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Abstract.

A computationally e�cient method for analyzing meteorological and oceanographic

historical data sets has been developed. The method combines data-reduction and least squares

optimal estimation. The data-reduction involves computing empirical orthogonal functions

(EOFs) of the data based on their recent, high-quality portion and using a leading EOF subset

as a basis for the analyzed solution and for �tting a �rst order linear model of time transitions.

We then formulate optimal estimation problems in terms of the EOF projection of the analyzed

�eld to obtain reduced space analogues of the optimal smoother, the Kalman �lter, and optimal

interpolation techniques. All reduced space algorithms are far cheaper computationally than

their full grid prototypes, while their solutions are not necessarily inferior since the sparsity

and error in available data often make estimation of small scale features meaningless. Where

covariance patterns can be estimated from the available data, the analysis methods �ll gaps,

correct sampling errors, and produce spatially and temporally coherent analyzed data sets. As

with classical least squares estimation, the reduced space versions also provide theoretical error

estimates for analyzed values.

The methods are demonstrated on Atlantic monthly sea surface temperatures (SST)

anomalies for 1856{1991 from the UK Meteorological O�ce historical sea surface temperature

data set (version MOHSST5). Choice of a reduced space dimension of 30 is shown to be

adequate. The analyses are tested by withholding a signi�cant part of the data and prove to be

robust and in agreement with their own error estimates; they are also consistent with a partially

independent optimal interpolation (OI) analysis of Reynolds and Smith (1994) produced in the

National Centers for Environmental Prediction (NCEP) (known as the NCEP OI analysis).

A simple statistical model is used to depict the month-to-month SST evolution in the

optimal smoother algorithm. Results are somewhat superior to both the Kalman �lter which

relies less on the model, and the optimal interpolation which does not use it at all. The method

generalizes a few recent works on using a reduced space for data set analyses. Di�culties of

methods which simply �t EOF patterns to observed data are pointed out and the more complete

analysis procedures developed here are suggested as a remedy.
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1. Introduction

Systematic measurements of meteorological and oceanographic variables near the ocean's

surface have more than a century and a half of history. Initially concentrated along well-de�ned

ship tracks, these observations underwent rapid growth in recent decades and are lately

supplemented by satellite observations to achieve unprecedented coverage. It is customary to

average available data in regular longitude{latitude bins with quality control and other statistics

(e.g. Comprehensive Ocean{Atmosphere Data Set (COADS) { Woodru� et al. 1987, or Global

Ocean Surface Temperature Atlas (GOSTA) { Bottomley et al. 1990). However, the resulting

data sets are characterized by large temporal non-uniformity in data availability and quality:

recent decades are much richer in data than the beginning of the century, which in turn has

much more data than the middle of the nineteenth century. In addition to this systematic

non-uniformity, the data su�er from seasonal oscillations in availability and from abrupt changes

in marine tra�c that reect important world events. Examples include the profound decrease

in data coverage during the two world wars, leaps in data abundance in the Arabian Sea data

after 1869 and on both sides of the Isthmus of Panama after 1914. For more comprehensive

descriptions of the marine data record see Smith et al. (1994), Reynolds and Smith (1994), and

Folland and Parker (1995).

The pressing importance of historical data sets for climate studies has motivated work on

their analysis. Ideally, the analysis of an historical data set corrects observational error (which

consists of instrumental and sampling errors) and �lls gaps by values close to correct ones. The

latter task is accomplished by carrying information from data-rich times and places to data-poor

ones. Consequently, the analysis procedure should be able to move information around both in

time and space.

Given a model (dynamical or statistical) to constrain the analysis, we can form a quadratic

cost function S which will \punish" analyzed solutions in some properly weighted manner both

for deviation from observed values and for discrepancies with the model equations. We can then

minimize S unconditionally in a \variational analysis." Such a minimization uses the model as

a \weak" constraint (Sasaki 1970). The \strong" constraint formulation (which requires the

model be satis�ed precisely) is inappropriate here, since the error in models for historical data
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sets (especially for those used in this work) can be larger than the observational error.

In some variational analyses, the attitude towards weighting coe�cients in cost functions

is that \the weights can be thought of as empirically determined tuning parameters" (Legler

et al. 1989, p. 711). Although there are objective ways to choose the weights, e.g. a method

of generalized cross validation (GCV, Wahba et al. (1995), and references therein), we retreat

to a more \classical" approach: if the model is linear (or linearized), then choosing weighting

coe�cients to be the inverse error covariance matrices will turn a minimizer of S into a classical

least squares estimate (LSE). The attractive feature of LSE is its optimality; it has the smallest

error variance among all linear unbiased estimates (Gauss { Markov theorem, see e.g. Mardia et

al., 1979), and it is the best even in a more general class of estimates, if additional assumptions

of normality are made. Of course, we do not know the error covariance matrices precisely,

and we can estimate only their crudest features. Even GCV procedures, in their plausible

applications, can help in optimal tuning of only few parameters; they cannot resolve all the

details of covariance matrices.

A prognostic model, which acts both in space and time, is especially useful for analysis of

a historical data set. Ideally, information can propagate both forward and backward in time,

and in all spatial directions. Such an approach is known as an \optimal smoother" (OS) and

there are di�erent algorithms to implement it. We will use exclusively the Rauch{Tung{Striebel

(RTS) algorithm, described in Rauch et al. (1965). Such algorithms, however, are too costly and

ine�cient for full grid representations of historical climate data sets with realistic dimensions.

These problems can be solved by transforming the data from a full grid representation of spatial

dimensions of a data set to a space of lesser dimension, namely to a space of the leading spatial

empirical orthogonal functions (EOFs) of that �eld (Cane et al., 1996). Such an approach

drastically decreases the computational cost, and allows the creation of a prognostic model for a

data set, i.e. a multivariate �rst order autoregressive model (Markov model (MM)) for the time

evolution of a vector of EOF amplitudes.

There are di�erent ways to achieve the space dimension reduction. Fukumori and

Malanotte-Rizzoli (1995) introduced the suboptimal KF where Kalman gains are calculated

on a coarse subgrid of the model grid and then are interpolated on the entire grid; Fukumori
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(1995) used the same approach for OS. Cohn and Todling (1996) compare three suboptimal KF

schemes with reduced computational cost: one close to that of Fukumori and Malanotte-Rizzoli

(1995), a reduced resolution �lter; one somewhat similar to that of Cane et al. (1996), a partial

eigendecomposition �lter; and one which e�ectively reduces the rank of the model operator, a

partial singular value decomposition �lter. Thacker and Lewandowicz (1996) emphasize the

role of principal components as \indices with maximum global skill." In the present work

explicit use of a �xed low-dimensional linear subspace as a model space for analysis allows the

interpretation of our statistical procedure, suboptimal in the space of full grid representations of

the data, as an optimal LSE in the reduced space. This allows for a consistent derivation of the

entire sequence of reduced space estimates: optimal interpolation (OI), KF, and OS.

Computational cost is not the only reason to reduce the dimension of the system space.

Frequently there are not enough data to resolve small scales in estimating full grid error

covariance (Dee 1995). As a result, the a priori covariance information on small scales in full

grid data assimilation does more harm than good. Moreover, the assimilation for those scales

represents the major computational expense of the entire procedure. The absence of small scale

errors generously compensates the reduced space approach for both formal loss of optimality

and actual loss in resolution. A case like that is documented in Cane et al. (1996), where the

solution in the reduced KF is not inferior to the standard full grid KF solution.

