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Abstract

The increasing frequency of operation and the larger number of transistors on the chip,

along with slower decrease in supply voltage have led to more power dissipation and high

chip power density which cause problems in chip thermal management and heat removal

process. Therefore, low power circuit techniques have gained more attention in VLSI

design. In this thesis, a high performance (2.9GHz) 32-bit adder is designed and is used

as a benchmark for applying a low power technique without performance degradation. A

dual supply technique for compound domino logic is proposed and is implemented in the

adder. With this technique we have achieved an average power saving of 22% and 3.5%

performance improvement over the conventional design. In addition to that, a novel carry

select adder is introduced for power and area saving.
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Chapter 1

Introduction

1.1 Motivation

The arithmetic logic unit (ALU) is the heart of every microprocessor and determines its

throughput. The core of arithmetic logic unit is adder. Therefore a high performance adder

is essential to maximize microprocessor’s speed. However, the high data activity associated

with this unit results in high power and thermal density leading to increased cooling costs.

Thus, there is a critical need for breakthrough ideas in VLSI design methodology to reduce

the adder power consumption while maintaining the high performance target.

Recently different design techniques have been proposed in order to decrease the power

dissipation in different types of circuit design and the most efficient one is the power supply

voltage reduction because of the quadratic relationship between power consumption and

voltage supply. But the supply voltage decrease causes an increase in the delay time and

reduces the circuit speed. Therefore, we need to investigate new techniques for reducing

the power dissipation without any performance penalty.

The aim of this research is to explore different circuit techniques and propose some new

1



Introduction 2

methods that can be used in the adder structure to reduce its power consumption without

performance degradation.

1.2 Thesis Organization

The thesis is organized as follows. Chapter 2 provides background information on existing

adder architectures and introduces a hybrid architecture for designing a high performance

32-bit adder. Chapter 3 provides the back ground information on different logic styles

used in today’s digital circuits. Different styles are compared in terms of speed, power

dissipation, robustness and silicon area and the selected logic styles for implementing dif-

ferent parts of the hybrid 32-bit adder are addressed. Chapter 4 introduces the Logical

effort as a back of the envelope calculation method for transistor sizing. This method is

then applied to the designed 32-bit adder to obtain the maximum speed. In Chapter 5,

some high performance and low power circuit techniques are investigated and a dual supply

technique for compound domino logic is proposed for power reduction without performance

penalty in digital circuits. In chapter 6, the proposed dual supply technique is applied to

the design of high performance 32-bit adder and its power and delay are compared with

the conventional designs’. Chapter 7 concludes the thesis with a summary and possible

future work.



Chapter 2

Adder Architectures

2.1 Introduction

The design of faster, smaller and more efficient adder architecture has been the focus of

many research efforts and has resulted in a large number of adder architectures. Each

architecture provides different insight and thus suggests different implementations. The

aim of this chapter is to provide the essential background information to some of the well

known adder architectures.

2.2 Full Adder Operation

Operation of a full adder is defined by the Boolean equations for the Sum and Carry signals:

S = A⊕B ⊕ Cin (2.1)

Cout = AB + BCin + ACin (2.2)

3
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There is another way to calculate Sum and Carry based on two variables, Propagate

(p) and Generate (g) which are defined for each pair of inputs as follows:

Pi = Ai + Bi (2.3)

Gi = AiBi (2.4)

Then, Sum and Carry outputs for each input pair are computed with these parameters in

the following way:

Cout = Gi + PiCin (2.5)

Si = Pi ⊕ Cin (2.6)

According to the above equations, whenever ’G’ for a pair of bits is one, the output

carry will be set to one and we do not need to know about the input carry and whenever ’P’

is one and ’G’ is zero, the input carry will be directed to the output without any change.

These properties of ’P’ and ’G’ signals are useful to make high performance adders as will

be seen in the following sections.

