzell and Ramsay (1993) give recipes for constructing re-
producing kernel functions k2. For L = ω2D2 + D4 and a =
0 the reproducing kernel function k2 can be written as

k2(xi, t) =
1

ω6

{

ω2t2

6
(3xi − t) − (xi − t) + xi cos(ωt)

+ t cos(ωxi) −
1

ω
sin(ωt) −

1

ω
sin(ωxi)

+
1

2
t cos[ω(xi − t)] +

1

ω
sin[ω(xi − t)]

−
1

2ω
cos(ωxi) sin(ωt)

}

for t < xi

k2(xi, t) =
1

ω6

{

ω2x2
i

6
(3t− xi) − (t− xi) + t cos(ωxi)

+xi cos(ωt) −
1

ω
sin(ωxi) −

1

ω
sin(ωt)

+
1

2
xi cos[ω(t− xi)] +

1

ω
sin[ω(t− xi)]

−
1

2ω
cos(ωt) sin(ωxi)

}

for xi < t. (3)

Consider functions defined piecewise on [xi−1, xi ] as

β1i + β2it + β3it
2 + β4it

3 + β5i cosωt

+β6i sinωt + β7it cosωt + β8it sinωt, (4)

for xi−1 ≤ t ≤ xi , i = 1, . . . ,n (x0 = a), with the require-
ment that the overall function is continuous and differentiable
up to order 6 (= 2m − 2) at the knots. It is straightfor-
ward to show that the functions defined in equation (3) are
of this form. Together with the global functions {1, t , t2, t3,
cos(ωt), sin(ωt), t cos(ωt), t sin(ωt)}, these functions span the
space of six-times differentiable functions that are piecewise
(between knots) of the form (4), i.e., periodic with linearly
varying amplitude and with added cubic trend.

4. L-Spline Mixed Models

The L-spline is fitted to the data y by finding the coefficient
values τ̂ and c̃ that minimize the penalized sum of squares (2)
for a given value of the smoothing parameter λ. Minimization
of equation (2) requires solution of the equations

[

X ′R−1X X ′R−1K

KR−1X KR−1K + λK

](

τ̂

c̃

)

=

(

X ′R−1y

KR−1y

)

.

These equations contain m implicit constraints that can be
expressed as X ′c̃ = 0 (see, for example, Wahba, 1990, equa-
tion 1.3.17). This property has the consequence that the fitted
spline takes the underlying form outside the range of the data,
i.e., Lg(t) = 0 for t < x1 or t > xn . Following the terminology
of polynomial splines, we call this a natural L-spline. For con-
venience, we make this implicit constraint on the parameter
estimates explicit in our model as X ′c = 0. The constraint
X ′c = 0 implies c = Cδ for some vector δ of length n − m
where C is any n × n − m matrix C of full column rank
such that X ′C = 0. Inserting this reparameterization into
the penalized sum of squares (2) gives

(y −Xτ −Zδ)′R−1(y −Xτ −Zδ) + λδ′H−1δ,

where Z = KC, H−1 = C ′KC, and it can be shown that
H is positive definite. Minimizing this expression leads to
equations
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[

X ′R−1X X ′R−1Z

Z ′R−1X Z ′R−1Z + λH−1

](

τ̂

δ̃

)

=

(

X ′R−1y

Z ′R−1y

)

,

which are the mixed model equations for the model

y = Xτ + Zδ + e,

where Xτ represents the core functions as fixed terms
in the model, Zδ represents the constrained basis of re-
producing kernel functions as a random model term, vec-
tor e represents a residual term, and e ∼ N(0, σ2R), δ ∼
N(0, σ2

sH), cov(δ,e) = 0, λ = σ2/σ2
s.

As for cubic splines (Verbyla et al., 1999), the fitted L-spline
can then be calculated as a BLUP from this mixed model for
a given value of the smoothing parameter. The smoothing pa-
rameter can either be considered fixed at some predetermined
value or estimated, via the L-spline variance component σ2

s ,
as part of the variance model using REML estimation. In this
article, we use REML estimation of smoothing parameters,
as used by Verbyla et al. (1999) for cubic smoothing spline
models. The extension to include additional fixed or random
terms is achieved by simply adding these terms into the mixed
model.