The MM and its error covariance matrix can be constructed from the data by a linear best

�t method. As far as the verisimilitude of such a statistical model is concerned, it is possible

that a low order model acting in EOF space, where the major part of a signal lies, will capture

the rudimentary dynamical features of the system (e.g. Blumenthal 1991, Xue et al. 1994). The

OS can then use this dynamical information in order to constrain the �elds in the data-poor

periods. In the unfortunate case where the MM turns to be a complete failure, the corresponding

terms in the cost function will still play a regularizing role by prohibiting excessively sharp time

transitions in periods with poor data coverage. Our use of MM as a time-marching model in the

reduced space OS procedure assumes that, in the absence of other information, the same large

scale patterns which slowly evolve in the present, were similarly slowly evolving in the past.

Here we develop a computationally feasible way to produce a spatially and temporally
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coherent analysis of a historical data set. We compute EOF patterns on the basis of available

observations. Thus the method can run solely on the basis of a data set to be analyzed and does

not require use of any additional information.

Our method generalizes the work of Cane et al. (1996) in the same sense in which OS

generalizes KF. In a di�erent sense, the method also generalizes the technique of Shriver and

O'Brien (1995) and Smith et al. (1996); i.e. a least squares �t of EOFs to observations carried

out separately at each time. This approach is also applied in Shen et al. (1994) to optimal

averaging (OA). We will refer to this method as \projection." If there are no missing data,

and the observational error is spatially uniform, this form of analysis is a simple orthogonal

projection of the data on the reduced space. It will be shown in Section 2 that the projection

method, as well as the reduced space analogue to a more sophisticated optimal interpolation (OI)

technique (in the form described in Gandin, 1963) and reduced space KF, all can be reproduced

by our method when certain parts of the cost function are dropped. In its most complete form

this cost function produces a reduced space OS solution. For all these di�erent kinds of analyzed

�elds our technique also supplies error estimates. This advantage of our approach is due to its

probabilistic nature; it is absent in the projection method with its deterministic function �tting

approach.

As a practical demonstration of the method, we analyze a sea surface temperature (SST)

historical data set. This choice is motivated by the importance of SST history in monitoring

past climate variability (Bottomley et al. 1990, Parker et al. 1994, Folland and Parker 1995,

Smith et al. 1996). For this �rst practical application of the method we restrict our attention to

the relatively data-rich Atlantic basin, but cover the entire time interval 1856{1991.

The plan of the paper is as follows. The next section presents the formalism of our method.

Section 3 describes the details of its application to the analysis of 136 years of Atlantic SST. The

results of the analysis are presented in section 4, along with robustness and internal consistency

checks, as well as the results of cross-veri�cation and comparison with the partially independent

data of Reynolds and Smith (1994). Comparison with the projection method of Smith et al.

(1996) is also presented there. Results are discussed in section 5, and conclusions are presented

in section 6.
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2. Methodology

2.1 Variational principle

Our goal is to estimate values of a physical variable T which changes with location and

time. Let fTng represent a set of gridded �elds of T , which are rearranged as column vectors

of dimension M , in order of ascending time n = 1; : : : ; N . Let T o
n be a vector of available

observations for components of Tn with random error "on:

T o
n = HnTn + "on; n = 1; : : : ; N: (1)

Here Hn is the matrix which puts a complete �eld into the format of observations available for

time n. If the observations are on the same grid as the analysis, Hn samples those points where

data are available; otherwise Hn interpolates from the analysis grid to observational points. The

observational error "on is expected to have zero mean and known spatial covariance Rn. This

error is also assumed to be white in time and uncorrelated with the signal.

Suppose that in addition to observations we have a linear model An relating Tn at successive

times:

Tn+1 = AnTn + "mn ; n = 1; : : : ; N � 1; (2)

where the random single-step error "mn is assumed to have zero mean, spatial covariance Qn, and

to be white in time and uncorrelated with the signal. Furthermore, we assume that "o and "m

are uncorrelated for all times.

In the situation described above, the classical least squares estimate (LSE) of fT1;T2; : : : ;TNg

is the set of �elds fT̂1; T̂2; : : : ; T̂Ng for which a quadratic cost function

S[T1;T2; : : : ;TN ] =
PN

n=1(HnTn � T o
n )

TR�1n (HnTn � T o
n ) +

PN�1
n=1 (Tn+1 �AnTn)TQ�1n (Tn+1 �AnTn) (3)

reaches its minimum (cf. Appendix A).

This means that the minimum fT̂1; T̂2; : : : ; T̂Ng is the best estimate, in a very natural sense,

of T on the chosen space and time grids. This solution makes the best possible use of all

available information: observations, model, and their error estimates (cf. Talagrand (1996)).

It is an unbiased estimate of the physical �eld T with minimum (among all linear unbiased
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estimates) variance of error (this follows from the Gauss{Markov theorem, e.g. Mardia et al.

(1979), Rao (1973)). Such estimates are known as BLUEs (Best Linear Unbiased Estimates). If

it is assumed that the error distribution is Gaussian, then from a Bayesian perspective the least

squares solution can be interpreted as a maximum likelihood estimate, i.e. the most probable

solution (Gelb 1974, pp. 103{104). If the errors and the signal are Gaussian random values,

the solution turns out to be optimal among all, even non-linear estimates, and not only for

minimum mean-square error criterion, but for a wide class of optimality criteria (Gelb, 1974

quotes Laning and Battin, 1956 to this e�ect, but it also follows from Theorem 2 of the famous

work by Kalman, 1960).

Lorenc (1986) assumed a Gaussian error distribution in order to exploit the maximum

likelihood features of estimates from various kinds of analysis. He emphasized the similarity

among di�erent methods of data analysis requiring the minimization of quadratic functions, e.g.

variational methods, OI, KF, and OS (the last is only implicitly present in his paper). What is

important here is that this similarity between di�erent kinds of analysis exists even without any

assumption of normality: all these methods, if their assumptions hold, give unbiased estimates,

optimal in the class of linear unbiased estimates. The basic reason is that all of them construct

LSEs out of given bits of information, as e.g. Sorenson (1970) illustrates by establishing a close

connection between the original least squares method developed by Carl Friedrich Gauss in 1795

for his astronomical studies, and the Kalman �lter theory.

2.2 Reduced space approach

Following Cane et al. (1996) we �rst make a transformation to the set of spatial EOFs

(eigenvectors of the system's spatial covariance matrix). We then truncate that set to a much

smaller subset which captures most of the signal. We write

Tn = E�n + "rn; n = 1; : : : ; N;

where E is matrix whose columns are EOFs, �n is a column vector containing the temporal

amplitudes of the retained EOFs, and "rn designates the error due to the space reduction

(truncation). E is dimensioned M � L where M is the spatial dimension of Tn and L � M is

the number of EOFs retained.
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In the present study, as in all data studies, the covariance matrix of observed �eld contains

observational noise. An important reason for the popularity of EOFs is that the leading EOFs

contain much of the variance of the signal and little of the noise, while the higher modes are

largely noise (see Preisendorfer, 1988). This means that truncation of the high modes serves

as a �lter. For illustration consider white observational (plus sampling) noise, uniform in

space, with variance �2, added to a signal which is independent of the noise. If the signal is

presented on a grid of spatial dimensionM and its spatial covariance matrix is C, the covariance

matrix calculated from observations will be C + �2IM . Let Tr[C] = S2, and transform to

the reduced space of L leading EOFs which retains a ratio r of the total variance S2. Since

an identity matrix is invariant with respect to an orthogonal rotation, the noise variance in

the reduced space will be L�2=M . The signal-to-noise ratio in the reduced space will thus be

(r(S2 + �2) � L�2=M)=(L�2=M), approximately rM=L times larger than the original ratio of

S2=�2. In the present work, characteristic parameters are r = 0:78; L = 30, and M = 275.

Hence the \e�ectiveness" of the space reduction rM=L = 7:2.

