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ABSTRACT

We study the vibrational spectrum of the protonated water dimer, by means of a divide-and-conquer semiclassical initial value representation
of the quantum propagator, as a first step in the study of larger protonated water clusters. We use the potential energy surface from the work
of Huang et al. [J. Chem. Phys. 122, 044308 (2005)]. To tackle such an anharmonic and floppy molecule, we employ fully Cartesian dynamics
and carefully reduce the coupling to global rotations in the definition of normal modes. We apply the time-averaging filter and obtain clean
power spectra relative to suitable reference states that highlight the spectral peaks corresponding to the fundamental excitations of the system.
Our trajectory-based approach allows for the physical interpretation of the very challenging proton transfer modes. We find that it is impor-
tant, for such a floppy molecule, to selectively avoid initially exciting lower energy modes, in order to obtain cleaner spectra. The estimated
vibrational energies display a mean absolute error (MAE) of ~29 cm™" with respect to available multiconfiguration time-dependent Hartree
calculations and MAE ~ 14 cm™" when compared to the optically active experimental excitations of the Ne-tagged Zundel cation. The reason-
able scaling in the number of trajectories for Monte Carlo convergence is promising for applications to higher dimensional protonated cluster
systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5114616

. INTRODUCTION

Floppy molecules are one of the major vibrational spectro-
scopic challenges for ab initio simulations." The strong couplings
between vibrations and global and internal hindered rotations
present in these moieties generate a high density of strongly anhar-
monic energy levels. A theoretical accurate method able to calcu-
late these levels and, at the same time, to assign them is very much
desired. Besides grid approaches,"” which rely on precomputed and
fitted potential energy surfaces (PESs) and suitable basis set rep-
resentations, or imaginary-time correlation function calculations
from path-integral methods,” classical trajectories are a direct and
ab initio dynamics way to calculate the vibrational density of states

via Fourier transform of correlation functions. In particular, semi-
classical (SC) molecular dynamics,": which relies on classical tra-
jectories, allows for the calculation of quantum wave-packet corre-
lation functions, together with their Fourier transform, the quan-
tum power spectrum. This spectrum reproduces quantum features,
such as zero point energy (ZPE) values, tunneling, delocalization
effects, overtones, and quantum resonances. These phenomena are
particularly relevant in systems featuring hydrogen bonds and con-
taining water molecules.”” Instead, a classical Fourier transform of
the velocity correlation function can only provide the effect of clas-
sical PES anharmonicity on the frequencies of vibration. Another
advantage of the semiclassical approach is that a suitable partition-
ing of phase space sampling,” or the use of single trajectories,” allows
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for a favorable scaling with the dimensionality of the considered
molecules.

Given the relevance of protonated water clusters, both from the
point of view of experimental accuracy and theoretical challenge, the
protonated water dimer HsO3 (also known as the Zundel cation)’
is a good test case for our purposes. This molecule features two
bands of high-frequency O-H stretching modes that can be recov-
ered, in a semiclassical treatment, only with high-energy trajectories;
it displays strongly anharmonic dynamics for the shared proton that
manifests itself in a distinctive proton transfer doublet. This feature
involves both proton transfer modes, wagging of the two water moi-
eties and stretching of the two oxygen atoms. The low-frequency
barriers between equivalent global minima,'’ accessible via the wag-
ging modes and internal torsion, render classical trajectories partic-
ularly unstable, a property that presents a clear challenge for theo-
retical methods in general and for semiclassical ones, in particular,
because they rely on the evaluation of the stability matrix to include
quantum corrections. Moreover, the resulting enlarged symmetry
group of the molecule requires careful consideration in trajectory
sampling.

The Zundel cation is the most representative member of the
family of protonated water clusters, toward which many computa-
tional efforts are being devoted, mainly motivated by a flourishin
of experimental results'''* and the request for higher accuracy.'”
In this respect, this molecule is a prototypical example that has
been tackled by various approaches, given the great biological rele-
vance of the charge transport mechanism in aqueous solutions.””*’
On the experimental side, the vibrational spectrum of the Zundel
cation has been investigated by infrared multiphoton photodissoci-
ation spectroscopy‘)”‘}’ and noble gas predissociation spectroscopy,
in particular, argon and neon.”’”’