It is often convenient in practice to transform to indepen-
dent random effects u, where u = H−1/2δ and the random
design matrix Z is replaced by ZH

1/2 with var(u) = σ2
sIn−m.

The mixed model L-spline can then easily be fitted by most
standard mixed model software. We write this final model as

y = Xτ + Zuu + e,

where Zu = ZH1/2 with other terms as above. For interpreta-
tion, it is also advantageous to make the spline design matrix
Zu orthogonal to the fixed effect design matrix X.

The change in logRL, the logarithm of the REML likelihood
function, on adding the random L-spline term to the model
containing the core functions, i.e., testing for a zero variance
component, can be used to investigate whether there is evi-
dence of deviations from the underlying form (Guo, 2002b).
As a likelihood ratio test with the variance component con-
strained to remain positive, the asymptotic distribution of 2 ×
the change in logRL is a 50:50 mixture of a χ2

0 and a χ2
1 distri-

bution under the null hypothesis (Stram and Lee, 1994). How-
ever, Crainiceanu and Ruppert (2004) showed that in many
examples this approximation was very poor, and developed a
better approximation for models with a single variance com-
ponent in addition to the residual variance. Crainiceanu et al.
(2005) suggested parametric bootstrap evaluation of the null
distribution for more complex variance models. Zhang and Lin
(2003) specified a score test for the smoothing parameter.

4.1 Reduced Knot Set

For data sets with a large number of distinct covariate val-
ues, or with several spline terms in the model, the L-spline
mixed model may generate a large number of random spline
effects with a dense design matrix Zu . Solution of the mixed
model equations may then require a large amount of com-
puter workspace and processing time. Both can be reduced
by using a (relatively) small number of knots, r say, defined
at distinct values t = (t1, t2, . . . , tr )

′ with a < t1 < · · · <
tr < b. Our development here is similar to that of Parise et al.
(2001) and Wand (2003), who used a reduced number of knots

in generating polynomial spline basis functions as a low-rank
approximation to the full basis.

The set of r L-spline basis functions is generated as k2(ti , ·)
for i = 1, . . . , r, using the reduced set of knots, t. The L-spline
function then takes the form

g(t) =

m
∑

j=1

τjfj(t) +

r
∑

i=1

cik2(ti, t),

and the penalized sum of squares corresponding to this func-
tion is written as

(y − g)′R−1(y − g) + λ

∫ b

a

[Lg(s)]2 ds

= (y −Xτ −Kxtc)
′R−1(y −Xτ −Kxtc) + λc′Kttc,

where now [Ktt]ij = k2(tj , ti ), i , j = 1, . . . , r, because the
penalty term is defined in terms of the r basis functions eval-
uated at the knots, [Kxt]ij = k2(tj , xi ), i = 1, . . . , n, j =
1, . . . , r, gives the value of the r basis functions at the n covari-
ate values, τ = (τ 1, . . . , τm)′ and c = (c1, . . . , cr )

′. In order to
retain the natural spline property achieved for L-splines with
knots at all data points, we explicitly impose the constraint
X ′

tc = 0, where [Xt]ij = fj (ti ), i = 1, . . . , r , j = 1, . . . ,m, to
get the amended penalized sum of squares

(y −Xτ −KxtCtδ)′R−1(y −Xτ −KxtCtδ) + λδ′H−1
tt δ,

(5)

where Ct is an r × r − m matrix defined such that X ′
tCt =

0, H−1
tt = C ′

tKttCt, and δ = (δ1, . . . , δr−m)′. Minimizing (5)
yields mixed model equations for the model

y = Xτ + Ztδ + e, (6)

where Zt = KxtCt and δ ∼ N(0, σ2
s Htt).