It is well known (North et al. (1984), Cheng et al. (1995)) that the patterns of individual

EOFs are unstable to perturbations of C. Fortunately for the present application, a linear

subspace spanned by the �rst few EOFs is a much more robust object (despite the fact that

individual EOFs themselves can be strongly distorted by \mixing up" in \e�ectively degenerate

multiplets").

Time connection in the analysis is provided by a version of (2) in the reduced space:

�n+1 = An�n + �"mn ; h�"m�"mTi = Qn

For full grid representation we have

An = EAnE
T ; Qn = EQnE

T (4)

Using (4) and the orthogonality of retained and discarded modes, (1,2) may be transformed

to the reduced space:

T o
n = HnE�n + (Hn"

r
n + "on)

def
= Hn�n + �"on; n = 1; : : : ; N; (5)
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�n+1 = An�n + ET "mn
def
= An�n + �"mn ; n = 1; : : : ; N � 1: (6)

With the additional assumption that the truncation error "rn is uncorrelated with other types

of error and has zero mean, and after neglecting the possible non-whiteness of the sequence

(Hn"
r
n + "on) (due to the time correlation of "rn), the reduced state space scheme (5,6) is similar

to the full grid scheme (1,2) with a new \observational" error �"on and a new model error �"m.

Note that to use this similarity, the truncation error must be uncorrelated with the retained

modes, so the solution obtained is a projection of the full grid optimal solution on a reduced

space. Otherwise, the new \observational" error is correlated with the \signal," and we �nd

ourselves outside of the classical scheme of the least squares approach. If the EOFs which span

the reduced space are eigenvectors of the true signal covariance matrix, the requirement of

independency is automatically satis�ed. In practice we make the assumption that the correlation

is small.

Now

Qn = h�"mn �"
m T
n i = ET h"mn "

m T
n iE = ETQnE

(viz (4)), and the reduced space analogue of the observational error covariance matrix is

Rn = h�"on�"
o T
n i = h(Hn"

r
n + "on)(Hn"

r
n + "on)

T i =

h"on"
o T
n i+Hnh"rn"

r T
n iHT

n
def
= Rn +HnC

rHT
n

def
= Rn +R0

n: (7)

By analogy with (3), a cost function for a reduced space estimation problem (5,6) is

S[�1; �2; : : : ; �N ] =
PN

n=1(Hn�n � T o
n )

TR�1
n (Hn�n � T

o
n ) +

PN�1
n=1 (�n+1 �An�n)

TQ�1
n (�n+1 �An�n): (8)

Below we consider minimization of S in its full (OS) or somewhat truncated versions (KF,OI,

and projection).

(a). Kalman Filter. Hereafter superscripts a and f will correspond to the analysis and

forecast stages of the KF, respectively. The variables (�fn; P
f
n ; �

a
n; P

a
n) are computed according

to the standard KF formalism (e.g. Gelb 1979; Ghil et al., 1981):

�an = �fn +Kn

�
T o
n �Hn�

f
n

�
;
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�fn = An�
a
n�1;

Kn =
�
HT

nR
�1
n Hn + P

f �1
n

�
�1

HT
nR

�1
n (9)

Pa
n = (IL �KnHn)P

f
n

Pf
n = An�1P

a
n�1A

T
n�1 +Qn�1; n = 2; 3; : : : ; N

with initial conditions

�f1 = �a1 = P
a
1H

T
1R

�1
1 T

o
1 ; Pa

1 = Pf
1 =

�
HT

1R
�1
1 H1

�
�1

; (10)

which correspond to minimization of the �rst term only in the �rst summation in (8). The

connection between the general expression (8) and KF is that the analysis �an of KF can be

derived in a form analogous to (8) by performing the minimization of S[�1; �2; : : : ; �n] for

2 � n � N and taking only the n-th �eld of the result.

(b). Optimal smoother: If the RTS algorithm (Rauch et al. 1965) is applied to the reduced

space version S instead of to S the computation is far cheaper: the M -dimensional full grid

space vector Tn is replaced by the L-dimensional (L � M) reduced space vectors �n. (A

remaining potential di�culty, inverting the observational error covariance matrix Rn at every

timestep, is discussed in section 3.3). Minimization of S by the RTS algorithm gives a reduced

space version of OS. The initial (ascending in time) sweep of the RTS algorithm is a run of the

KF (9), while the second, reverse, time sweep modi�es the KF estimates on the basis of future

observational data

�sn = �an +Gn

�
�sn+1 �An�

a
n

�
;

Gn = Pa
nA

T
n (P

f
n+1)

�1;

Ps
n = P

a
n +Gn

�
Ps
n+1 �P

f
n+1

�
GT
n ; n = N � 1; : : : ; 2; 1

with initial conditions

�sN = �aN ; Ps
N = Pa

N :

(c). Optimal interpolation. Let An = 0, eliminating the connection between sequential

times. Correspondingly, replace Qn in (8) by the �eld covariance matrix Cn+1 at time n+ 1. As

a result, the analyzed �eld for each time is unrelated to any other time. It minimizes (8) in the
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form

SOIn [�n] = (Hn�n � T
o
n )

TR�1n (Hn�n � T
o
n ) + �T

nC
�1
n �n; n > 1; (11)

which is the cost function of Gandin's (1963) OI procedure1. The estimate �OIn and its error POI
n

from this procedure are

�OIn = POI
n H

T
nR

�1
n T o

n ; POI
n =

�
HT

nR
�1
n Hn + C

�1
n

�
�1

: (12)

Interpretation of the OI solution as a Gauss{Markov estimation is obvious: the OI estimate is a

LSE when �n is \observed" to be zero with error covariance Cn. When �n has zero mean (T is

anomaly), this interpretation is perfectly legitimate.

There is another interesting interpretation for the second term in (11). Since

Cn = ETCnE = �n is a diagonal matrix of eigenvalues in the reduced space,

�TC�1� = �T��1� =
LX
i=1

�2i
�i
:

Thus the second term of the cost function is a constraint on the EOF-spectrum of the solution:

the higher the mode, the smaller is �i and the more severe is the \punishment" for deviation of

its amplitude from zero. The OI solution is thus discouraged from giving too much energy to

the features which \historically" had little energy.

(d). Projection. If the second term is dropped in (8) (or 11),

�p
n = Pp

nH
T
nR

�1
n T

o
n ; Pp

n = (HT
nR

�1
n Hn)

�1 (13)

This approach is very close to a method of analysis employed by Shriver and O'Brien (1995)

and Smith et al. (1996) (though with some di�erences; see Sec. 5.).

(e). Veri�cation of error estimates. For all estimates �̂ presented in this section a full grid

representation T̂ of the solution can be recovered by formulae

T̂ = E�̂; P = EPET (14)

1We use the term OI throughout the paper in this original sense of Gandin; this sense is di�erent from the

modern usage, in which OI basically denotes KF with disabled (or simpli�ed) covariance evolution procedure
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(dropping the time index n). The error covariance P in (14) corresponds to the error in patterns

spanning the reduced space only. To obtain the error in comparison to the true �eld T in a full

grid space, we have to account for the error of reduction:

T̂ � T = E(�̂ � �) + (E�� T ) = "+ "r:

Since the error of reduction "r enters the analysis, it is correlated with the analysis error ".

Hence the full grid error covariance in the reduced space estimate T̂ is

� = h(T̂ � T )(T̂ � T )T i = P + h""r T i+ h"r"T i+ Cr: (15)

The traces of the cross terms here are equal to zero, since " and "r belong to two mutually

orthogonal spaces of retained and discarded patterns. Consequently those terms do not change

the total variance of the error in the entire area of analysis, but rather redistribute it. For an

error estimate which is easy to compute, and which holds for any single point in the domain or

for subdomain averages, we can use an inequality2

� � 2(P + Cr);

which immediately follows from the fact that

0 � h("� "r)("� "r)T )i = P + Cr � (h""r T i + h"r"T i):

The consistency of the analysis can be veri�ed by comparing analyzed �elds with the data

and checking if the analysis-data discrepancy agrees with the theoretical estimates of the error,

produced by the analysis procedure. To get the theoretical estimate for the covariance of the

discrepancy between data and analysis, we have to distinguish between the cases when data are

or are not used in producing the analysis estimate.