The theoretical literature about the vibrational spectrum of the
Zundel cation is quite vast since its strong anharmonicity provides
the ideal test-bed for theoretical methods. The PES computed at
the level of coupled cluster theory and devised in Ref. 33 has been
employed by a plethora of methods for vibrational calculations, such
as vibrational configuration interaction (VCID),” diffusion Monte
Carlo (DMC),"”" classical molecular dynamics,”" ring polymer
molecular dynamics,}‘\) 0" and semiclassical methods.”' In a series
of papers, the static and dynamical properties of the Zundel cation
have been studied with the Multiconfiguration Time-Dependent
Hartree (MCTDH) method, elucidating, in particular, the nature
of the proton-transfer doublet.””** Ab initio molecular dynamics
has been used to investigate the role of tagging atoms in messenger
spectroscopy.”’ Reference 50 shows results from perturbative theory,
together with an extensive review of the literature. Recently, effort is
being devoted to studying static properties of the protonated water
dimer by new methods, employing on-the-fly coupled cluster elec-
tronic structure,””” neural network potentials,””* and variational
Monte Carlo.”*°

This paper describes a reduced rovibrational coupling Carte-
sian dynamics approach for semiclassical calculations that we apply
to the vibrational spectrum of the Zundel cation, as a first step
toward the study of bigger protonated water clusters. The stan-
dard way to perform SC molecular dynamics is using a normal
mode coordinate framework determined by diagonalizing the Hes-
sian matrix at the optimized equilibrium geometry. However, the
numerical procedure is not free of rovibrational couplings and, even
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if this approximation leads commonly to satisfactory outcomes, it
may be too drastic for small floppy molecules, where rovibrational
coupling is strong. In this paper, we use full Cartesian dynamics and
we analytically remove rovibrational coupling from initial Carte-
sian conditions and from the normal modes used in the evaluation
of wave-packet overlaps and the stability matrix, finding this to be
quite beneficial for the spectrum quality. In particular, we are able
to drop some of the approximations employed in previous semi-
classical calculations,”' by carefully reducing numerical noise which
arises from the use of normal-mode dynamics and nonoptimal rovi-
brational decoupling. Moreover, we determine that a careful choice
of the initial conditions, where no kinetic energy is given to the
floppiest modes,” is necessary for an accurate determination of the
frequencies of the higher energy modes in water systems. At vari-
ance with the standard phase-space sampling, which would prevent
the convergence of the results, this approach is promising for larger
water clusters as well. In addition, we show how our semiclassical
approach can provide useful physical insight into the dynamics of
the proton-transfer modes, when it is reduced to a single classical
trajectory picture.

In Sec. I1, we describe in some detail the methodology used in
this work to ease the reproducibility of our results. More specifically,
in Sec. II A, we introduce the semiclassical propagator in the Carte-
sian coherent state set; we then define normal modes in Sec. II B,
focusing on the analytical determination of infinitesimal translations
and rotations; and in Sec. II C, we introduce the time-averaging fil-
ter and the divide-and-conquer semiclassical approach. In Sec. II D,
we characterize the types of reference states whose survival ampli-
tude is to be Fourier transformed for power spectrum evaluation.
In Sec. II E, we explain the phase-space sampling of the initial con-
ditions for the classical trajectories. In Sec. I1], we report the results,
regarding the stretching (Sec. IIT A), bending (Sec. III B), proton
transfer (Sec. 111 C), proton perpendicular (Sec. III D), and O-O
stretching modes (Sec. 111 E). In Sec. I1I F, we qualitatively analyze
proton transfer by means of suitable trajectories. In Sec. IV, we draw
future perspectives. Appendix A recaps known results on coher-
ent states, and Appendix B shows some details in the derivation of
normal modes.

Il. METHODS

In this work, to simulate the Zundel cation, we employ the
accurate PES by Huang et al.,” which was fitted to coupled cluster
level calculations. The kinetic nuclear energy of the N atoms is eval-
uated in Cartesian coordinates, employing the bare nuclear masses
m;, and the resulting Hamiltonian is H(P,X) = 1 ¥, P} +V(X). The
Cartesian coordinates x = (X1x, X1y, X1z, - - -» XNx> XNy, XNz) are mass
scaled X = xy+/my/h, where the index k indicates both the atom and
the Cartesian axis. Correspondingly, Cartesian momenta Py imply a
factor 1/ /M. Moreover, it is understood that time includes a factor
1/h so that we have energies and frequencies interchangeably.