The fitted spline, estimated smoothing parameter, and
logRL are not invariant to the reduced set of knots chosen,
although the fitted spline is usually similar at the data points.
In addition, the reduced knot L-spline is no longer the func-
tion that produces the overall minimum of the penalized sum
of squares (1) and care is required to ensure that the fitted
spline is not sensitive to the knots used. Ruppert (2002) dis-
cusses choice of knots in the penalized spline context.

Verbyla et al. (1999), Wang (1998), and Brumback and
Rice (1998) all utilized a hierarchical decomposition in their
cubic spline mixed models by decomposing individual treat-
ment splines into an overall spline, main effect splines, and
interaction splines. In addition, Verbyla et al. (1999) used
subject-specific splines to model the profile of individual sub-
jects over time. A similar model was proposed by Guo (2002a).
An exactly analogous decomposition can be used for L-spline
mixed models.

4.2 Evaluation of L-Splines versus Cubic Splines

The cubic smoothing spline and L-splines give alternative
methods to model smooth trend. It is, therefore, useful to
consider whether use of an L-spline results in an improved
fit to the data. We have investigated this via a small simu-
lation study relevant to the log(FOO) data from the grass-
land experiment. For grassland, the amplitude, length, and
timing of the growth phase depend on weather conditions
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that vary between years. In addition, the long-term trend may
change according to grazing pressure and treatment regimes.
To represent these features we simulated monthly data across
5 years, using known curves of the form

cjk(t) = s1jk(t) + (s2jk(t) − 0.03)(t− 30.5)

+ [0.5 + s3jk(t)] sin[ωjk(t)(t + s4jk(t))], (7)

where ωjk(t) = 2π/(12 + s5jk(t)), for j = 1, . . . , 9, k =
1, . . . , 10. The average amplitude and linear trend were chosen
to match that of the log(FOO) data from the grassland exper-
iment. The functions sijk (t) were generated from independent
realizations of an N(0, 1) random walk, smoothed using a
cubic spline with four effective degrees of freedom, then stan-
dardized to a predetermined range rij (so rij = 0 ⇒ sijk (t) ≡ 0).
This generated smooth deviations in trend and in amplitude,
length, and timing of the annual cycle. Nine combinations (j)
of range values, shown in Table 1, were investigated. For each
set, realizations sijk (t) were generated for k = 1, . . . , 10 and
used to form a set of representative curves cjk (t). For each
curve cjk (t), 500 sets of data were independently generated as
yjkl = cjk (x) + ejkl , l = 1, . . . , 500, with x = (1, . . . , 60)′, ejkl ∼
N(0, σ2I60). Two values of the residual variance σ2 were as-
sessed, with σ2 equal to 0.01 or 0.001. Each data set was
modeled using a cubic smoothing spline, a partial cubic spline
(PCS) consisting of the cubic smoothing spline plus additional
fixed periodic functions sin(ωt) and cos(ωt), and an L-spline
with L = ω2D2 + D4. The splines were all fitted as mixed
model splines using REML estimation of variance parameters,
using several starting values to ensure that a global optimum
was reached. The fit of the models to the data was evaluated
using the average mean squared error of prediction (MSEP)

Table 1

Average MSEP across 5000 data sets (model 7) for a cubic smoothing spline (CSS), partial cubic spline
(PCS), and L-spline model (with L = D4 + ω2D2). Average MSEP values are also shown as a percentage

of minimum value for each row.

Average MSEP × 1000 (% min value)

σ2 j r1j r2j r3j r4j r5j CSS PCS L-spline

0.01 1 0.2 0.1 0 0 0 3.959 (219) 1.811 (100) 2.088 (115)
2 0.2 0 0.4 0 0 4.109 (125) 6.403 (195) 3.280 (100)
3 0.2 0.1 0.4 0 0 3.909 (151) 2.989 (116) 2.586 (100)
4 0 0 0.4 0 0 4.018 (123) 7.102 (218) 3.259 (100)
5 0 0 0 2 0 3.990 (100) 6.593 (165) 4.422 (111)
6 0 0 0 0 2 3.658 (136) 3.475 (130) 2.676 (100)
7 0 0 0.4 2 2 4.613 (141) 4.323 (132) 3.278 (100)
8 0.2 0 0.4 2 2 4.140 (119) 3.995 (115) 3.481 (100)
9 0.2 0.1 0.4 2 2 4.070 (135) 3.997 (132) 3.022 (100)