� The data were not used in producing the analysis estimate. In this case observational and

analysis' errors are independent,

h(HT̂ � T o)(HT̂ � T o)T i = H�HT +R: (16)

2Symmetric matrices (quadratic forms) A and B are said to be in relation A � B if xTAx � x
T
Bx for all

vectors x (or, equivalently, if (B �A) is non-negative de�nite)
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� The data were used in producing the analysis estimate. In this case

h(HT̂ � T o)(HT̂ � T o)T i = R�HPHT ; (17)

which turns to be a generic formula for all LSE methods (cf. Miller (1990, p. 11,466) and

Cane et al. (1996) for KF case).

(f). Error estimates for subdomain averages. Computing subdomain average of an optimal

solution gives an estimate known as that of \optimal averaging" (OA) (see e.g. Smith et al.

1994), and, naturally, produces a theoretical error estimate for it which takes into account spatial

error correlation. Suppose � is an index column vector denoting the corresponding subdomain

(i.e. �i = 1 if a point with spatial index i is included into the subdomain, and �i = 0 otherwise).

The spatial average for the �eld estimate T = c�TW T̂ , where W is a diagonal matrix of gridbox

area weights, and c = (�TW�)�1 is a normalizing factor making the sum of the weights equal

unity. The error in T is equal to c�TW ("+ "r), and thus the error variance is

�2 = c2�TW�W� � 2c2�TW (P + Cr)TW� = 2(xTPx+ xr T�rxr); (18)

where x = cETW 1=2� and xr = cEr TW 1=2� are vectors whose components are results of

averaging the retained (E) and discarded (Er) EOF patterns, respectively (�r is a diagonal

matrix of eigenvalues (energies) corresponding Er).

3. Practical application

3.1 Data set for analysis

We demonstrate the method of reduced space optimal analysis by applying it to a

historical sea surface temperature (SST) data set for the relatively data-rich Atlantic basin

(102.5oW{22.5oE and 42.5oS{82.5oN). Our method assumes that all errors are random. However,

trends and biases appear in many historical data sets (for SST see Barnett 1984, Folland et

al. 1984, Jones et al. 1991). Presence of a time-varying bias in an observational data set will

result in the biased analysis: the portion of the bias changing slowly in time and displaying

large spatial scales most likely will project well on the leading EOF patterns, and thus cannot

be distinguished from physical signals by the analysis method presented here. Therefore we
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use data extracted from the MOHSST5 product of the UK Meteorological o�ce Global Ocean

Surface Temperature Atlas (GOSTA) (Bottomley et al. 1990, Parker et al. 1994) which

incorporates provisional corrections for time-varying biases as described in Folland and Parker

(1995). Monthly SST anomalies from 1856 to 1991 are departures from 1951{1980 GOSTA

climatological means. They are presented on a 5o�5o grid as averages of the observations

available for each gridbox, and are attributed to the geometric centers of the gridboxes. That

the actual observations are irregularly sampled inside the box is taken into account through a

term in the observational error estimate corresponding to the natural variability of SST on a

5o scale, as described in section 3.3. This estimate requires knowledge of the actual number

of observations used for each gridbox estimate and also their standard deviations. The latter,

which were not available from the UK Meteorological O�ce, were taken from data available in

the COADS 2o�2o summaries (Woodru� et al. 1987).

Use of anomalies rather than full SST �elds has several advantages. Taking away the

seasonal cycle makes the EOF representation more e�ective, and makes the construction of a

Markov model somewhat easier. In addition, a number of the steps in our procedure (�ltering

covariance matrix by Shapiro (1971) �lter, space reduction, OI, use of variance{losing MM)

have the downside of cutting some portion of the variance. In working with anomalies with zero

means, we obtain unbiased results even when variance is lost.

Note that even on the coarse grid of 5 degrees, in the relatively well-sampled Atlantic basin,

the inhomogeneity of data coverage over the entire period of 1856{1991 is striking (see Figure

11, Bottomley et al., 1990), which makes their analysis a demanding test for our methods.

3.2 Covariance matrix and EOFs

We used the relatively data rich period of 1951{1991 for the EOF calculation. Samples of

all months were pooled to estimate the covariance of raw GOSTA data. We restrict the analysis

to the M = 275 (out of 326) ocean gridpoints in the Atlantic which have at least 50% of the

monthly data points available for the period of 1951{1991. We do not require that all gridboxes

display a common period of data availability. Rather we calculate each element in the covariance

matrix based on the common period of the two respective gridboxes, meaning that the sampling
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errors of the data covariance matrix estimate Craw vary from element to element due to the

varying numbers of time points. For all elements of Craw, we have data available almost 45% of

the time.

Our goal here is to estimate the true signal covariance C which is di�erent from the data

covariance Craw because the latter contains observational error:

Craw = C +R

and, to make matter worse, is a�ected by data voids. Because of the latter and because our

estimate of R is not faultless, we do not risk to estimate C by subtraction. Instead we apply

the 4th order Shapiro �lter (Shapiro 1971) in both the longitudinal and latitudinal directions to

reduce random errors. An innovation here is that the �lter was applied to data autocovariance

patterns (the rows and columns of the sample covariance matrix) rather than to the patterns of

observed data. Each row and column has an entry at each grid point, and the �lter is applied to

each as if to a data �eld (i.e., the covariances are smoothed in the geographical coordinates). If

there were no gaps in the data, the result would be identical to the application of the �lter in the

data space. That is, the covariance of the �ltered data is the same as the �ltered covariance. To

see this, let L be the linear �lter and X the data vector, so that LX is the �ltered data. Then

h(LX)(LX)T i = LhXXT iLT = LCrawL
T ;

the right-hand side is the operation we perform. Note that there is no straightforward way to

�lter the data directly when there are gaps.

While application of the Shapiro �lter to the covariance matrix produces Cf = LCrawLT

with a reasonably \clean" correlation structure (one with the small scales strongly depleted), it

also reduces the variance. We can obtain an estimate of the true variance by subtracting the

estimate of observational error variance (constructed as in section 3.3 and averaged over the

period 1951{1991) from data variance:

diag[C] � diag[Craw �R]:

At locations where the variance after �ltering Vf = diag[Cf] is smaller than this estimate, we
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increase it to the estimated level. Thus:

V̂ = maxfVf;diag[Craw �R]g

which corresponds to increasing the diagonal elements of Cf by the factors F = V̂ =Vf . Whenever

a diagonal element in the covariance matrix is increased, we also multiply elements in the

corresponding row and column by the square root of the rate of increase, so that the resulting

matrix Ĉ has V̂ on diagonal, but de�nes exactly the same correlation patterns as those obtained

after the Shapiro �ltering. More formally,

Ĉ = D
1

2CfD
1

2 ;

where D is a diagonal matrix with the elements of the vector F on its diagonal.

The EOFs were calculated as eigenvectors of Ĉ with elements weighted by the appropriate

gridbox areas. As usual, the leading EOFs are expected to represent reliable spatial patterns

of the observed anomalies. The �ltered data covariance matrix is not guaranteed to be

positive{de�nite because of the gaps in the data. However, only the last 5 out of the 275

eigenvalues were negative (totaling 2 � 10�4 of the trace) indicating that the covariance matrix

was well estimated.