We calculate the quantum vibrational spectral density of a
molecular system, described by the Hamilton operator H, as the

Fourier transform of the survival amplitude (y|e”""'[y) of a suitable
reference state |y),

+oo dt _if ;
n®= [ e e, 1)
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In Eq. (1), the spectral peak intensities I, (E) strongly depend on the
reference state choice (to the point that they may be zero if the ref-
erence state is orthogonal to the eigenstate of interest), while their
positions are invariant.

A. Semiclassical Cartesian propagator

To reduce the amount of rovibrational couplings in our spec-
tra calculations, we choose to perform symplectic classical dynamics
in Cartesian coordinates’” and successively calculate the power
spectra in normal-mode coordinates using the semiclassical approx-
imation.

Semiclassical theory approximates the exact quantum mechan-
ical amplitude by adopting a stationary phase approximation of
the Feynman path integral,” in the formal limit & — 0, imply-
ing that the most contributing paths are those obeying the clas-
sical equations of motion. The original van Vleck formulation of
the semiclassical propagator”’ was made more practical via the
Semiclassical Initial Value Representation (SCIVR) theory intro-
duced by Miller,”*" where a phase space integral over initial con-
ditions (Po,Xo) is performed, instead of a boundary condition
trajectory search. From now on, a subscript ¢ indicates evolution
up to time ¢ from the initial conditions, according to Hamilton
equations.

Employing coherent states as proposed by Heller,” ** later
developed by Herman and Kluk,” and settled on firmer ground by

66-69

Kay, the quantum propagator in the semiclassical approxima-
tion is
i, dPydX ;
e M= (20 )FO Ce(Po, Xo0)e™ |Pe, X1 ){Po, Xol, @)
s

where F=3Nand §; = $¢(Po,Xo) = _[Ot dt'[% Yy Phy - V(X;/)] is the
classical action of the trajectory, starting from (Pg,Xo). The wave-
packets | Py, X;) are coherent states, displaying a Gaussian shape, in
both position and momentum representations, and saturating the
uncertainty bound, thus drawing a link between the quantum and
classical representations of atoms. See Appendix A for a recall of
basic properties of coherent states. Explicitly,

T|i _1ox _X)+iP(X—
N H @

where (P,X) parameterizes the center of the Gaussian in the
momentum and the position representations and T is a (in prin-
ciple arbitrary) constant real symmetric positive-definite matrix.
Although a simple approach is to take a diagonal I', implying the
absence of correlation between Cartesian coordinates, it is clear that
considering a full nonsparse matrix opens up the possibility of deep
optimization of the convergence of Eq. (2). We discuss this in detail
in Sec. II B.

The prefactor C; in Eq. (2) can be determined by imposing
that the saddle point approximation of Eq. (2), in the position basis
|X), matches the van Vleck propagator.”” C; depends on the full
monodromy matrix,

(MPP MPX) 3 (8Pt/6PO

~\ox,/op,

Mxp Mxx

P /axo) W

9X, /09X,
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and the I' matrix. The resulting expression is
1

Cr = |5 (Mxx +T7'Mppl + il Mpy - iMpr)| " (5)

1
2
The propagator in Eq. (2) can require hundreds of thousands
of classical trajectories to converge, when evaluated with Monte
Carlo methods, even for relatively small molecules.””**”"""* To over-
come this issue, Kaledin and Miller’>”* proposed the following
time-averaged version (TA SCIVR) of the spectral density:

2

Todt i(s,+¢,+E0)
—e P, X:)| , 6
fo 7€ (x|Pt, X:) (6)