2.3 Ripple Carry Adder

A ripple carry adder for N-bit number is implemented by concatenating N full adders as

shown in Figure 2.1 [1]. At the ith bit position, operands Ai and Bi and the carry output

signal from the preceding stage are used to generate the ith bit of the sum (Si) and the

carry output (Ci) to the next adder block. This is called a ripple carry adder, since the
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carry signal ripples from the least significant bit position to the most significant one. The

delay through the circuit depends on the number of logic stages that must be traversed

and is a function of the applied input signals [1]. It is important to know that, for some

input signals no rippling effect occurs while for the others, the carry has to ripple all the

way from the least significant bit (lsb) to the most significant bit (msb) which is the worst

case delay over all possible input patterns. Therefore, the N-bit ripple carry adder worst

case delay is:

tadder = (N − 1)tcarry + tsum (2.7)

Where, tcarry is the propagation delay from the input carry to the output carry signal and

tsum is the propagation delay for ’S’ (sum) at the output of each full adder block. This

delay shows the longest delay in the circuit or the critical path delay. As we can see in

the above equation, the longest delay increases linearly with the number of input bits;

therefore this kind of adder architecture can not be used in high performance processors

which are designed for more than 64-bit data path.
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Figure 2.1: 4-bit ripple carry adder
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2.4 Carry Skip Adder

Since the path from Cin to Cout represents the longest path in the ripple carry adder, an

obvious attempt is to accelerate carry propagation through the adder. This is accomplished

by using carry propagate signals within a group of bits. If all the Pi signals within the

group are one, the conditions exist for the carry to bypass the entire group. The structure

of a carry bypass adder is shown in Figure 2.2. We divide the N bit inputs to N
M

groups

of M bits and for each group we do a carry skip addition. The worst case delay for this

adder can be derived by the following formula [1]:

tp = tpg + Mtcarry + (
N

M
− 1)tbypass + Mtcarry + tsum (2.8)

Where tpg is the time required to create ’P’ and ’G’ signals, tcarry is the propagation delay

of the carry signal through one block, tbypass is the delay through the bypass multiplexer

of a single stage and tsum is the time to generate the sum of the final stage. As we can see

in the above formula, the worst case delay is still proportional to the number of input bits

but it is less than ripple carry adder delay. This architecture increases circuit complexity

as well.
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Figure 2.2: Carry skip adder structure
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2.5 Carry Select Adder

The basic idea in carry select adder (CSLA) architectures is to save the time, waiting

for the carry inputs to arrive by doing two sets of operations [1]. The CSLA divides the

input words into a number of blocks and generates two sums for each block in parallel, one

assuming a carry input of zero and the other assuming a carry input of one; therefore it is

not required for every full adder to wait for the incoming carry before doing the addition.

As it is shown as an example of a 16-bit carry select adder in Figure 2.3, the carry output

from the previous blocks controls a multiplexer that selects the appropriate sum. If the

number of input bits is N and we divide all the inputs to N
M

groups with M bits in each,

then the worst case propagation delay is computed as follows:

tp = tpg + Mtcarry + (
N

M
)tbypass + tsum (2.9)

where tpg is the delay to create propagate and generate signals, tbypass is the multiplexer

delay and tsum is the time it takes to compute the sum for each block respectively.

2.6 Carry-lookahead Adder

A significant improvement in the implementation of a parallel adder was introduced by

a carry-lookahead (CLA) adder developed by Weinberger and Smith in 1958. The CLA

adder is theoretically one of the fastest schemes used for the addition of two numbers [2],

because the delay to add two N-bit numbers no longer depends on N , but it depends on

the logarithm of N which is smaller. Here, the main idea is to calculate all the required

carry outputs in parallel based on propagate (P) and generate (G) parameters. In general,

we can calculate ’P’ and ’G’ parameters for each pair of input bits and compute the output
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Figure 2.3: 16-bit carry select adder

carries based on the following equation:

Ci+1 = Gi + PiCi (2.10)

Then we can recursively expand carry formula as follows:

Ci+1 = Gi + Pi(Gi−1 + Pi−1Ci−1) (2.11)

Ci+1 = Gi + PiGi−1 + PiPi−1(Gi−2 + Pi−1Ci−2) (2.12)

As we can see in the above equations, the expanded formula does not depend on in-

termediate carries and this feature allows us to compute carry for each bit, independently

and in parallel. The diagram of a carry lookahead adder is shown in Figure 2.4.
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Figure 2.4: Carry-lookahead adder diagram

The main drawback of this type of architecture is that, going to deeper carries requires

gates with large fan-in in implementation and results in a slow operation. That is the

reason why carry-lookahead adder is the fastest adder just in theory.