The sequence of eigenvalues �0m of Ĉ obtained directly from the EOF analysis decreases too

steeply due to the depletion of small scales by the Shapiro �lter. An incorrectly steep spectrum

of eigenvalues can make the analysis too \optimistic" about the ratio of signal variance it

apparently can constrain, yielding theoretical error estimates that are too small. This showed

up as a failure of consistency tests (such as those described in Section 4.2(a)). To redistribute

energy between EOFs (while preserving the total variance) by transferring it from large to small

scales, we write

�m = (1� �)�0m +
�

M

MX
k=1

�0k; m = 1; : : : ;M (19)

This redistribution depends on a single parameter � characterizing its \intensity," and is the

smoothest change in the spectrum that preserves the variance. In this paper we use � = 0:1.

The theoretical basis for the choice of a value for � is given in Appendix B.

Values of �m from (19) are used hereafter as the estimates of \true signal" eigenvalues.
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Based on these estimates the �rst 5, 10, 20, 30, 50, and 75 EOFs explain 41%, 55%, 70%, 78%,

85%, and 90% of the variance respectively.

3.3 Constructing a priori data error estimates

The data error estimate R consists of two parts, observational error and truncation error;

cf. (7). Errors in area averaged observational data are due to both instrumental errors and

sampling errors: the former characterizes the accuracy of each individual measurement, and the

latter accounts for the fact that observations are not direct measurements of a time and space

averaged value over the gridbox. We assume independence of errors for measurements taken

in di�erent boxes. If there is in fact signi�cant correlation between such errors (arising, for

example, from systematic rather than random irregularity of sampling patterns inside boxes,

or through strongly biased instruments on some individual \bad" ships), it will increase the

\e�ective" observational error by lowering the actual number of degrees of freedom in the

observed system (cf. Blumenthal and Cane (1989), their Appendix B), and will make the

solution less optimal. However, at the present time there is no information which would allow

to formulate a more elaborated model for observational error than a simple assumption of

their mutual independency. It should be pointed out that reduced space analysis is much less

sensitive to the detailed speci�cation of the observational error covariance than traditional full

grid schemes are (cf. formula (20)).

If deviations from the mean value within the box and month are random and independent,

the sampling error variance can be estimated as �2=nobs, where �2 is the observed �eld monthly

intrabox variability, and nobs is the number of intrabox measurements for the month (Legler

(1991), Trenberth et al. (1992)). We obtained the number of observations from the UK

Meteorological o�ce on a 1o�1o box resolution, �ner than that of SST estimates. If the actual

number of observations per 1o�1o box for a given month was larger than 60, we used 60 in

our calculation, assuming that more than 2 observations per day for such boxes do not bring

independent information.

Since the intrabox variability �2 is not part of the GOSTA data set, we estimated it from

COADS (Woodru� et al. 1987), which is presented on 2o�2o boxes. We used 1980{1992
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COADS intrabox �'s and nobs's to estimate intrabox variability for 4o�4o and 6o�6o boxes.

The patterns of the two are similar, with the larger box being no more than about 50% higher.

The variability for 5o�5o boxes is estimated as an average of those two patterns (Figure 1).

The most prominent feature is the high variability in the Gulf Stream separation region and

south of Newfoundland. By construction, our estimate of intrabox variability accounts also for

instrumental error in the observed data. Observational error rms for 41-year-periods at the

beginning and at the end of analysis interval are shown in Figure 2 as well as the variance in

time of the domain average. The magnitudes of the error for modern data are fairly consistent

with those inferred in Trenberth et al. (1992).

Because of the EOF truncation, we have to account for R0

n = HnC
rHT

n (cf. (7)), the part of

the covariance that falls into the discarded modes:

Rn = Rn +HnC
rHT

n = Rn +HnE
r�rEr THT

n ; (20)

where R is the diagonal matrix of observational error (with elements �2=nobs). Since Rn is

a non-diagonal square matrix of the order of number of observations, its inversion each time

step can be expensive. To reduce the cost, we subdivide the truncation error term in (20) into

parts corresponding to patterns of intermediate scale (with numbers between L + 1 and 4L

which represent spatial scales down to half of the smallest scale we retain in the reduced space

solution) and those of small scale (with numbers larger than 4L). The latter covariance can be

well approximated by its diagonal:

HnE
r�rEr THT

n = HnE
r
<4L�

r
<4LE

r T
<4LH

T
n +HnE

r
>4L�

r
>4LE

r T
>4LH

T
n �

� HnE
r
<4L�

r
<4LE

r T
<4LH

T
n + diag

h
HnE

r
>4L�

r
>4LE

r T
>4LH

T
n

i
:

As a result R is presented as a sum of a diagonal matrix with a product of two low-rank (of

rank 3L) matrices. This makes R easily invertible (in a 3L-dimensional space) according to

Sherman{Morrison{Woodbury formula (Householder, 1975).

The estimated truncation error rms for 30 modes is about 0.2{0.25oC in the most of the

domain, increasing to 0.3{0.4oC towards its southern and northern boundaries. An independent

veri�cation of our observational error estimate can be derived from a comparison between
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the GOSTA data and the NCEP OI analysis (Reynolds and Smith, 1994) assuming that the

OI error is negligible compared to that of GOSTA. When rms di�erences between these two

products were computed for the interval 1982{1991, the resulting pattern was similar to that of

the estimated observational error, but with larger values. This discrepancy can be explained by

noting that the NCEP OI analysis e�ectively reduces the analysis space by smoothing.

3.4 Construction of the Markov model

We construct the MM from time series of EOF expansion amplitudes obtained from the OI

analysis. An is thus a Markov Model (MM) constructed from the available data. The actual

dependence of An on n can be made seasonal or monthly (see Blumenthal 1991, Xue et al.

1994), or dropped altogether. Ideally we would like to have a model that fully captures the

time transitions of a few tens of EOFs, but there are not enough data to estimate reliably all

elements of such a model. This e�ectively restricts the size of the matrix An, and also makes it

reasonable to somehow predetermine its structure: to make it diagonal, banded, block-diagonal,

etc. In each case, given the sequence f�ng, matrices An and Qn with predetermined structure

and type of time-dependence can be found by a linear best �t.

The MM was constructed on the amplitudes from OI solution in a space of dimension 50

for the period 1951{1991 (492 monthly samples). To determine the maximum number of EOFs

which can be included into the meaningful �rst order MM, we compare the singular values of the

lag-one covariance matrix for the actual sequence of OI amplitude vectors, with those obtained

for 500 randomly reshu�ed sets of the same vectors (Figure 3(a)). Singular values for the actual

sequence are always larger than those for 95% of reshu�ings, with the minimum ratio reached

at the �rst time around the 30th mode (Figure 3(b)). The structure of the lag-one correlation

matrix manifests strong diagonal dominance, and thus suggests a diagonal structure for the

MM. The coe�cients of the diagonal MM, when compared with reshu�ed samples prove to be

even more meaningful than the singular values of the lag-one covariance matrix, with a plateau

reached around the 30th mode. We therefore chose L =30 to be the dimension of the MM.

To check if the available data resolve the seasonal dependence of the MM, we ran similar

statistical tests for a seasonally dependent MM and found them to be much less signi�cant than
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those with no seasonal dependence. If the MM is taken to be dependent on the month of the

year, its coe�cients for di�erent months oscillate irregularly around those for the MM with

no time dependence. Furthermore, the error decrease by introducing seasonal dependence is

negligible. Thus, we waive the seasonal dependence of the MM, and the model A we �nally use

in the analysis is simply a �rst-order autoregressive model for individual components of �OIn , i.e

A is a �xed diagonal matrix with lag-one autocorrelations for components �OIn on its diagonal.

In addition we checked to see if the diagonal MM can be successfully corrected by some

non-diagonal terms predicting the error of the diagonal MM. However, the singular values of the

covariance matrix between the error of the diagonal MM and the OI amplitudes on the previous

time were not distinguishable from those obtained for reshu�ed sequences at the 95% level. We

conclude that the diagonal MM which we chose for the analysis cannot be improved with the

available data .

