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Abstract

SIFT features are distinctive invariant features
used to robustly describe and match digital im-
age content between different views of a scene.
While invariant to scale and rotation, and ro-
bust to other image transforms, the SIFT fea-
ture description of an image is typically large
and slow to compute. This paper presents
a method to reduce the size, complexity and
matching time of SIFT feature sets for use in
indoor image retrieval and robot localisation.
Our method takes advantage of the structure of
typical indoor environments to reduce the com-
plexity of each SIFT feature and the number
of SIFT features required to describe a scene.
Our results show that there is a minimal loss
of accuracy in feature retrieval while achieving
a significant reduction in image descriptor size
and matching time. We also outline how the
scale information of the SIFT features can be
used to improve the accuracy of a localisation
filter. The results were obtained using digital
images from interior home and office environ-
ments.

1 Introduction and Related Work

Matching images based on visual content is a fundamen-
tal problem in computer vision. The image matching
problem occurs in many computer vision systems from
a variety of fields including image retrieval and robot
localisation. Content Based Image Retrieval (CBIR)
addresses the matching and retrieval of images which
share similar visual content to a search concept from a
large database of unannotated images [Goodrum, 2000
[Eakins and Graham, 1999] [Koskela et al , 2001]. The
most common CBIR methods use combinations of prim-
itive features such as colour, texture and structure to de-
scribe an image. These image descriptors are used with a
similarity measure to retrieve images that are alike [Iqbal

and Aggarwal, 1999] [Liu and Picard, 1996] [Mirmehdi
and Perissamy, 2001]. More advanced systems retrieve
images by statistically attaching linguistic indexes and
retrieving by index association [Li and Wang, 2003] or
using learned mappings in feature space to group similar
images [Laaksonen et al , 2000]. The techniques used in
CBIR have successfully been applied to robot localisa-
tion in both topological [Ulrich and Nourbakhsh, 2000]
and metric applications [Wolf et al , 2002].

Robot localisation applications have more stringent
matching requirements than traditional CBIR. applica-
tions because they rely on retrieving only images which
share a common view. Indoor environments pose the
additional problem of perceptual aliasing where differ-
ent locations are visually similar. This makes discrimi-
nation and accuracy important characteristics for image
features in indoor localisation applications. A common
approach to accurate image matching is known as ‘Key-
point’ or ‘Interest point’ extraction. It involves identify-
ing points that can be reliably extracted from different
images of the same scene. Effective keypoint extraction
has been achieved with the addition of invariant features
[Schmid and Mohr, 1997].

Invariant features are features that do not change
when exposed to a set of image transformations. Ear-
lier research into invariant features focused on invariance
to rotation and translation [Siggelkow, 2002] [Schulz-
Mirbach, 1995]. These methods have achieved relative
success with 2D object extraction and image match-
ing. Later work in invariant features has focused on ex-
panding their invariance to illumination, scale and affine
transforms. There has been research into the develop-
ment of fully invariant features [Brown and Lowe, 2002]
[Mikolajczyk and Schmid, 2001]. However full affine in-
variance has not been achieved due partly to the imprac-
tically large computational cost.

While complete invariance has yet to be achieved, fea-
tures which are robustly resilient to most image trans-
forms have been proposed by [Lowe, 2004]. Scale In-
variant Feature Transforms (SIFT) are invariant to ro-



tation, translation and scale variation between images
and partially invariant to affine distortion, illumination
variance and noise. These features have been applied to
object recognition [Lowe, 1999], topological localisation
[Koescka and Li, 2004] and SLAM [Se et al , 2002]. How-
ever a significant drawback with the SIFT features is the
significant amount of data generated and the computa-
tional cost involved.

In this paper we propose a reduction to the SIFT fea-
tures taking advantage of the structure of the indoor en-
vironment. The goal of this reduction is to make them
more efficient and practical in the context of image re-
trieval and indoor robot localisation without a significant
reduction of accuracy and discrimination. In section 2
the method used to generate SIFT features is described
and in section 3 the reduction modifications are detailed.
Section 4 covers the results of the reduced SIFT features
for image retrieval and sections 5 and 6 describe their
application to indoor robot localisation. Section 6 also
details an improvement to localisation by using the scale
space information from matched SIFT features. Finally
section 7 summarises the results of the reduced SIF'T fea-
tures and details further work on a more compact SIFT
feature set.