0.001 1 0.2 0.1 0 0 0 0.7532 (309) 0.2439 (100) 0.2463 (101)
2 0.2 0 0.4 0 0 0.7865 (256) 0.3834 (125) 0.3071 (100)
3 0.2 0.1 0.4 0 0 0.7561 (262) 0.3947 (137) 0.2885 (100)
4 0 0 0.4 0 0 0.7134 (242) 0.3840 (131) 0.2936 (100)
5 0 0 0 2 0 0.7609 (266) 0.4189 (146) 0.2865 (100)
6 0 0 0 0 2 0.7806 (227) 0.6815 (198) 0.3440 (100)
7 0 0 0.4 2 2 0.7406 (218) 0.6744 (199) 0.3392 (100)
8 0.2 0 0.4 2 2 0.7731 (201) 0.7614 (198) 0.3849 (100)
9 0.2 0.1 0.4 2 2 0.7572 (216) 0.7073 (202) 0.3501 (100)

1

10

10
∑

k=1

1

500

500
∑

l=1

[cjk(x) − c̃jkl(x)]′ [cjk(x) − c̃jkl(x)],

where c̃jkl(t) is the relevant fitted spline for data yjkl . Table 1
shows the average MSEP for each set of parameters. For j =
1, where deviations from the annual cycle consisted only of
changes in long-term trend, the PCS had the smallest MSEP
value. In all but one case, where variation was introduced
into the periodic cycle the L-spline had the smallest MSEP.
The relative improvement for the L-spline increased for σ2 =
0.001 and then the PCS always had smaller MSEP than the
cubic spline alone. For σ2 = 0.01 the cubic spline sometimes
had a smaller MSEP value than the partial spline, and for
j = 5 was smaller than both the cubic smoothing spline and
L-spline. In this case, both the PCS and L-spline occasion-
ally oversmoothed the data, using variance components close
to zero and inflating the overall MSEP. In contrast the cu-
bic smoothing spline consistently overfitted the data, severely
underestimating the residual variance.

5. Modeling the Within-Year Component:

Periodic Splines

The L-spline mixed model described above has a seasonal
component consisting of the periodic core functions, with
long-term trend modeled by linear trend plus the random
spline terms. However, the data could also contain seasonal
pattern not adequately described by core functions, or by
any alternative parametric form. It is then appropriate to
introduce a periodic spline term to separate any additional
seasonal pattern from long-term trend. To stay within the
L-spline framework, it is sensible to add a periodic L-spline
to the mixed model. We adapt the approach of Zhang, Lin,
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and Sowers (2000) who used the full (nonnatural) basis for
a cubic smoothing spline and applied periodic constraints.
Clearly, fitting a full additional L-spline would lead to iden-
tifiability problems. We resolve this by fitting a single set of
core functions with two sets of basis functions: the natural
L-spline functions derived earlier, and a set derived from the
full basis but constrained to be periodic. For L = D4 + ω2D2

with m = 4 and p knots (t1, . . . , tp)
′ within the period [0, T ],

T = 2π/ω, we construct the periodic component from a set
of p basis functions k2(ti ; t), defined using equation (3), aug-
mented by the m noncore global basis functions l1(t) = t2,
l2(t) = t3, l3(t) = t cos(ωt), l4(t) = t sin(ωt). Define

gd(t) =

p
∑

i=1

dik2(ti, t) +

m
∑

j=1

dp+j lj(t),

with associated penalty matrix Ka constructed such that for
d = (d1, . . . , dp+m)′

d′Kad =

∫ T

0

[Lgd(s)]
2 ds.