The chosen MM may be characterized as a model of \decaying persistence" in the EOF

space: all it does to predict the SST �eld for the next month is to repeat the patterns of the

present month with scaled down amplitudes. It leaves in place 90% of the amplitude for the

�rst EOF, but only about 40% of the amplitude for the modes with numbers around 30. On

average, predictions one month ahead reproduce about 60% of the signal variance.

The error estimate for MM is determined by

Q = ��A�A = �(I �A2);

the last transformation assumes the diagonality of the MM.

Since L =30 EOFs gave the optimal MM, we compute the analyses with the reduced space

of this dimension. However, it is possible to increase the dimension by letting the same MM

predict as zeros the amplitudes of higher modes (in that case high order modes are treated as

stationary).
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4. Results

4.1 Data veri�cation

To verify and tune the settings of our analysis procedures, we compared its results for

1982{1991 with the high-quality NCEP OI analysis (Reynolds and Smith, 1994), which makes

use of buoy and satellite observations in addition to ship data. First, we use it to check the

adequacy of our choice of the reduced space dimension L = 30. The OS analysis experiments

were run for 1982{1991 with reduced spaces truncated to 5, 10, 20, 30, 50, and 75 EOFs. For

each experiment the rms di�erence between the solution and the NCEP OI analysis is shown

in Figure 4 (the NCEP OI data were �rst interpolated onto 5o�5o grid, and their reference

climatology were adjusted to comply with the GOSTA climatology). As a number of EOFs

increases the rms di�erence with the NCEP OI improves almost everywhere until L = 30. From

L = 30 to L = 50 areas of improvement are about equaled by areas of degraded comparison; for

L = 75 performance is worsened almost everywhere. Comparison of changes in rms with the

patterns of observational error in Figure 2 shows that areas where the rms di�erences increase as

L increases roughly correspond to areas with low-quality data. In going from L = 50 to L = 75

the analysis improves only in areas of high-quality data. Apparently, for L > 30 the analysis

over�ts observed data. For high-quality data, whose signal is more likely to stay in the NCEP OI

solution, the present analysis is closer to the NCEP OI values, but over�tting low-quality data

results in higher error and values farther from the NCEP OI solution. Incidentally, the variance

corresponding to the �rst 30 EOFs is (roughly) complementary to the estimated observational

error level (which was about 25% of the data variance for the sample of 1951-1991 for which

EOFs were calculated).

Comparison of the OS analysis with 30 EOFs against the NCEP OI solution shows that

except for the very northern part of the basin where ship-based sampling is generally poor and

signal variance is high, the distribution of SST variance in the two analyses is very close (Figure

5). This is reassuring, since the reduced space OS solution might be expected to lose some part

of the signal variance. The OS solution is slightly closer to the GOSTA data than the NCEP

OI solution is, but the two analyses are much closer to each other than either of them is to the
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GOSTA. Figure 6 demonstrates this by comparing the OS, GOSTA observations, and NCEP

OI analysis in terms of their time dependent spatial rms di�erence and correlation. Note the

drop in similarity between the NCEP OI and OS solutions at the end of 1991. This drop results

from the increased di�erence between the GOSTA data and the NCEP OI during this year.

The satellite and in situ data were clearly carrying di�erent signals for the last four months of

1991, perhaps because satellite data was biased by both the Pinatubo eruption and a satellite

calibration problem (cf. Reynolds and Smith, 1994).

4.2 Robustness and consistency of the analyses

Before analyzing the entire 136-year-long record, we carried out two experiments in order

to check the robustness of the method and the consistency of its results with the error estimates

which it produces.

(a). Experiment with withdrawn areas. To check how much the results of OS gap �lling can

be trusted, data over a large (30o longitude�20o latitude) area was withdrawn from the analysis

in three di�erent regions: the North Atlantic, Tropical Atlantic, and South Atlantic. A typical

result of these experiments is shown in Figure 7. The OS analysis proves to be very robust: the

SST anomalies in the withdrawn areas are structurally close to the OS analysis with all data

used. It should be noted that the EOFs and the MM were calculated from data for 1951{1991,

a period that does not include the data shown in Figure 7.

To check the consistency of error estimates, we compare the rms di�erences between the

standard OS analysis for the period of 1946{1991 and its versions with areas of withheld data,

against the average of theoretical error estimates from the runs with withheld data (Figure

8). Note that the di�erences between OS runs are concentrated in the areas where data were

withdrawn, while error estimates also recognize errors elsewhere. Reassuringly, error estimates

are close to the actual di�erences in the withheld areas. Elsewhere, both analyses rely on much

the same data, so the di�erences between them are likely to be smaller than the true analysis

error.

Another check of internal consistency compares the di�erence between the solution and the

data with the theoretical estimate of that di�erence given by formulae (17,16). In the points
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where data were used in the OS analysis, the theoretical estimate is calculated according to

(17). This estimate slightly exceeds the actual di�erence almost everywhere (not shown). The

theoretical estimates inside withheld areas are computed according to (16), where the value of

� was estimated by (15) with cross terms neglected. In conclusion we �nd that the estimates in

the withheld areas are in good agreement with actual values.

(b). Experiment with imitated data mask. In this experiment the OS was run for the period

1960{1991 with the data coverage information taken from the month exactly 60 years earlier.

For example, in the analysis for July 1978 only observations in those areas which included data

in July 1918 were used, and for those points observational error estimates were based on number

of observations in 1918. The observed data were also contaminated by Gaussian noise, white in

time and space, with the variance equal to the di�erence between the estimated observational

error variances for the simulated and the actual time. Such an experiment is intended to check if

results of the analysis during early periods, when data coverage was very poor, can be trusted.

Results of the experiment are encouraging: whenever the OS has at least several data points

in di�erent parts of the analysis domain, it successfully recovers a complete structure, albeit

with a slightly weakened amplitude. Figure 9 illustrates the results for January 1960 using data

coverage information of January 1900. While the estimated anomaly amplitude has lowered

and the error for a large part of the basin has doubled, the structure produced seems to be

quite robust. Comparison between the OS and OI solutions (not shown) display some slight

superiority of OS: the positive anomaly near the east coast of the US and the banded structure

in the South Atlantic, however underdeveloped, are captured more correctly by the OS than by

the OI in the test run.

If the data voids are extreme, as in July of 1978 (using the data coverage mask of 1918 {

the end of the First World War and the apex of the inuenza pandemic; Figure 10), OI cannot

recover the structure in the southern part of the basin where there are no observations (not

shown), but the OS �eld there is closer to reality. Note that even under these extreme conditions

the analysis provides a realistic error estimate.



25

4.3 Application to the long record

We performed the OS analysis of the entire Atlantic SST anomaly record for 1856{1991,

starting from the OI initial state. Figure 11 shows the result for selected months. The positive

anomaly near Greenland in January 1856 is in an area where no data was available and so cannot

be quite trusted (the OS error estimate in this area exceeds the magnitude of the anomaly).

Analysis for 1885 looks trustworthy since the better part of the basin was already sampled at

that time. The analysis for October 1918, has small amplitude and almost the same values as

the error estimate. Such a result is not very useful, but is consistent with the observational data.

The anomaly structure of February 1950 with amplitude of 1o K is captured by analysis with a

level of uncertainty generally under 0.2oK.

Another application of this analysis is a reliable estimate of area averaged temperature.

Figure 12 presents the monthly variation of the area average of the Atlantic SST north of 35oN

calculated from observational data and from the OS analysis. The latter is bounded by two

curves corresponding to 99.7% con�dence (3�) intervals, where � is estimated by the formula

(18). Estimates obtained by straight averaging of available GOSTA data are inside the 99.7%

limits when data coverage is su�cient (e.g. post 1950), but in the 19th century and the war

years the averaging of available data is not an adequate estimate of the area average, and the

analysis provides a more robust value.