2 SIFT Features

SIFT features were proposed in [Lowe, 2004] as a method
of extracting and describing keypoints which are robustly
invariant to common image transforms. The Scale In-
variant Feature Transform (SIFT) algorithm has 4 major
stages.

e Scale-space extrema detection: The first stage
searches over scale space using a Difference of Gaus-
sian function to identify potential interest points.

e Keypoint localisation: The location and scale of each
candidate point is determined and keypoints are se-
lected based on measures of stability.

e Orientation assignment: One or more orientations
are assigned to each keypoint based on local image
gradients.

o Keypoint descriptor: A descriptor is generated for
each keypoint from local image gradients informa-
tion at the scale found in stage 2.

An important aspect of the algorithm is that it gen-
erates a large number of features over a broad range of
scales and locations. The number of features generated
is dependent on image size and content, as well as al-
gorithm parameters. A typical image of 500x500 pixels
will generate approximately 2000 features however in our
indoor examples a similar size image will typically only
generate 300 features.

Figure 1: Typical indoor office environment and the ex-
tracted SIFT features with their locations represented by
arrows. The length of the arrow represent the scale of the
extracted keypoint and the direction represents the orienta-
tion of the descriptor.

The SIFT feature algorithm is based upon finding lo-
cations within the scale space of an image which can
be reliably extracted. The first stage finds scale-space
extrema located in D(z,y,0), the Difference of Gaus-
sians (DOG) function, which can be computed from the
difference of two nearby scaled images separated by a
multiplicative factor k:

D(.’E,y,O’) (G(x7y7k0)_G(x7y70))*l(w7y)

= L(z,y,ko)— L(z,y,0). (1)

where L(x,y,0) is the scale space of an image, built
by convolving the image I(x,y) with the Gaussian kernel
G(x,y,0). Points in the DOG function which are local
extrema in their own scale and one scale above and below
are extracted as keypoints. Generation of extrema in
this stage is dependent on the frequency of sampling in
the scale space k and the initial smoothing oy3. The
keypoints are then filtered for more stable matches, and
more accurately localised to scale and subpixel image
location using methods described in [Brown and Lowe,
2002].

Before a descriptor for the keypoint is constructed, the
keypoint is assigned an orientation to make the descrip-
tor invariant to rotation. This keypoint orientation is
calculated from an orientation histogram of local gradi-
ents from the closest smoothed image L(x,y,0). For
each image sample L(x,y) at this scale, the gradient
magnitude m(z,y) and orientation 6(x,y) is computed
using pixel differences:



miz,y) = (L +1y) - L - 1)
+H(L(z,y+1) = Liz,y — 1)%)>  (2)
L@y +1) - Lx,y—1)

The orientation histogram has 36 bins covering the 360
degree range of orientations. Each point is added to the
histogram weighted by the gradient magnitude, m(z,y),
and by a circular gaussian with o variance that is 1.5
times the scale of the keypoint. Additional keypoints
are generated for keypoint locations with multiple domi-
nant peaks whose magnitude is within 80% of each other.
The dominant peaks in the histogram are interpolated
with their neighbours for a more accurate orientation

assignment.
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Figure 2: A keypoint descriptor is created using the gradi-
ent magnitude, m(z,y) and orientation, 6(x,y) around the
keypoint. These are weighted by a circular gaussian window
indicated by the overlaid circle. Each orientation histogram
is calculated from a 4x4 pixel support window and divided
over 8 orientation bins. Figure from [Lowe, 2004]

The local gradient data from the closest smoothed im-
age L(z,y,0) is also used to create the keypoint descrip-
tor. This gradient information is first rotated to align it
with the assigned orientation of the keypoint and then
weighted by a gaussian with o variance that is 1.5 times
the scale of the keypoint. The weighted data is used
to create a nominated number of histograms over a set
window around the keypoint. Typical keypoint descrip-
tors [Koescka and Li, 2004] [Lowe, 2004] use 16 orienta-
tion histograms aligned in a 4x4 grid. Each histogram
has 8 orientation bins each created over a support win-
dow of 4x4 pixels. The resulting feature vectors are 128
elements with a total support window of 16x16 scaled
pixels. For a more detailed discussion of the keypoint
generation and factors involved see [Lowe, 2004].

3 Reduced SIFT Features

The main drawback of SIFT features compared to other
image descriptors is their high computational cost. The

SIFT feature extraction process also generates a large
volume of information which is redundant in most im-
age retrieval applications. In indoor environments up to
80 percent of the common keypoints generated are not
matched between images which share a common view. It
is therefore desirable to reduce the quantity of keypoints
generated without affecting the number of matching key-
points.