2n dP()dXo
Iy (E) = ? ( Zn)F

where the separable approximation is employed, namely, only the
complex phase ¢;(Po,Xo) = arg[Ci(Po,Xo)] of the prefactor is
retained, and T is the total duration of the classical trajectories. The
time-averaging procedure (in separable approximation) acts as a fil-
ter on rapidly oscillating phase contributions, thus strongly damp-
ening noise in the resulting spectra, while still retaining accuracy on
the position of the spectral peaks. Within this formalism, it was pos-
sible to reproduce vibrational spectra of small molecules by evolving
roughly only 1000 classical trajectories per degree of freedom,” "
also demonstrating that it does not suffer from ZPE leakage’” and
that the cost of evaluating the Hessian can be reduced by employ-
ing a database.”’ With a careful choice of initial conditions, it is even
possible to employ a single classical trajectory per sought spectral
peak, via the Multiple Coherent State (MC SCIVR) approach.’’ ™
Impressive results have also been obtained with the Thawed Gaus-
sian approach.”’”’ Due to the floppy nature of the Zundel cation, in
this work, we focus on phase-space integration, which validates our
use of single trajectories in Sec. I1I I for a qualitative study of proton
transfer.

B. Roto translational mode orthonormalization

Even if we perform Cartesian dynamics, we choose to intro-
duce normal modes in the specific choice of the I and M matrices.
This increases efficiency and allows for a direct term of compari-
son with classical normal mode analysis and classification. Normal
modes are defined as q; = ¥ LZJTS)(j = ¥;Ly0X;, and conversely
0X; = ¥iLjq;, namely, they are linear combinations of displace-
ments of mass-scaled Cartesian coordinates 6X = X — X*? from the
(typically global) equilibrium molecular geometry X“I. Analogously,
normal momenta result in p; = 33;L;P;. The L matrix is orthogonal
L' = L" and is determined by diagonalizing the (mass-scaled) Hes-
sian hy = 0°V(X)/0X;0Xy = Z,leQ;L;c of the potential evalu-
ated at X*. The diagonal Q matrix is conventionally ordered by
increasing positive eigenvalues. However, due to global rotational
and translational invariance, the Hessian at the minimum should
display 3 null eigenvalues for translations and 3 (or 2 for linear
geometries) null eigenvalues pertaining to linearized rigid rotations.
However, such eigenvalues are not found to be exactly zero due to
the used finite difference algorithm and numerical precision in the
geometry optimization and in the diagonalization routines. More-
over, the corresponding rows of L” typically result in an arbitrary
combination of translations and infinitesimal rotations due to their
near degeneracy. In this work, we analytically determine such rows,
in the center-of-mass and principal-axis frame. We conventionally
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assign the roto translational normal modes to the last 6 rows of L’
and obtain (deferring details to Appendix B)™*

T 5/3,a\/ my
Lr siamp = —F——

\/ Zj mj

for the translational modes, where a = 1, 2, 3 refer to the x, y, z
axes, respectively, and we render the coordinate index = 1, 2, 3,

for atom k explicit. For the infinitesimal rotational modes around
the reference geometry, we obtain

)

g eaﬁyng
VE[-2 + 50607]

with a = 1, 2, 3, where €, is the Levi-Civita symbol. We enforce the

(8)

T
LF—Gﬂx,ky =

other rows of L, pertaining to internal vibrations, to be orthonor-
mal with each other and with the roto translational modes via a
Gram-Schmidt procedure.

In the last equation, it is important to notice that we use the
coordinates of the reference geometry since, for efficiency, we want
a constant-in-time L matrix and we are linearizing the rotational
coordinates at that specific configuration. We enforce such analyt-
ical orthonormalization because, when performing normal-mode
dynamics’™>" that ignores Watson’s coupling between vibrations
and global rotations,”””® the use of these infinitesimal rotational
coordinates, referred to as X*/, yields small errors for small vibra-
tions, which are often neglected (see, for example, Ref. 99, for a
complete treatment). Symplectic Cartesian dynamics has compar-
atively the advantage that angular momentum is exactly conserved
and the kinetic term has its simplest form. Since we remove angular
momentum at the beginning of the trajectories, this is zero along the
symplectic dynamics, except for numerical accuracy errors, which
could be removed at each step.'”’ We found indeed that the preci-
sion of the Zundel cation semiclassical spectrum was much refined
when employing Cartesian dynamics rather than normal-mode
dynamics.