2.7 Logarithmic Adder

The class of adders based on solving recurrence equations were first introduced by Bilgory

and Gajski and Brent and Kung and were based on the previous work by Kogg and Stone

[2, 3]. In order to formulate the operation of these adders, we define an operator like ”.”

which takes two sets of inputs and produces a set of two outputs. Its definition is brought

in the following equation:

(g, p).(g′, p′) = (g + pg′, pp′) (2.13)

The ”.” function is sometimes called ”prefix operator”. It has two essential properties

which allows greater parallelism and hence faster circuits. The first one is the associative
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property which is shown in the following equation:

[(g, p).(g′, p′)].(g”, p”) = (g, p).[(g′, p′).(g”, p”)] (2.14)

The second one is idempotency which allows the sub-terms to have overlap:

(g, p)h...j.(g, p)i...k = (g, p)h...k (2.15)

By taking advantage of these properties, a carry output can be found at a depth propor-

tional to log2(N) [4]. As an example, in Figure 2.5, two schemes are shown for computing

C7 (carry output from the seventh input bits). In the first block (a), seven stages should

be passed to reach to the output based on the recursive operation, while in the second one

(b), only three stages are required to compute C7 [1]. By combining associative property

and recursive formulas, this binary tree (b) is able to give us the least delay.

Because of the associative and idempotency properties of ”.” operator, the intermediate

outputs can be grouped in any order and carry outputs can be computed in a different

number of levels. Therefore, we can create different topologies of prefix adders which are

found in the literature and are attractive to VLSI designers because of their minimum

depth and delay [5, 6, 7]. The main features of these adders are as follows:

1. A good layout

2. The fan-out can be controlled and limited to no more than two

3. Trade-offs between fan-in, fan-out and hierarchical layout topologies can be achieved.

Among different adder architectures based on prefix operations, we will address three of

them which are more popular: Brent-Kung, Kogg-Stone and Han-Carlson adders. They are

basically implemented with the same idea, the only difference is in the way the intermediate

outputs are grouped (fan-in,fan-out) and the way output carries are computed.
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Figure 2.5: (a) Linear and (b) Logarithmic adder

2.7.1 Brent-Kung Adder

The idea of this algorithm [3, 8] is to combine ’P’s and ’G’s into groups of two, by only using

the associative property. The main point is that, Brent-Kung algorithm keeps a fan-out of

two, but does not give the minimal logic depth. At the first level, intermediate nodes are

combined again based on cell sizes to form the secondary level intermediate nodes and the

upper level nodes are not reused for the next levels. The structure of a 8-bit Brent-Kung

adder is shown in Figure 2.6 for different cell sizes of 2, 3 and 4. As we can see in the figure,

the depth or the number of levels depends on the cell sizes and the number of input bits.

The total delay then depends on the depth and each building block. If K is the number of
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inputs, then the cost or the number of cells in this adder is 2K-2-log2K and the number

of levels is 2log2K-2 [8].

2.7.2 Kogge-Stone Adder

Kogge-stone adder is similar to Brent-Kung adder in principle [9]. The only difference

is that it uses the idempotent property as well. In this architecture, the adjacent bits

are grouped based on the cell sizes and they are reused by adjacent nodes. Therefore

fan-out equals to the cell size and it has the least number of levels comparing to other

structures. If the number of inputs is K, then the total cost or the number of used cells

is Klog2K − (K − 1) and number of levels is log2K. The structure of a 8-bit Kogge-Stone

adder is shown in Figure 2.7 for cell sizes of 2 and 4.