Our approach uses the structure of the indoor environ-
ment in relation to a stable viewpoint to reduce the com-
plexity of the SIFT features to make them more efficient
to calculate and match. An advantage of an indoor envi-
ronment is the short average view depth of most images.
This makes vertical planes such as walls the majority of
an image’s composition. Another advantage is that floor
and roof surfaces rarely generate many SIFT features
because they are composed of low contrast uniform tex-
tures. This can be seen in Figure 1 where approximately
95 percent of the SIFT features are generated around

Figure 3: Two example images from our environment
database with the reduced SIFT features locations displayed
as circles. The size of the circle represents the scale that the
keypoint was extracted from. Figure (a) comes from Location
A and figure (b) comes from Location B.



corners and edges mounted on vertical planes.

If it can be assumed that the view point for the im-
ages will be relatively stable to rotation around the view
axis, the orientation of the keypoint descriptors located
on vertical surfaces will not rotate. To remove the rota-
tional invariance of the SIFT features the following three
steps of the algorithm are removed.

e The calculation and assignment of keypoint orien-
tations

e The generation of additional keypoints at locations
with multiple dominant orientations

e The alignment of the keypoint descriptor to the key-
points orientation.

Removing these three steps improves the efficiency of
the SIFT features in several ways. The complexity of
calculating each keypoint is reduced when the orienta-
tion assignment step and the descriptor alignment step
are removed. Also, less keypoints are generated because
there is no need to generate multiple keypoints at a single
location due to multiple peaks in the orientation assign-
ment.
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Figure 4: The percentage reduction in keypoints generated
when rotational invariance is removed.

The removal of the rotation invariance steps results in
only a relatively small reduction in computation com-
plexity when compared to the more significant compu-
tational costs of the DOG and keypoint descriptor gen-
eration. However the removal of the multiple keypoints
and the size of the reduced keypoint set is significant as
it reduces not only the time taken to generate an image
decription, it also reduces the complexity of the match-
ing process. The reduction of keypoint generation can
be seen in Figure 4.

The reduced SIFT feature relies on a stable view
point to be able to remove its rotational invariance with-
out affecting retrieval. This assumption requires the
agent that generates the query and environment image
databases to be rotationally stable and have a camera

angle orthogonal with the vertical walls. The second re-
quirement is the most significant as the SIFT keypoint
descriptor is robust to minor rotations. If the agent is a
mobile robot the second requirement restricts the robot
to a camera mounted parallel with the ground in an en-
vironment which is flat. Minor bumps and tilts in the
robots odometry should not affect the localisation sys-
tem, however slopes or ramps with an angle greater than
approximately 20 degrees (see Section 4) will greatly re-
duce the chance of accurately retrieving images.

4 Image Retrieval

The database of images used in this paper includes two
distinct indoor environments. Location A is an Of-
fice/Lab environment situated on the top floor of the
Rose Street Building in the grounds of the University of
Sydney. Location B is a home environment consisting of
a single floor of a private residence. There are a total of
358 images in the database, 104 from Location A (Figure
3(a)) and 156 from Location B(Figure 3(b)). There are
also 98 images which represent 2 agent paths through
these locations and are used as query images for the re-
trieval and localisation experiments. The reduced and
full SIFT features for different image sizes and keypoint
descriptors are extracted for each image in the database
and stored.

To accurately test the effectiveness of the reduced
SIFT features they need to be compared to the full SIFT
features for the desired application. As the localisation
application is essentially an image retrieval problem, we
will use the CBIR performance measure used in [Mirme-
hdi and Perissamy, 2001]. This measure rates success
based on percentage of images retrieved which share
common content. Each image is compared to the en-
tire database to measure the feature’s retrieval rate. For
this application an image was retrieved if it matched at
least 5 keypoints with the query, and was considered to
share common content if the view of the two images over-
lapped. The results of the image retrieval of the full and
reduced features are shown in Table 1.

Feature Image Descriptor No. of Average No. of
Size Retrieved No. Of False
Images Keypoints Positives
4x4x8 23 18.7 0
Full 640x480 4x4x4 18 24.4 0
SIFT 2x2x8 26 5.83 38
Features 4x4x8 17 13.1 0
320x240 Ax4x4 15 13.3 0
2x2x8 10 10.6 12
4x4x8 27 20.0 0
Reduced 640x480 4x4x4 25 22.1 0
SIFT 2x2x8 40 8.93 27
Features 4x4x8 20 14.9 0
320x240 Ax4x4 19 13.7 0
2x2x8 17 11.4 0

Table 1: This figure depicts the image retrieval rate of full vs
reduced SIFT features for different image sizes and keypoint
descriptor size



The keypoint descriptor of the SIFT features is in-
herently resilient to rotation due to the underlying his-
togram structure and gradient information. To reduce
the effects of histogram boundary conditions, trilinear
interpolation is used to spread the gradient information
over adjacent bins. This reduces the effect of rotation on
the keypoint matching and makes the features resilient
to small rotational differences between matching images.
Figure 5 shows the keypoints matched between two im-
ages separated by a camera rotation.