C. Normal mode power spectra formulation

To derive the semiclassical normal-mode expression for the
vibrational density of states calculation, we choose the I' matrix of
the widths of the employed coherent states in Eq. (3) to be the
optimal one in the quadratic approximation,

L}y = ZLkzsz§ , )
1

where w; = /Q for the first N, = 3N — 6 vibrational modes.
The eigenvalues of the Hessian for the roto translational modes are
zero and cannot thus provide suitable widths, which we temporarily
set at arbitrary positive values. Our divide-and-conquer approach,
described below, will allow us to prevent them to affect the results.
We also adopt the matrix notation w = diag(w;, . . ., wF).

By choosing this specific expression for T, one is able to draw
a direct relation between approaches employing normal coordi-
nates only”>*'"** and those expressed in Cartesian coordinates.'’" "
While the potential in the classical action is evaluated in Cartesian
notation since the PES is available in Cartesian coordinates, all other
elements composing Eq. (2) are easily converted from Cartesian to
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normal coordinates, using Eq. (9). Since L is orthogonal, the Jaco-
bian of the transformation from Cartesian to normal coordinates is
unity, so dPydXo = dpodqo. The coherent states in normal coordinate
representation are

l W .
@t it @] - xip x),  (10)

(alp.a) = |

and they are centered in (p,q) = (L"P,L"6X). Thanks to the
product property of determinants, for a generic matrix A, we have
det A = det(L™ AL), and the prefactor is simply transformed to

o=

1 _ .
C = ‘E(qu + @ Mppw + i~ Mpg — iMgpw)

» 1y

where the notation for M is analogous to Eq. (4). Notice that the @
matrices multiplying Mp, in general do not simplify, even though
they are diagonal, since they are not uniform along the diagonal.

Recently, some of us have proposed the divide-and-conquer
semiclassical initial value representation method, DC SCIVR, which
allows us to recover vibrational power spectra of high-dimensional
molecules, as well as complex systems, like water clusters, proto-
nated glycine molecules, and nucleobases.”**""'"!"” The very basic
idea of this method is to exploit the usual full-dimensional dynam-
ics but applying the semiclassical formalism each time to a sub-
space S of reduced dimensionality F to enhance the Fourier sig-
nal pertaining to the states of interest. The sum of the spectra of
each subspace provides the full-dimensional spectrum.'” A related
method was devised in Ref. 91. We denote quantities projected to
the subspace by ~. In our case, we only consider subspaces made of
collections of normal modes: in practice, this results in the action
of the projection simply being the removal of rows and columns
pertaining to excluded modes. The working DC SCIVR formula is
then

2

Tﬁ i(sl+(;51+Ef) ~lE s
[ 5 S  paa)| . 2

, 2n [ dp,dq,
IX (E) = ? (27‘[)F

Coherent states can be straightforwardly projected as
|P,4) = Tlies|piqi)- Analogously, the reference state |y) is defined
only in the subspace. Employing the M;j sub-blocks, the pre-
exponential factor is analogous to Eq. (11). Notice that we project
the monodromy matrix M onto the subspace only after evolving its
full-dimensional version. This would be equivalent to only evolving
the subspace monodromy matrix M, only in the case of complete
decoupling.

The most delicate part, within the DC method, is the calcula-
tion of the projected action since, for a nonseparable potential, the
exact projected potential is in general unknown. While the kinetic
term is obtained by only considering the momenta projected into S,
a suitable choice for an effective potential,'”® which is exact in the
separability limit, is V(§) = V(q) - V(q%; q3), where, from the full
potential at the current configuration, we remove the potential due
to modes belonging to the complementary subspace S, while modes
in S are set at equilibrium.

The phase-space integration in Eq. (12) is reduced to the
degrees of freedom of the subspace, while the other modes are
set initially at their equilibrium geometry position and mass-
scaled momenta corresponding to their harmonic ZPE, p; = \/w;.
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The subspaces are chosen in order to collect together strongly inter-
acting modes, and the partition is devised by taking advantage either
of a time-averaged Hessian matrix along trial trajectories or by look-
ing at the conservation of Liouville theorem.*"'%° In this work, we
always project away the global translational and rotational modes,
thus removing any dependence on their arbitrary width (a symbol
~ is understood in all the following definitions). This is crucial for
avoiding that spurious rotational peaks appear in the spectra. The
vibrational modes are instead collected in a single 15-dimensional
subspace that is used for the evaluation of the overlaps, the action,
and the prefactor. Further partitioning is used only for trajectory
sampling, as described in Sec. IT E.