2.7.3 Han-Carlson Adder

Han-Carlson adder is another architecture of prefix adders which is similar to Kogge-

Stone, but it has area-time trade-off [10, 8]. In other words, it increases the logic depth

for a reduction in fan-out. In this architecture, at the first level, bits are grouped based

on the cell sizes and at the second level, the nodes have N number of inputs from previous

level results based on the cell sizes (N). If K is the number of inputs, then the cost of this

adder is O(K
2
log2K) and number of level is O (log2K+1). The configuration of a 16-bit

Han-Carlson adder with cell sizes of 2 is shown in Figure 2.8.
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Figure 2.6: 8-bit Brent-Kung adder
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Figure 2.8: 16-bit Han-Carlson adder

2.8 Hybrid Adders

Hybrid adders are obtained by combining elements of different adder architectures like

ripple carry adder, carry-lookahead adder, prefix adders, carry skip adders or carry select

adders [11, 12]. Different adder topologies can be created by combining different struc-

tures and in general, we can achieve high performance, cost effectiveness and low power

consumption by using hybrid adders. Figure 2.9 shows an example of hybrid adder in

which, ripple carry adder and carry-lookahead structure are combined.

2.9 High Performance 32-bit Adder Design

In this thesis, we have implemented a 32-bit hybrid adder by combination of carry select

adder, carry ripple adder and parallel prefix adder structures. In this design, 32 bits are

divided into eight groups, consisting of 4-bits. Each of 4-bits are added in a ripple carry
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Figure 2.9: An example of hybrid adder

adder block, in which two additions are performed, one is done assuming that carry input

is zero and the other is done assuming that carry input is one. In another block, we have a

carry merge tree for generating carry outputs: C3, C7,C11, C15, C19, C23, C27 and C31. This

tree is a radix-2 Han-carlson architecture, in which some specific, not all the carry outputs

are generated. By radix-2 we mean that the number of stages is equal to log2 N . At the

output of ripple carry adders, there are eight multiplexers which select between the two sets

of additions performed in the ripple carry adders based on carry merge tree outputs. This

architecture is used to build high performance adders in today’s microprocessors [13, 14].

Its structure is shown in Figure 2.10.
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Figure 2.10: High performance 32-bit adder design



Chapter 3

Digital Circuit Styles

3.1 Introduction

CMOS Technology scaling allowed the reduction of MOSFET (Metal Oxide Semiconductor

Field Effect Transistor) dimensions from 10µm in the 1970’s to a present day of 0.10µm.

High speed, low power and high density has made CMOS technology the dominant one in

today’s integrated circuits and the further scaling down of MOSFET devices shows that

it is a promising technology for future IC generations as well. There are different circuit

styles implemented with MOSFET devices for constructing logic gates used in today’s

microprocessor units like adders. However, there is a tradeoff between speed, power , area

and robustness between all of them. So, for each design, depending on its’ application,

the best balance for these three items has to be found. In this section, an overview of

the CMOS logic styles and their characteristics is given and different styles are compared

in terms of speed, power dissipation, robustness and silicon area. Finally, the selected

logic styles for implementing different parts of the 32-bit adder are addressed. Since the

objective is to investigate the trade-offs that are possible at the circuit level in order to

18
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reduce power dissipation while maintaining the overall system throughput, we must first

study the parameters that affect the power dissipation and the speed of a circuit.

3.2 Power and Delay in CMOS Circuits

Ideally, CMOS circuits dissipate no static (DC) power, since in the steady state there is no

direct path from VDD to ground. However, this situation never happens in practice because

MOS transistor is not a perfect switch. There is always leakage currents and substrate

injection currents which leads to static power dissipation in CMOS circuits [15, 16]. One of

the dynamic components of power dissipation arises from the transient switching behavior

of the CMOS devices. At some point during the switching transient, both the NMOS

and PMOS devices are on and a short circuit current exists between VDD and ground.