5. Comparison of di�erent methods

Four theoretical reduced space �eld estimates are de�ned in section 2.2 : T p, T OI, T a,

and T s. We compare them using as example, the SST �eld for February 1950. The �rst three

of estimates are illustrated in the Figure 13; for the observed �eld and the OS solution T s see

Figure 11. When data are available for all gridboxes, all estimates are very close, because the

accuracy of the MM is inferior to the data. The estimated analysis error steadily decreases as

we progress from projection to OS.

The simplest of the estimates above, the projection estimate T p, is very similar to one

obtained in Shriver and O'Brien (1995) and Smith et al. (1996). There are two important

di�erences, however. First, the matrix R�1n is considered to be a simple weighting matrix
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in those studies, while here it is derived from an extensive error analysis. In Shriver and

O'Brien (1995) the matrix is diagonal with elements proportional to the square of the number

of observations, while in Smith et al. (1996) it is an identity matrix. Omitting the statistical

interpretation of the procedure means that their approach does not allow derivation of a

theoretical error estimate Pp.

A second di�erence is that in the cited studies the EOFs were calculated from a data set

of higher quality than the one being analyzed: in Shriver and O'Brien (1995) EOFs from FSU

analysis are used for COADS wind pseudostress analysis; in Smith et al. (1996) the analysis

of COADS SST is based on EOFs from the NCEP OI analysis. In contrast, here we describe

a method of reduced space analysis applied directly to the data set being analyzed, including

the estimate of the data covariance matrix. This feature of our approach allows to derive

EOF patterns from the longer samples than those usually associated with high quality data.

Consequently, the results of the present analysis should be more robust and more suitable for

studies of long-term climate variability.

Generally the Smith et al. (1996) SST analysis for 1950{1991 is close to our OS (Figure

14). Being constructed on the base of EOFs from the NCEP OI, it is approximately 0.05oC

closer to the NCEP OI solution than the reduced space OS in the spatial RMS, but in terms

of spatial correlation both analyses are equally close to NCEP OI and are even closer to each

other. When data coverage is good, all reduced space estimates give a similar answer.

If there are gaps in the data, or entire areas of the data are missing, the projection can

create spurious anomalies in the areas of missing data because it tends to allow excessive

variance in higher modes. As a result, it over�ts existing data locally, and brings exaggerated

variance to areas where the analysis is not restrained by observations. This is particularly

true when a large number of EOFs are used. An example is February 1950 (Figure 13) where

there is an area of missing data near 30oS. Our analyses with 30 EOFs give larger magnitude

of T p in this area than T OI, T a, and T s. A similar response was obtained by Smith et al.

(1996) in their projection analysis for that month: a 1oK negative anomaly appeared where data

were missing. For areas of missing data, the projection method has no means for controlling

spurious anomalies except by progressive reduction of the number of EOFs resulting in lower
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resolution and diminished variance. The error estimate for the projection method (Figure 13)

has a magnitude of 0.5oC even for such a moderate sized area of missing data. This problem is

discussed in Smith et al. (1996) as \over�tting," and \screening regression of varimax rotated

EOFs" is suggested as a prospective solution. To some extent the problematic property of the

projection method can be cured by putting zeroes in all data voids and setting the observational

error equal to the �eld variance for all such quasi-observations. Results of such \improved

projection" method are shown in Figure 13: the spurious anomaly of projection has disappeared

and the level of the error in the area has decreased. The more complicated (OI, KF, and OS)

methods of analysis provide regularization in a more systematic way, and their error estimates

in the area are smaller.

Another way to monitor how the features of various scales are treated by di�erent methods

of analysis is to compare the energy in the calculated EOF amplitudes for di�erent solutions

with the estimates of that for the true signal (eigenvalues). These ratios are presented in Figure

15. While the projection method clearly generates excessive energy in small scales, the OI

excessively damps it there (cf. Appendix B). The KF and OS are attempting to bring the

ratios closer to unity, but do not make much change because the MM used damps high EOFs.

However, since the high modes are responsible for only a small portion of the variance, the loss

of total variance is not too large: is is about 6% for the OI solution and 5% for the OS.

The time dependence of theoretical error estimates (without the error of truncation) for

di�erent kinds of analyses (except for the projection method, which is an order of magnitude

larger than other estimates) is shown in Figure 16: the top panel gives an average error over

the basin, and the middle one shows the percentage of the area with error larger than 0.3oK.

The lower panel zooms in on the beginning of the period. Note that the KF computation started

from the OI estimate, rather than the projection initial condition (10) in order to decrease the

error in the very beginning of the run, and is equivalent to adding the \OI-like" term for the

�rst month into the cost function.

The transfer to the reduced space improves time-continuity, since the leading spatial EOFs

tend to capture slowly varying temporal modes, and some high-frequency noise gets �ltered.

Because of that T OI and even T p are smoother in time than the observed data, being about as
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smooth in time as the NCEP OI analysis is. However, the estimates T a and T s further improve

the time-continuity of the solution.

6. Conclusion

The family of OI, KF, and OS, which all are popular methods of data analysis and are close

relatives of the least squares method invented by Gauss, give optimal estimates in a very natural

sense. These are usually considered as requiring both a great deal of (unavailable) information

on the error covariance and unbearable computational expense in the case of application to

large geophysical data sets. We have developed a systematic way to put a problem of estimating

projections of a true �eld on a predetermined set of patterns (rather than a �eld itself) into the

same classical context of a Gauss{Markov estimation scheme, and thus to obtain OI, KF, and

OS solutions for these projections (which span a space of a reduced dimension). Since the set of

patterns (we use the leading EOFs of the data) is chosen in a way that it is able to reproduce

the large scale variability of the data on hand, we predominantly capture the features of those

scales and �lter out smaller scales as errors. While such solutions are formally suboptimal

among full grid solutions, they are optimal among all reduced space solutions, being also far

cheaper and much easier to feed a priori error covariance information. The tunable nature of

the dimension of a reduced space allows keeping all scales down to the smallest resolved on the

base of available data, and the choice of leading EOFs for a basis guarantees to some extent

the minimal dimension of a space. Hence the savings of a reduced space analysis (compared to

a full grid one) occur at the scales which are not really constrained by the data. Estimates on

such scales are meaningless, but traditional schemes must compute them anyway.

Another advantage of a reduced space approach is that it facilitates modeling time

transitions, if no model in a full grid representation is at hand.

On the basis of these theoretical considerations, we formulated a computationally e�cient

method for producing spatially and temporally coherent analyses of a historical data set. This

method �lls gaps in the data and minimizes sampling error. As a solution, it obtains a reduced

space analogue for OS, and alternatively produces analogues for less complete estimates, i.e. the

least squares �t to observations (projection), OI, and KF. In the described settings the method
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can work successfully solely on the base of the data set to be analyzed, without use of additional

higher-quality data. The drastic cost reduction as compared to the classical full grid OS made

it possible analyze 136 years of the monthly Atlantic SST data (MOHSST5 { Bottomley et

al. 1990, Parker et al. 1994) on a workstation. It is important to emphasize here the triple

role which space reduction plays in our approach: it makes the OS procedure computationally

feasible; it allows us to create a MM to incorporate time covariance information; and it acts as

a data �lter.

A strong advantage of the method, inherited from the classical least squares approach, is

its ability to provide error estimates for analyzed data. In actual application to the Atlantic SST

we made a series of tests which proved the method to be robust and consistent with its own

error estimates. Veri�cation against other analyses (available for relatively modern data only,

e.g. Reynolds and Smith 1994, Smith et al. 1996) showed it to be similar to them in quality.