D. Choice of reference states

Although the position E, of the peaks in the spectra does not
depend on the reference state |y), their height is directly related to
the overlap ¢, of |y) with the corresponding vibrational eigenstates
|n) of the system, namely, I,(E) = .u|cu|*8(E — En). The choice of
the reference state is then crucial in obtaining a high signal-to-noise
ratio and in the correct assignment of the peaks.

In this work, we investigate four types of reference states and
show that they can portray useful complementary information: (i)
(anti)symmetrized coherent states of normal modes, (ii) harmonic
states of normal modes, (iii) Cartesian superpositions of harmonic
states, and (iv) harmonic states symmetrized according to differ-
ent molecular symmetric configurations. As shown below, their
implementation is simple, and with a single simulation, one can
simultaneously evaluate their corresponding correlation functions.
Also, these reference states allow for a direct physical insight in the
assignment of each vibrational peak.

(i) For harmonic systems, the coherent reference state [p;%, %)
of a single mode !/ in its equilibrium position ¢*/ = 0 yields
a signal for all spectral peaks, with a height that is most
pronounced at E ~ (pfq)2 /2, so it is beneficial to choose
(pfq)2 = (2m + 1)w;, when one is interested in the n;th
state of mode .** For anharmonic systems, this harmonic
prescription is still efficient because of the Gaussian delocal-
ization. When phase-space integration is very computation-
ally demanding, a single coherent reference state can be used,
where all p;? are set to their harmonic ZPE value p;? = | /@
A more precise characterization of peaks can be obtained by
taking combinations of coherent states that reproduce rele-
vant symmetries. For example, one can select different par-
ities related to even/odd harmonic states by considering a
superposition of the following, un-normalized, form:"*’**%

(I, q;") + &l - i, q)")). (13)
1

F
x) =
1=
By setting ¢ = 1 for each mode, the ZPE signal (and even
overtones) is enhanced, while setting & = —1 for the I-th
degree of freedom selects its fundamental excitation (and
odd overtones). In the latter case, an even better signal is
obtained if the reference momentum of the I-th mode is set
to its harmonic value p;? = \/3w.
(ii) Although the semiclassical representation of the propaga-
tor is expanded on a coherent basis set, it may be useful to
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use harmonic reference states.'”’ These states are particu-
larly advantageous, when considering multiple excited states.
These multiple harmonic states are more convenient than
antisymmetric combinations of coherent states because they
provide a better defined signal onto the states of interest.
By exploiting the property that the coherent states of the
1-th normal mode are eigenstates of the destruction operator
a; = (V@i +ipi//@1)/V/2, it is immediate to get the fol-
lowing standard result for the overlap between a harmonic
reference state |l,,), where n; is the excited state quantum
number and the running coherent state |p}', g;')

n

o o o o a
(Iulprsai') = <0|Pz)ql)ﬁ> (14)

exp (—L(q’u)z _ Dt M) and

4 4w, 2

where (0lpf’,q/') =
o = (/ougf +ipi'//o1) V2.

(iii) The third class of reference states that we consider cor-
responds to the states resulting from the application of a
nuclear Cartesian coordinate of interest to the harmonic
normal-mode ground state, i.e., [y) = %;,|0)." This reference
state highlights multiple spectral peaks corresponding to the
displacement of that Cartesian coordinate, and it is useful for
considering the contribution to that displacement from all
normal modes, mostly in their fundamental excitations. Of
course, it is also related to an element of the nuclear dipole-
dipole correlation function. In this work, we consider, in par-
ticular, the projection of the position of the shared proton on
the axis connecting the oxygen atoms, which is convention-
ally called z. Close to the reference geometry, this projection
may be approximated by z = xn,. — (x0,z + X0,,2)/2, where
xp is the position of the shared proton and xo, is the posi-
tion of the i-th oxygen nucleus. The projection is obtained
by observing that, after Cartesian coordinates are expanded
onto normal modes, we can use the standard result (see
Appendix A),

ot - (L« o2 Joprar 09

and we trace back to the previous harmonic-state case. Since
in principle all normal modes are necessary, to reconstruct
the full z coordinate, in the DC approach either one consid-
ers the full-dimensional set of normal modes or the coordi-
nate is expanded only onto a subset of normal modes.