Another component of dynamic power dissipation is charging and discharging of parasitic

capacitances which consume most of the power used in CMOS circuits. This leads to the

conclusion that CMOS power consumption depends on the switching activity of the signals

involved. If we show the switching activity by a parameter α, then we can compute the

whole power dissipation through the following equation:

P = αCLV 2
DDf + (Isc + ILeakage)VDD (3.1)

Where, f is the frequency of logic operation, CL is the total capacitance charged and

discharged every cycle and VDD is the power supply voltage. Isc and Ileakage are the short

circuit current and leakage current respectively. As we see in the above formula, power

supply voltage has a quadratic relationship with the power; therefore voltage reduction

offers the most dramatic means of minimizing energy consumption. This issue will be

widely discussed in the following chapters.
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Even though the exact analysis of circuit delay is quite complex, a simple first order

derivation can be used [17, 18] in order to show its dependency on the circuit parameters:

Td ∝ CLVDD

K(VDD − VTH)α
(3.2)

Where K depends on the transistors’ aspect ratio W
L

and the other device parameters,

VTH is the transistor threshold voltage and α is the velocity saturation index which varies

between 1 and 2. Since a quadratic improvement in power dissipation may be obtained

by lowering the supply voltage, many people have investigated the effects of lowering the

supply voltage in VLSI gates. However, as we see in the above formula, reducing the supply

voltage would increase the delay and this effect would be more dramatic when the voltage

is close to the threshold voltage.

3.3 Clocked and Nonclocked Logic Styles

In general we can divide the logic circuit styles to clocked and nonclocked CMOS circuit

styles [19, 2]. As it is apparent from their names, in clocked style we need a clock signal

to synchronize the whole system while in the nonclocked structure, there is no need for

such a signal. In the following section, we will introduce the most popular circuits in both

families.

3.3.1 Nonclocked Logic Styles

Nonclocked logic circuits are basically the ones that are static and their outputs are always

valid independent on any extra signal like clock. The most popular nonclocked circuit

styles are static combinational CMOS, pseudo-NMOS logic and pass transistor logic which

will be introduced here [20, 21, 19].
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Static Combinational CMOS:

Complementary static CMOS is basically one pull up path to VDD which is built by PMOS

transistors and one pull down path to ground through NMOS transistors which is the

complement of the pull up path. At all times, either the pull up or pull down switches

are on, so the output is always driven by power supply or ground. That is the reason

why they have a large amount of noise immunity and they are forgiving to defects and

process variations. The structure of a NAND gate implemented in static CMOS is shown

in Figure 3.1. In this structure, PMOS/NMOS device ratio defines the switching point of

the logic. Since the PMOS device mobility is lower than NMOS device, in order to have

equal driving capability for both pathes, PMOS sizes should be bigger than NMOS sizes.

Therefore static gates are large in area and add a large load to the preceding gates due

to their large capacitance at the inputs. In addition to that, while the inputs to a static

gate transits from high to low or vise versa, both pull up and pull down pathes are on for

a short interval and we have short circuit current which consumes almost 15% of the total

chip power implemented with these gates.

Pseudo-NMOS Logic:

Pseudo-NMOS logic style has a similar NMOS pull-down network as combinational CMOS

style. The configuration of a NAND gate implemented in this style is shown if Figure 3.2.

The only difference is that the PMOS pull-up network is replaced by a PMOS transistor

whose gate is connected to ground and causes static power dissipation when the output is

low. This logic is ratioed; meaning that the output transition and the delay depends on

the ratio of NMOS and PMOS transistors and this feature makes it vulnerable to process

variation. Its advantage is the fact that the transistor count is less and it can be used in
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Figure 3.1: Static NAND gate

wide fan-in gates.

Figure 3.2: Pseudo-NMOS NAND gate
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Pass Transistor and Transmission Gate Logic:

This logic style uses MOS transistor as a simple switch. Basically the boolean function is

implemented with NMOS transistors only or transmission gates. In CPL (complementary

pass-transistor logic) gates, the function is just implemented with NMOS transistors, like

the XOR gate shown in Figure 3.3.