Periodic constraints are applied as G′d = 0 where G is a
(p + m) × (2m − 1) matrix

Gij =

{

k
(j−1)
2 (ti, T ) − k

(j−1)
2 (ti, 0) i = 1, . . . , p,

l
(j−1)
p+i (T ) − l

(j−1)
p+i (0), i = 1, . . . ,m,

for j=1, . . . , 2m−1 with 2m − 1 constraints applied to ensure

the same degree of continuity as in the underlying basis func-
tions. It follows that d = Cpυ for a (p + m) × (p − m + 1)
matrix Cp such that G′Cp = 0. The model (6) is extended
to include a periodic component

y = Xτ + Ztδ + Zpυ + e,

with Zp = KxpCp, where Kxp evaluates the p + m noncore

basis functions at the covariate values, and υ ∼ N(0, σ2
pHpp)

for H−1
pp = C ′

pKaCp with cov (v, δ) = cov (v,e) = 0.

Table 2

Average MSEP across 5000 data sets (model 8) for a cubic smoothing spline (CSS), partial cubic spline
(PCS), L-spline, and L-spline with additional periodic spline (LP-spline). Average MSEP values are also

shown as a percentage of the minimum value for each row.

Average MSEP × 1000 (% of minimum value)

σ2 j r3j r6j CSS PCS L-spline LP-spline

0.01 1 0 0 3.95 (220) 1.80 (100) 2.08 (116) 2.17 (121)
2 0.4 0 4.00 (163) 3.05 (124) 2.46 (100) 2.53 (103)
3 0 0.2 5.30 (208) 19.13 (751) 21.11 (829) 2.55 (100)
4 0.4 0.2 5.32 (180) 17.21 (581) 22.02 (743) 2.96 (100)
5 0 0.3 6.24 (253) 30.45 (1236) 45.66 (1854) 2.46 (100)
6 0.4 0.3 6.28 (209) 14.46 (481) 47.85 (1590) 3.01 (100)

0.001 1 0 0 0.752 (311) 0.242 (100) 0.248 (103) 0.256 (106)
2 0.4 0 0.770 (277) 0.384 (139) 0.277 (100) 0.285 (103)
3 0 0.2 0.991 (322) 0.967 (314) 3.309 (1075) 0.308 (100)
4 0.4 0.2 0.994 (284) 0.973 (278) 1.144 (327) 0.350 (100)
5 0 0.3 0.999 (298) 0.999 (298) 0.642 (165) 0.335 (100)
6 0.4 0.3 0.999 (272) 0.999 (272) 0.642 (150) 0.367 (100)

5.1 Evaluation of Extended Model with Periodic
Spline Component

The simulation study of Section 4.2 was modified to investi-
gate the performance of the periodic spline component, again
using curves of relevance to the log(FOO) data from the grass-
land experiment. Using the notation of Section 4.2, curves
were generated as

cjk(t) = s1jk(t) + (s2jk(t) − 0.03)(t− 30.5)

+ (0.5 + s3jk(t)) sin(ωt) + r6j sin(2ωt), (8)

where ω = 2π/12 for j = 1, . . . , 6, k = 1, . . . , 10. The func-
tions s1jk(t), s2jk(t) used r1j = 0.2, r2j = 0.1 for all j to provide
smooth nonlinear trend. The amplitude of the underlying pe-
riodic cycle was either kept constant (r3j = 0) or allowed to
vary (r3j = 0.4). Extra periodic components were added to the
curve as sin(2ωt) to mimic the extra periodic pattern found
in the log(FOO) data, and as a component orthogonal to the
underlying periodic function. The effect of adding this term
was assessed using coefficient r6j = 0, 0.2, or 0.3. For each
curve cjk (t), 500 sets of data were generated for σ2 equal to
0.01 or 0.001. Each data set was modeled using the splines
assessed in Section 4.2 and an L-spline with additional peri-
odic L-spline, both using L = ω2D2 + D4. Table 2 shows the
average MSEP for each set of parameters. In every case where
r6j > 0, the MSEP for the model including the periodic spline
was substantially smaller than for the other models. For j =
3 − 6 with σ2 = 0.01 both the PCS and L-spline had very large
MSEP values. The MSEP value for the L-spline with j = 3
and σ2 = 0.001 was also very large. In these cases, the splines
allocated the extra periodic term as noise rather than signal.
In general, as the periodic frequency of deviations about the
underlying form increased or as their amplitude decreased,
it was increasingly likely that the deviations would be at-
tributed as noise rather than fitted as smooth trend (signal).
Different splines vary in the point at which the deviations
are deemed to change from noise to signal. The L-spline was
slower to detect the sin(2ωt) component than the PCS as the
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coefficient r6j increased, but both performed badly in some
cases. The presence of the periodic spline in the model guards
against this problem.