(iv) The last class of states that we consider is specific to fluxional
molecules, where different versions of the reference geome-
try, related by global rotations, reflections, and permutations,
are relevant. These states are a suitable combination of har-
monic states, and we describe them in detail in Sec. III D,
where we apply them to the study of the perpendicular
motion of the shared proton.

E. Trajectory length and phase space
sampling criteria

Since we perform a Fourier transform of the survival ampli-
tude, to get the vibrational spectra, there is an intrinsic width 7/T in
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the spectral peaks, depending on the total time of the trajectories T.
One would then aim at evolving long trajectories to reduce the peak
width. When complex systems are under investigation, however,
some monodromy matrix eigenvalues increase exponentially along
the dynamics, causing issues in the evaluation of the pre-exponential
factor C; and, consequently, the spectral density in Eq. (6). A num-
ber of approaches have been devised to tackle this issue, including
the use of approximate C;”° or the use of the original equation (11)
and rejecting the trajectories such that |1 - |MTM|| > ¢, with the
arbitrary threshold e usually in the range 107°-107>.

The drawback of this approach is that, if the rejection rate is
higher than 90%, there is an order of magnitude ratio between the
propagated trajectories and those effectively contributing to Eq. (6).
In the case of the Zundel cation, we typically consider trajectories
as long as T = 2 - 10* a.u. (0.5 ps), a duration that corresponds to
a Fourier width of 35 cm™" (a resolution analog to the one of the
MCTDH calculations in Ref. 44). We found that this would typi-
cally correspond to a rejection rate higher than 95%, making almost
unfeasible to converge Eq. (6).

In this work, we aim at obtaining the best possible performance
of the TA SCIVR method applied to the Zundel cation while still
retaining the original Herman-Kluk prefactor within the separable
approximation. We then modify an approach by Kay,” to grasp all
the possible information by each trajectory run, before they become
too much chaotic. In performing the initial representation phase-
space integral, the contribution of each trajectory is accounted for
by a weight w, depending on the time T at which the e threshold is
crossed, and defined as

0, if Te < T/2,

w = T,
Ton/2

(16)

2
- 1) , otherwise,

where T, is the duration of the longest nonchaotic trajectory. The
total spectrum is then the weighted average of the spectra corre-
sponding to all trajectories. This strategy allows us to significantly
increase the number of contributing trajectories (albeit shorter than
the longest ones). Too short trajectories, which yield a broad contri-
bution to the spectrum, are not contributing anyway. We observed
that the main effect of this approach (also on smaller molecules such
as methane, as shown in the supplementary material) is to smoothen
the resulting spectra, without the need of a damping factor, while the
position of the spectral peaks is not affected, being dominated by the
longest trajectories.

These improvements in the TA SCIVR methodology allow us to
employ a hybrid approach between the full-dimensional and the DC
methods. On the one hand, we retain the full vibrational subspace
S, projecting away only the global rotations and translations, when
evaluating the prefactor, action, and overlaps, like in the standard
TA SCIVR method. On the other hand, we restrict the initial phase-
space sampling to subspaces S’ c S of normal modes, depending
on the vibrational states of interest, like in the DC SCIVR method.
In particular, we find it important to assign initial zero momentum
to modes outside the considered subspaces &', especially the low-
frequency ones, which correspond to torsion, wagging, and rocking.
This prescription is crucial in order to remove the appearance of
secondary peaks in the spectra,” which would naturally occur due
to coupling. In this way, we can also avoid introducing a damping
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factor in the Fourier transform, which would produce artificial
broadening of the spectral features. To justify this approach, one
has to consider that classical dynamics transfers energy also to such
modes, but not sufficiently so as to introduce noise in the result-
ing spectra, and that the harmonic estimate is far above the actual
ZPE. Notice, moreover, that the typical classical energy of the tra-
jectories that we sample is of the order of 1000 cm™" ~ 1500 K,
depending on the considered normal mode subspace, and would
still correspond, in a classical molecular dynamics simulation, to
very high temperatures. This explains why the anharmonic part of
the potential is explored, even when we adopt the partial sampling
procedure described in this section. This also indicates that, in the
Zundel cation case, the crucial benefit of the DC approach used in
Ref. 41 was not the projection per se, but the careful choice of the ini-
tial conditions for the modes weakly involved in the spectral peaks
of interest. This approach should be considered the new standard for
the semiclassical study of water systems.