(A XOR B)

(A XOR B)_bar

Figure 3.3: CPL XOR gate

CPL has the advantage of efficient implementation of complex functions. In general,

pass transistor logic network has fewer transistors than combinational CMOS logic; there-

fore they have less parasitic capacitances and consume less power and are sometimes even

faster than complementary static gates. Pass transistor gates are specially attractive in

making XOR gates in adder structures, since they utilize almost half of the transistor

numbers used in combinational gates. This logic style is easy to synthesize starting from

the boolean expressions using binary decision diagram (BDD). However, they have some

disadvantages; they are more sensitive to voltage scaling compared to combinational static

logic and their delay increase dramatically when the supply voltage is reduced. In addition
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to that, since only NMOS transistors are used in CPL gates, the voltage swing at the end

of a pass transistor network has a swing from 0 to VDD−VTH ; therefore PMOS transistors

at the following static gates are not completely off resulting in static power dissipation.

This problem is usually solved by a PMOS level restorer transistor to pull up the node to

VDD. The level restorer adds hysteresis to the gate and degrade the performance. Also,

the delay of pass transistor networks increases quadratically with the number of stages and

as a result, some intermediate buffers should be used to make strong VDD and ground. All

these problems arise from the fact that NMOS transistors can not pass VDD faithfully to

the other side. The solution is using a complementary PMOS transistor in parallel with

NMOS to generate a strong VDD at the output. This structure is a transmission gate which

behaves almost as a fixed resistance during switching time and has more noise immunity

because of its stronger driving capability. The structure of a XOR gate implemented with

transmission gates is shown in Figure 3.4.

A XOR B

Figure 3.4: XOR implementation with CMOS transmission gate
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3.3.2 Clocked Logic Styles

Clocked logic families are those in which the circuit does the logical function during one

phase of the clock period. In the previous section, some of the popular static (nonclocked

logic) styles were explained. As it was mentioned there, in static CMOS, circuit operation

must be realized using both NMOS and PMOS transistors which reduces the performance

by adding more parasitic capacitances at the output and more capacitive load at the

input. In addition to that, because PMOS devices’ mobility is almost half of NMOS, they

should be generally two times of NMOS devices to have a balanced transition and that

makes those effects even worse. On the other hand, in the clocked logic styles, the logic

evaluation happens in one direction; therefore only a single device polarity is used in the

evaluation path and as a result, the parasitic capacitances are dramatically smaller. The

most popular clocked logic styles are Domino CMOS, Multiple output Domino (MODL),

Compound domino logic, Noise tolerant precharge logic (NTP), clock-delayed domino.

Each will be explained briefly [19].

Domino CMOS:

The single-ended domino structure is common in high speed logic design due to its sim-

plicity and fast operation. The structure of a NAND logic is shown in Figure 3.5. As it

is common between all clocked gates, there are two phases of operation: precharge and

evaluation. At precharge time (CLK=0), the output of dynamic gates are pulled high to

VDD and during evaluation time (CLK=1) the output may be discharged according to the

inputs or it may stay at high voltage. Therefore, the evaluation phase is always in one

direction at which dynamic outputs go from high to low. This feature will help us to design

high performance gates as will be seen later. Since the inputs to a domino circuit from a

prior stage and cycle may corrupt the next cycle’s precharge before new valid inputs can
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be delivered, one inversion should be done after each dynamic gate output and before the

next dynamic stage. Dynamic gates can contain a substantial amount of logical width in

the NOR direction and depth in the NAND direction. This allows significant logic gain

along a path of dominos. There are some main advantages and disadvantages for this logic

style and in general for clocked gates.

Figure 3.5: NAND implementation with domino gate

Advantages:

1. The current of logic evaluation device is devoted to discharge the output capacitors

rather than sinking the short circuit current through PMOS transistor.

2. The switch point of the circuit is no longer VDD

2
like static gates, but it is approxi-

mately the threshold voltage of NMOS transistors in the evaluation path that causes

a faster switching time.
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3. Since PMOS transistors are eliminated, the output capacitance is smaller leading to

higher speed during switching time.