The ability of the periodic spline to separate periodic de-
viations from long-term trend was evaluated by examining
the periodic spline and long-term L-spline components of the
fitted model, and residuals from the fitted model. For the
long-term L-spline component and residuals, each series was
detrended (using a smoothing spline with 4 degrees of free-
dom) and then the periodic component extracted by fitting a
linear model with effects for the 12 months of the year. The
sum of squares accounted for by month was used as a mea-
sure of periodic trend in each component. The variation in
the periodic spline was measured by its total sum of squares.
The total periodic variation was measured by the total of the
three sums of squares. For r6j > 0, the proportion of periodic
variation accounted for by the periodic spline increased as r6j

increased and as σ2 decreased, and was in the range 88–97%,
with 1–8% accounted for in the long-term L-spline and 0–4%
in the residual.

6. Analysis of the Grassland Experiment

The FOO data were analyzed using a logarithmic transforma-
tion to stabilize the variance of the data. The L-spline with
core functions {1, t, sin(ωt), cos(ωt)} was used to model long-
term trend, with an additional set of periodic basis functions
as described in Section 5. The structure of the experiment can
be written symbolically (using the notation of Wilkinson and
Rogers, 1973) as (rep/plot) ∗ sample, where “∗” is a crossing
operator (i.e., rep ∗ sample = rep + sample + rep.sample), “/”
is a nesting operator (i.e., rep/plot = rep + rep.plot), “.” de-
notes an interaction, rep indicates replicates in the design, plot
indicates plots within replicates, and sample indicates the 32
sample dates. The treatment structure can be written as trt ∗
sample, where trt labels the six fertilizer treatments. We wish
to model the pattern across sample dates in terms of the un-
derlying variable time, decomposing the term into linear trend
lin(t), sine/cosine periodic term sin(ωt), cos(ωt), L-spline de-
viations lspl(t), and periodic L-spline deviations pspl(t). To
complete this decomposition, we need the residual (or lack of
fit) term, sample, to represent pattern not accounted for by
other terms, which can be separated from random variation
due to the replicate plots measured at each sample date. The
lack-of-fit term was fitted as a random term with independent
errors, analogous to the usual lack-of-fit term in a regression
model. The full model is shown in Table 3. In the bottom
stratum, Rep.Plot.Sample, residual error could be considered
as a composite of variation due to intrinsic plot effects on pas-
ture growth, which would be correlated over time, and ran-
dom measurement error. This composite structure was decom-
posed into separate independent and correlated components,
with correlation within plots between samples d days apart
modeled as φd , with a common parameter 0 < φ < 1 esti-
mated across all plots. Eight values were chosen to represent
typical sample dates within years. These eight points were
used as knots for the periodic spline, and the corresponding
32 dates across the 4 years were used as knots for the nonpe-
riodic L-spline.

Model selection started with the full model shown in
Table 3. Variance components relating to random terms were

Table 3

Structural decomposition showing full model for log(FOO)
data, terms indicated as fixed (F) or random (R). Degrees of
freedom (DF) shown for each stratum and for fixed terms.

Scaled estimated variance components are shown for random
terms retained in the final model.