When performing integration of the initial phase-space coordi-
nates in Eq. (12) for modes in a subspace S’, we employ a Monte
Carlo method with importance sampling. The roto translational
modes are set at g;0 = 0 and p;o = 0. Modes in the full vibrational
subspace S are indicated by g, while those belonging to the sam-
pling subset S’ are indicated by g;. The vibrational modes in &, but
not in &', are initially set at momenta equal to zero or to the ZPE
prescription pjy = \/@;. We consider the distribution |(¥|p,, 4,)|” at
time ¢t = 0, which contains the factor

84(a,) = [T exp (~wids/2) (17)
leS’

since g°1 = 0, which we use as a distribution for g,. When the ref-
erence state is a coherent one, in addition one analogously gets the
following sampling factor:
_ S eqy2
& (Do) = [ [ exp (_(PO,Z_P;q) /(2101)), (18)
leS'
which we use as a distribution for p,. When considering harmonic
reference states, we observe that (&?)"|0) also has a significant over-
lap with the coherent state [p;?, %), with p? = \/(2n+1)w;. The
integral in Eq. (12) is thus estimated with

2

Ny L Y ¥ ~j)'j
k) - s Sl St B g
! ! qasp

where N is the normalization factor, N is the number of trajecto-
ries, j is their index, and correspondingly g;q&é = g,(@)) g (P},)> while
wj is the weight according to Eq. (16) for a time evolution 7%. Notice,
again, that the overlaps, the action, and the pre-exponential factor
phase are evaluated using all the vibrational modes p, g at time .
The Monte Carlo uncertainty can be evaluated from the variance of
the above expression, using the sum of the weights as a proxy for an
effective number of independent trajectories. We employ the time
step At = 10 a.u. (0.25 fs) and the threshold ¢ = 1073,

lll. RESULTS

In this section, we describe the results obtained for the
vibrational spectrum of the Zundel cation, using the hybrid
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full-dimensional/DC SCIVR approach described above. Although
we evaluate the full pre-exponential factor, action, and overlaps
(excluded global translational and rotational modes), we sample
phase space according to the subspace partitioning introduced in
Ref. 41 for the Zundel cation, where the magnitude of the off-
diagonal Hessian elements along a representative trajectory was
monitored. In Secs. IIT A-III E, we indicate the corresponding sam-
pling subspace &'. Results are typically obtained with 12000 sam-
pled trajectories, which are sufficient to reach convergence for the
positions of the peaks with a Monte Carlo uncertainty of 10 cm™,
which is lower than the typical Fourier width of 35 cm™" and the
typical accuracy of SCIVR methods which is ~20 cm™"."”” We also
draw a gray error band behind the spectral profiles in the figures,
indicating the estimation of the standard deviation of the Monte
Carlo mean evaluated by Eq. (19), conditioned to the choice that
modes belonging to the complementary subspaces & are initial-
ized at their equilibrium positions and with momenta correspond-
ing to either their harmonic ZPE or zero. Spectra are shifted with
respect to the ZPE value of the subspace.'’® We normalize each spec-
trum to its maximum amplitude since we do not evaluate absorp-
tion spectra but power spectra of relevant reference states. We
also notice that the relative height of secondary peaks, while infor-
mative, may be particularly affected by the sampling phase space
center, contrarily to the main peaks, whose energies are close to
the typical kinetic energies distributed in the sampling of initial
momenta.''’

According to Ref. 41, sampling subspaces are chosen to be
the O-H stretching sector, the bending sector, the proton trans-
fer mode, the proton perpendicular sector, and the O-O stretching
mode. Variants of these choices are indicated when discussing the
results.

Quite generically, we are able to recover good accuracy for the
fundamental transfer, bending, and O-H stretching modes, wh