4. Dynamic logic typically takes smaller area than the equivalent static circuits.

Disadvantages:

1. Logic clocking can substantially increase power consumption and may consume 20%

of the total chip power.

2. Dynamic nodes are kept floating at the evaluation time and this makes them vulner-

able to noise, leakage and failure mechanisms. This problem is almost alleviated by

using PMOS keeper transistors. The keepers along with the output inverters form a

half latch and cause hysteresis adding delay to the circuit.

3. Switching activity is higher than the equivalent static logic, because from cycle to

cycle, even if the output state of a given domino circuit does not go to high, it will

be precharged in the next precharge cycle and will be discharged during evaluation

cycle again. In contrast, static circuits will not switch if the inputs do not change.

Multiple Output Domino Logic:

Multiple output domino logic (MODL) uses the intermediate nodes at the evaluate tree

of the domino gates as the outputs, if the logic is implemented in such a way that the

intermediate results are subset of the greater function accomplished by the entire circuit.

The structure of a MODL circuit is shown in Figure 3.6. By using this logic style, we can

save area and reduce delay by doing more than one logic operation in the dynamic evaluate

tree. However, there is a performance trade-off with precharging the intermediate nodes

and increasing the device sizes at the bottom of the tree to sink more current.
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Clk

A&C&B

B&C

Figure 3.6: An example of MODL gate
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Compound Domino Logic:

The structure of a compound domino logic (CDL) is shown in Figure 3.7. The idea of

compound domino is using complex static gates like NAND and NOR gates at the output

of domino gates rather than inserting a simple inverter. In this way, we can have inversion

at the output to guarantee the correct functionality and at the same time, do some logical

operation along with inversion to avoid having extra gates. In addition to that, dynamic

logic can be formed by parallel evaluate trees resulting in lower fan-in gates. Attention

must be paid to the delay of static output gates so as not to compromise the gain realized by

domino action. This logic style can enhance performance in some critical path structures of

arithmetic units like adders by combining dynamic and static gates and taking advantage

of their benefits together.

Clk

To the following dynamic gates

Figure 3.7: An example of CDL gate



Digital Circuit Styles 30

Noise Tolerant Precharge Logic:

In this logic style, the complement of evaluation path implemented with PMOS transistors

is added to the domino gates. This PMOS structure never allows a precharged node to float,

resembling the static equivalent of that function and is on, providing a path to VDD when

the evaluate path is off. The PMOS transistor network is not large enough to precharge the

dynamic output but can provide a reasonable noise immunity to the logic. The structure

of a NTP gate is shown in Figure 3.8. By using this architecture, we can avoid having

keepers and thus hysteresis at the output which is compromised by the performance, but

on the other hand, the trade off is that PMOS structure adds parasitic capacitors at the

output, increases area and adds more fan-out load to the previous stages.

To the following dynamic stages

Figure 3.8: An example of NTP logic
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Clocked-delayed domino:

As it was explained before, we must ensure that dynamic inputs never make a one to zero

transition while in evaluation. One solution to this problem was to use inverter at the

output of dynamic gates. Another solution could be using a delayed version of clock for

the following gates. By using this technique, clock-delayed (CD) domino was developed to

provide gates with either inverting or non-inverting outputs and with the high speed and

layout compactness of dynamic logic. The delay of clock signal should be tuned such that

the clock always arrives after the interval in which evaluation of the gates have been done

and some design margins must be added to the delay element to guarantee the correct

functionality across process, circuit and application variations. The main problem of this

technique is the sensitivity to skew, process variation and noise.

3.4 Circuit Styles used in the Designed High Perfor-

mance Adder

The upper level architecture of the 32-bit Han-Carlson adder designed in this thesis was

introduced in the previous chapter. As it was explained there, it consists of a carry-merge

tree for producing the carry outputs, a ripple-carry adder structure for 4-bit addition and

some multiplexers at the output. In this section, we will describe the circuit styles that

are used for each part and the reason for choosing them.