In final
Stratum model? Variance
Term Type DF Yes/No component

mean F 1 Y n/a
Rep 1

rep Ra Y 0.0583
Rep.Plot 10

trt F 5 Y n/a
rep.plot Rb Y 0.0190

Sample 31
lin(t) F 1 Y n/a
sin(ωt) F 1 Y n/a
cos(ωt) F 1 Y n/a
lspl(t) R Y 0.0617
pspl(t) R Y 0.0201
sample R Y 0.0307

Rep.Sample 31
rep.lin(t) Ra Y 0.0097
rep.sin(ωt) R N –
rep.cos(ωt) Ra Y 0.0039
rep.lspl(t) R N –
rep.pspl(t) R N –
rep.sample R Y 0.0040

Rep.Plot.Sample 372
trt.lin(t) F 6 N n/a
trt.sin(ωt) F 6 Y n/a
trt.cos(ωt) F 6 Y n/a
trt.lspl(t) R N –
trt.pspl(t) R N –
trt.sample R Y 0.0042
rep.plot.lin(t) Rb Y 0.0063
rep.plot.sin(ωt) R N –
rep.plot.cos(ωt) R N –
rep.plot.lspl(t) R Y 0.0061
rep.plot.pspl(t) R N –
rep.plot.sample R N –
rep.plot.exp (sample) Rc Y 0.0088

aIndicates correlated terms fitted using rank 1 model.
bIndicates correlated terms fitted using unstructured model.
cexp(·) indicates exponential correlation model.

individually assessed for significance using REML likelihood
ratio tests. Although a score test or simulation to deter-
mine the distribution under the null hypothesis would be
more appropriate, computational requirements for this com-
plex model made this difficult. Instead, we took a less exact
approach based on the Stram and Lee (1994) approximation,
and dropped nine variance parameters, which were close to
zero (combined change of 0.72 in logRL), from the model and
retained the remaining variance parameters. This process re-
sulted in the final random model shown in Table 3. Changes
in logRL achieved by dropping individual terms from the final
model are shown in Table 4. Additional correlation parame-
ters were required between related random regression terms to
ensure invariance to change of origin in the time variable. As
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Table 4

LogRL for models for log(FOO) data. The final fixed/random models refer to Table 3. LogRL for
model 14 is not comparable with other models as a different set of fixed terms was fitted.

Number of Change in
variance logRL from

Model Terms included in model LogRL parameters model (2)

1 All fixed and random terms in Table 3 466.99 23 0.72
2 All fixed terms, final random model 466.27 14 –
3 Model (2) without term pspl(t) 463.04 13 −3.23
4 Model (2) without term rep.plot.lspl(t) 460.48 13 −5.78
5 Model (2) without term lspl(t) 463.71 13 −2.56
6 Model (2) without term trt.sample 456.13 13 −10.14
7 Model (2) without term rep.sample 449.04 13 −17.23
8 Model (2) without term sample 450.76 13 −15.51
9 Model (2) without term rep 462.12 13 −4.15

10 Model (2) without term rep.lin(t) 463.79 13 −2.48
11 Model (2) without term rep.cos(t) 458.45 13 −7.82
12 Model (2) without term rep.plot 452.82 12 −13.45
13 Model (2) without term rep.plot.lin(t) 453.13 12 −13.14

14 Final fixed and random models 484.27 14 –

there were only two reps, a full unstructured model could not
be fitted between terms rep, rep.lin(t), and rep.cos(ωt), but a
rank 1 model with correlation 1 increased logRL compared to
independent terms. A correlation of 0.89 was estimated be-
tween the plot intercept (rep.plot) and linear (rep.plot.lin(t))
terms. The REML estimate of φ̂ = 0.997 was equivalent to
a correlation of 0.35 between samples taken 45 days apart
from the same plot. Once the final variance model was estab-
lished, the fixed model was simplified using Wald tests in a
backward selection strategy, respecting marginality. The final
fixed model allowed for a separate intercept and periodic pat-
tern for each fertilizer treatment, with a common linear trend.
GenStat (Payne, 2003) and ASREML (Gilmour et al., 2002)
were used for the analysis.