Figure 5: Keypoint matching between images rotated 17 de-
grees. Even under significant rotation 66 key points were
matched, approximately 20 percent of the keypoints gener-
ated for the image.

5 Topological Map

A topological map will be used to represent the indoor
environments used for localisation, based on the general
theory proposed by [Remolina and Kuipers, 2004]. The
theory proposes that a mobile agent’s experiences can
be discretely segmented into distinctive states (dstates)
with associated sensor views. The dstates can be fur-
ther grouped into places which are groups of dstates that
share a common spatial location and paths which repre-
sent continuous linked places. A place represents a physi-
cal location in the agent’s environment at which a logical
decision about the agent’s actions could be made. The
most common location for a place is at the intersection
of two corridors, where an agent can choose to change
its topological path, or a significantly important location
based on the application.

Location A as shown in Figure 6(a) is segmented into
13 places using a ordered technique. Places are repre-
sented by 8 images taken at 45 degree intervals from a
single physical point, which have direct line of sight to
adjacent neighbouring places. The more rigid segmenta-
tion technique requires a large number of places to ade-
quately cover possible paths through the environment or
it will encounter problems if the agent leaves the vicinity
of the visible places and paths.

Location B as shown in Figure 6(b) is segmented into
10 places based on the logical setup of the house. Each
place is represented by a set of 10 to 20 images taken from
various positions and orientations at the location. The
problem with segmenting an environment based on the
logical separations within it is the possibility of physical
gaps in the view coverage. Unless the images used to
represent the places have sufficient coverage, an image
based localization method will have difficulty tracking
an agent. Examples of gaps in view coverage resulting
from missing images are present in Location B between
places ‘Hall D’ and ‘Kitchen’, and ‘Hall D’ and ‘Guest
Room’.
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Figure 6: The physical layout of the two test environments.
Figure (a) shows the office/lab environment, Location B, seg-
mented into 13 labeled places. Figure (b) shows the home en-
vironment, Location A, segmented into the 10 labeled places.

Two sequences (I, II) were used to test the reduced
SIFT features, one from Location A and one from Loca-
tion B. The test sequences are composed of still digital
images taken at approximately 50 cm or 45 degrees in-
tervals. The sequences span the majority of location and
transitions in both environments.

6 Localisation using Retrieved Images

Localisation using retrieved images has a greater need for
features with good image discrimination. The removal of
the rotational invariance stage has reduced the dimen-
sions of the features and potentially their effectiveness
for localisation. A vision based localisation application



will be used to verify that the reduced SIFT features are
still effective. There are several previous examples of
retrieved image and SIFT feature localisation systems.
In [Koescka and Li, 2004] and [Ulrich and Nourbakhsh,
2000] voting schemes were used to determine the most
likely location of an agent given the set of retrieved im-
ages. In [Wolf et al , 2002] they calculate the visibility
regions of the retrieved images combined with a Monte-
Carlo filter. We use a probabilistic method based on
a recursive Bayesian filter [Durrant-Whyte, 2001]. The
probability of the current state x given the sequence of
observations Z* up to time k is

z|x) P(x|ZF~1)
Ii(zk|Z’“—1) )

where the sensor model or Likelihood Function, P(zy|x),
is calculated using a method similar to the one described
in [Koescka and Li, 2004]. In this method each image in
the database is represented by a set of SIFT features
{Sn (1)}, where n is the number of keypoints for the jth
image at the ith location. For each query image ) and
its associated keypoints {S,,(Q)} a set of corresponding
keypoints between ) and each image in the database I;f,
{C(Q, I})}, is calculated. {C(Q,I})} is calculated using
an Euclidian distance measure as described in [Lowe,
2004].

This method then calculates the conditional probabil-
ity, p(zx|xx = x;), that a query image Q, at step k char-
acterised by an observation z; ={S5,,(Qx)} came from
location ¢. This is calculated using the correspondence
set C(i), normalised by the total number of matched
keypoints across all images.