However, there are reasons to believe that for early data the reduced space OS performs better

than the other methods would.

The most important (and probably restrictive for some applications) assumption of the

method in its described settings is a hypothesis that those patterns of space and time variability

which are dominating in recent time (more precisely, in the time period used for computation of

EOF patterns and creating the model for time transitions) were dominating in the early periods

(which are poor in data coverage). The acceptability of such a hypothesis depends, of course, on

the nature of the data, and should be considered separately for each application of the method.
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Appendix A: The Optimal Smoother (OS) as a least squares estimate

If all estimated �elds are put together into a huge single column vector ~T = [T T
1 T T

2 : : : T T
N ]T ;

then all information contained in equations (1){(2) can be rewritten as a single equation

~H ~T = ~T om + ~": (A1)

To do so, we must reinterpret equations (2) as statements on \pseudo-observations" of model

discrepancies; i.e. the vectors (Tn+1 � AnTn) are \observed" to be zero with \observational"

errors "mn . Complete \observational" vector ~T om concatenates vectors of real observations T o
n

and zero vectors corresponding to pseudo-observations of model discrepancies, while matrix ~H

provides transformation from a space of ~T to a space of vector ~T om, and thus consists of the

blocks Hn, blocks [�An I] (I is space�space identity matrix), and zero blocks.

By construction the error ~" will satisfy

h~"i = 0; h~"~"T i = ~R (A2)

where the covariance ~R has a block-diagonal structure with blocks Rn and Qn.

Equations (A1) and (A2) determine a Gauss{Markov scheme of generalized least squares

estimation for ~T (see e.g. Mardia et al. (1979), Rao (1973)). The corresponding LSE is

~̂T =
�
~HT ~R�1 ~H

�
�1 ~HT ~R�1 ~T om; (A3)

which minimizes the quadratic expression

~S[ ~T ] =
�
~H ~T � ~T om

�T ~R�1
�
~H ~T � ~T om

�
:

The theoretical estimate of the error covariance for ~̂T is

~P =
�
~HT ~R�1 ~H

�
�1

(A4)

Formulae (A3) and (A4) involve inversion of a block-tridiagonal matrix of large dimension.

Solving linear systems with such matrices (�nding ~̂T ) can be achieved by a block version of the
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\sweep" (Thomas) algorithm, which consists of two sequential runs across matrix rows of blocks

in opposite directions. The Rauch{Tung{Striebel (RTS) algorithm for OS (Rauch et al. 1965) is

basically a modi�cation of the \sweep" method designed to produce both the �eld estimate ~̂T

and diagonal blocks of its error covariance matrix ~P .

Appendix B: Covariance of reduced space solutions

For those reduced space solutions which do not make use of the model for time transitions

(the projection and optimal interpolation (OI)), it is easy to obtain explicit formulae for their

covariance. These solutions have the form

�̂ = PHTR�1T o

(cf. (12) and (13)), where P is the theoretical estimate for the covariance of the error in �̂.

Inserting (5) into this equation, we obtain

�̂ = PHTR�1H� + PHTR�1��o

where � is a vector of \true" projections of the �eld on EOF patterns, and thus its covariance is

a diagonal matrix of eigenvalues �. Under assumptions formulated in section 2.2 and with the

use of (13) and (7), the covariance of the estimate �̂ is

h�̂�̂T i = P(Pp)�1�(Pp)�1P + P(Pp)�1P

where, as before, Pp = (HTR�1H)�1:

Speci�c formulae for the projection and OI estimates (using (12) for the latter) are

h�p�p T i = �+ Pp;

h�OI�OI T i = �(� + Pp)�1�:

Interpretation of these results is straightforward: the covariance of the projection solution

exceeds (in the sense of the footnote in section 2.2(e)) the \true" covariance �, while � exceeds

the covariance of the OI. The same ordering is true for the variances of the EOF amplitudes, i.e.

diagonal elements of covariance matrices (cf. Figure 15).
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In the case of a one-dimensional reduced space the covariance matrix of projection error Pp

becomes a scalar pp, and we obtain

h(�p1)
2i = �1 + pp;

h
�
�OI
1

�2
i =

�21
�1 + pp

;

which gives a theoretical basis for tuning � in (19) by the requirement

�1 =
q
h(�p1)

2ih(�OI
1 )

2
i:

Since the amplitude of the �rst EOF is a quite robust feature of the analysis, tuning can be

inexpensively accomplished by performing the analyses with a one-dimensional reduced space

and \old" (unchanged) eigenvalues �0

m.
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Figure 7. From top to bottom the October 1950 results of the OS analysis (right column)
are shown for the observed SST �eld with full data and imposed northern, equatorial or
southern 30o�20o degree arti�cial area of missing data (left column).
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Figure 8. Rms di�erences for 1946{1991 between OS runs with and without withheld
areas of Figure 7 (left column), and theoretical OS error estimates for runs with withheld
areas (right column). Hereafter on all error maps we show only the error in scales
corresponding to the 30 principal patterns which span the reduced space; full error would
include the error of truncation (cf. (14) and (15))
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Figure 9. Results of the experimental run with recent data, but coverage mask taken
from 60 years earlier (left panels) compared to the standard run (right panels). Shown
are: observed data, OS solution and OS theoretical error estimate for January of 1960
(data mask of January 1900)
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Figure 10. Same as Figure 9, but for July of 1978 (data mask of July 1918)



49Observations OS analysis Error estimate

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

-0.8

-0.8-0.6

-0.6

-0.4

-0.2

-0.2

0

0
0.2

0.2

0.4

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

0.2

0.2

0.2
0.3

0.3

0.40.5

0.6

J
a
n
1
8
5
6

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

-1

-1

-0.8

-0.8

-0.6

-0.6

-0.6

-0.4-0.200.2

0.6

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e -0.8

-0.6

-0.6

-0.6

-0.4

-0.4

-0.4

-0.2

-0.2

-0.2

00.2

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

0.1

0.2

0.2

0.3

0.3

0.3

0.3

M
a
r
1
8
8
5

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

-0.6

-0.6

-0.4

-0.4

-0.4

-0.2

-0.2
-0.2

0

0

0

0

0.2

0.2

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

0.2

0.2

0.3

0.3

0.3

0.3

0.4

0.4

0.6

O
ct
1
9
1
8

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

-1.5-1

-0.5

-0.5

-0.5

0

0

0
0

0

1

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

-1

-0.5

0

0

0

0

0.5
1

90˚W 60˚W 30˚W 0˚

Longitude

3
0
˚S

0
˚

3
0
˚N

6
0
˚N

L
a

ti
tu

d
e

0.1

0.1

0.15

0.15

0.2

0.2

0.2

0.25

0.25

F
eb
1
9
5
0

Figure 11. Results of the OS analysis applied to 136 years of the Atlantic SST record.
Shown are an observed �eld, the OS analysis, and the OS error estimate for January 1856,
March 1885, October 1918, and February 1950.
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Figure 12. The North Atlantic area averaged SST anomaly (calculated to the north of
35N) for the MOHSST5 anomalies (bullets) and the OS estimate (solid line). 99.7% (3�)
con�dence limits are shown by dashed lines.
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Analysis Error estimate Analysis by
Smith et al. (1996)
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Figure 13. Various analyses results and error estimates for February 1950
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Figure 14. Comparison between Smith et al. (1996) and present OS analysis for the
years 1950{1991: (a) the rms di�erence averaged over time; (b) Spatial rms and correlation
as functions of time.
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Figure 16. Theoretical error estimates for the reduced space OI, KF and OS analyses.
Top panel { basin-averaged error estimates (annual means), middle panel { percentage
of the area where the annual mean error exceeds 0.3oK, lower panel { averaged error for
the beginning of the period.
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