The REML estimates of the variance components are
shown in Table 3 multiplied by the mean value of the diagonal
of the matrix ZiZ

′
i in order to indicate the average contri-

bution of the term to the variance of a data value. Variation
due to the random regressions on rep/(lin(t) + cos(t)) and
rep.plot/lin(t) was relatively large due to differences between
replicates (see Figure 1). As the stocking rate was the same
for both replicates, the replicate with less initial FOO would
be expected to show a greater decline, and hence positive
correlation between intercept and linear terms. As there were
also initial differences in available pasture between replicate
plots for each treatment, and as stocking rate was changed
on plots according to the treatment, a similar correlation
structure with highly correlated intercept and linear terms
was observed for plots within replicates. The variance com-
ponents corresponding to overall spline and lack-of-fit terms
also made a significant contribution to the variation of the
data compared to the residual component. The presence of
the periodic L-spline (pspl(t)) indicated a common seasonal
pattern of deviations about the underlying model for all treat-
ments. However, the nonperiodic L-spline (lspl(t)) and lack-of-
fit (sample) terms had larger variance components, indicating
substantial nonperiodic smooth trend over time with some

lack of fit. There was no evidence that separate splines were
required for different fertilizer treatments, although the small
rep.plot.lspl(t) term indicated differences in long-term patterns
between plots. There was also some lack of fit to individual
treatment profiles, indicated by the trt.sample term.

Figure 2. Total periodic component of final model
(Table 3), with knot points marked, for each treatment: nil
(•), low super (⋆), medium super (�), high super (�), high
super with lime (�), sewage ash (�). Average prediction error
for treatment differences at knots is 0.088, minimum = 0.086,
maximum = 0.091.
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Figure 1 presents the log-transformed data with fitted
curves calculated by excluding all lack-of-fit terms and the
residual, as these terms represent unpredictable noise. There
was good agreement between the data and the fitted curves.
The nonperiodic trend over time did not depend on treat-
ment and showed a steady decrease in FOO over time af-
ter the first year. Figure 2 shows the periodic component of
the trend for each treatment, calculated from the treatment-
specific constant, sine/cosine, and common periodic L-spline
terms. Differences in phase and amplitude arise solely from
the fixed terms in the model and it is clear that amplitude
increased with superphosphate levels. However, applying su-
perphosphate with lime or sewage ash appeared to provide
extra herbage mass during the autumn and winter (May–
August). The deviation away from the underlying sine/cosine
shape was introduced by the periodic L-spline component.
The main influence of the periodic L-spline was to sharpen
the main peak during November and December, and to in-
troduce some regrowth in May and June. This introduced an
extra bump into the pattern for lower levels of superphos-
phate, and a reduced rate of decrease for higher levels. This
regrowth was present in the raw data (Figure 1) but could
not be modeled by the underlying fixed model.

7. Discussion

We have shown that L-splines with linear parameters in the
core functions can be implemented within mixed models in
a similar manner to cubic smoothing splines, and can be
used to give ANOVA-type decompositions of the treatment
structure. The extension to a periodic L-spline term is help-
ful in giving a familiar decomposition into periodic and non-
periodic components of the trend. The model with the pe-
riodic L-spline allows an explicit prediction of the shape of
the periodic component; in the grassland example this can
be used to predict the pattern of log(FOO) in an average
year.

Heckman and Ramsay (2000) showed that use of the ap-
propriate L-spline required a smoother with fewer degrees
of freedom than a cubic spline, and Ramsay and Dalzell
(1991) argued that the partitioning of the function space
into orthogonal subspaces (with respect to the inner prod-
uct) was in itself desirable. Our small simulation showed
that a mixed model L-spline with core functions accounting
for a linear trend with a periodic cycle can perform better
than either cubic splines or PCS in terms of squared error
of prediction when there are perturbations in the periodic
cycle. Further work is required to establish the full range
of conditions under which mixed model L-splines could be
recommended.
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