P(xz) = L

) = C(i)
pzk|xr = %) 723' o) (5)

6.1 Hidden Markov Model

The Bayesian filter can be significantly improved with
the addition of spatial information between image views.
The relationships between locations can be modeled by
a Hidden Markov Model (HMM) as shown in [Torralba
et al , 2003). In our model the states correspond to indi-
vidual places and the transition function determines the
probability of moving between places. The conditional
prior is as follows

n

pOek =i 271 = 3 D AGL Dp(xkar = %1271 (6)

J
where N is the number of places and A(%,j) is the
transition matrix. A is a N x N matrix where A(4,j) =
P(x, = xi|xk—1 = x;). Entries in the matrix corre-
sponding to adjacent locations are assigned a value of

one and the final matrix is normalised across each row.
The results of the localisation using the full and reduced
SIFT features are shown in Figure 7. Localisation prob-
abilities were obtained by running the Bayesian filter
against full and reduced SIFT feature sets at 640x480

resolution with a 4x4x8 keypoint descriptor.
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Figure 7: These 4 figures show localisation results for the full
and reduced features. The line represents ground truth for
the images, with a dot representing partial confidence and
a circle representing full confidence in the agents location.
Figures (a) & (b) are from location A and Figures (c) & (d)
are from location B. Full SIFT features are used in Figures
(a) & (c) and reduced SIFT features in Figures (b) & (d)

In these results a partial confidence classification is
given to places with a probability of greater than 0.2
and a full confidence classification is given to places
with a probability of greater than 0.5. The difference
is marginal between the effectiveness of the full and re-
duced SIFT features. The filter using either feature has
low false positive rate, approximately 5%, and never
strays from the true paths view area. The reduced SIFT
features on average takes 25% less time to match and
retrieve.

As described in Section 5 an environment segmented
into logical places can encounter gaps in the view cover-
age. This is shown in Figure 7(c) & (d) when the agent
transitions between places ‘Hall D’ and ‘Kitchen’ in steps
20 to 25, and ‘Hall D’ and ‘Guest Room’ in steps 51 -
58. During these times there are no images that can be
retrieved from the environment forcing the probability
of the location towards an even distribution. In Path I,
the agents uses an invisible path in Location A because
its view does not directly overlap with images from the



environment. This results in a loss of confidence until
the agents view covers a known place. This is shown
in Figure 7(a) & (b) during steps 14 to 17, when the
agent moves through the copy room area. This loss of
confidence can be solved by using a more comprehensive
image representation of the environment.

6.2 Scale Space Refinement

The current Bayesian filter has problems distinguishing
between locations which are physically close neighbours,
because they will share high keypoint matching to im-
ages in overlapping views. The resulting ambiguity can
be seen in Figure 7(c) when the agent enters the hall. A
possible solution to this problem is weighting the likeli-
hood of the sensor model with the scale space informa-
tion extracted from the SIFT features. The average ratio
of scale between the matched keypoint pairs is used with
a gaussian to weight the number of matched keypoints
for a place. The results of using a gaussian with different
values of ¢ is shown in Figure 8.
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Figure 8: These 4 figures show the scale space refinement
for Path II from Location B. The line represents ground
truth for the images, with a dot representing partial con-
fidence and a circle representing full confidence in the
robots location. Figure (a) shows the unweighted results
and Figures (b)-(d) have had image retrieval weighted by
a gaussian with o equal to 0.30, 0.15 & 0.1 respectively.

The addition of scale space refinement significantly im-
proves the accuracy of the filter. Results were obtained
by running the Bayesian filter with and without scale
space refinement against full and reduced SIFT feature
sets at 640x480 resolution with a 4x4x8 keypoint de-
scriptor. Using scale space refinement the filter gener-

ated 35% less false partial confident classifications, 59%
less false positive classifications and 15% more correct
confident classifications.

7 Conclusion and Future Work

SIFT features provide a distinct and accurate means of
matching digital images for image retrieval and vision
based localisation. In this paper we have presented a re-
duction to the traditional SIFT feature to improve their
performance. This reduction uses the structure of an
indoor environment to remove the need for rotational
invariance of the features. From the results obtained we
have shown that this reduction has a minimal affect on
the retrieval rate of images and significantly reduces the
size of the image descriptors and the time to needed to
generate and match them. Furthermore we have used
the scale information of the SIFT features to improve
location discrimination.

Future work with the reduced SIFT feature will look
at further reducing the size of the image description by
filtering keypoints with low matching likelihood. Par-
tially unknown environments with on-line learning of the
topological map and underlying HMM is another area of
current investigation.
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