3.4.1 Carry-Merge Tree

Carry-merge tree is composed of five stages of cells which do the ”.” operation defined

in chapter 2. Outputs of the 4-bit ripple carry adders are ready well before the carry
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outputs of this tree are computed; therefor, the adder performance totally depends on the

speed of the carry-merge tree structure. As a result, in this part of the adder architecture,

the main focus is to achieve high performance. Among all the logic styles introduced

in the last sections, clocked ones offer higher speed and between them, single domino is

the simplest one which consumes less power and is more tolerant to noise and process

sensitivity (compared to CD logic). It is also found in the literature that domino still

remains the circuit style of choice for high-performance ALU design, since it provides a

favorable trade-off between performance and noise margin where significant performance

gain is achieved at a reduced but adequate noise immunity in comparison with static logic

[22]. However, we need some inversions at the outputs of dynamic gates to guarantee its

correct functionality, so it is more reasonable to use compound domino logic (CDL) in this

design and use conventional CMOS logic gates at the output of domino gates instead of

explicit inverters to combine inversion and functionality together at these static gates and

get fewer number of stages. Therefore, odd stages are implemented in dynamic style and

even stages in static, resulting in the formation of a chain of alternate dynamic and static

gates. This arrangement enhances circuit performance without compromising robustness

and is used mainly in today’s high performance ALUs [23, 13].

The keeper transistor along with the required inverter are positioned at the dynamic

gate outputs and off the critical path. Since the dynamic evaluation path consists of one or

two branches and transistors are in the stack, the amount of leakage is not so large to have

strong keepers that limit the performance. Therefore, keeper contention is not a big issue

in this design. By looking at the high level architecture of the carry merge tree, we realize

that the critical path in this design consists of the first stage (PG block), the second stage

cell, the third stage cell which generates C3 , the fourth stage which produces C7 and the

fifth stage that generates C15, because of its highest fan-out, and finally each of the sixth
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stages that produce C19, C23, C27 and C31. This path is the longest one in carry merge

tree and defines the worst case delay in the adder.

If we implement the first stage, PG block, with domino CMOS, then the outputs

of the second stage will be low during the precharge time and are domino compatible

signals. Therefore, we can remove the clock footer transistors in the following stages.

This task reduces the number of transistors in the stack which results in performance

enhancement and also reduces clock network power [19]. In Figure 3.9, the implementations

of ”.” operation in static logic (used in the second stage) and dynamic logic (used in the

third stage) without footer transistors are sketched. The second and third stage cells are

repeated through the whole carry merge tree alternatively, but with different transistor

sizes. Transistor sizing is explained in the next chapter.

3.4.2 Ripple Carry Adder

In ripple carry adder block, we need to add four bit slices two times, once assuming the

input carry is zero and the other time assuming the input carry is one. The number of

stages in this block is fewer than the carry-merge tree and therefore, it is not on the critical

path and can be implemented with static logic to save power. As it was seen before, one of

the most important building blocks in adder operation is XOR gate and it can be efficiently

implemented with ’transmission gate logic’. The sum outputs are generated out of XOR

gates and the carry outputs are computed in conventional static gates according to the

following formula:

Sum = A⊕B ⊕ Cin (3.3)

Cout = AB + (A + B)Cin (3.4)

The circuit architecture of 1-bit block of the ripple carry adder is sketched in Figure 3.10.
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(A) P block in static gate (B) G block in static gate

(C) P block in dynamic gate (D) G block in dynamic gate

Figure 3.9: Carry merge tree basic cells
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Figure 3.10: One block of the 4-bit ripple carry adder circuit

One conventional approach in carry-select adder architectures is to have two similar

blocks for ripple carry adders, in one of them the input carry is zero and the outputs are:

S0 − 0, S1 − 0, S2 − 0, S3 − 0, and for the other one the input carry is one and outputs
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are :S0 − 1, S1 − 1, S2 − 1, S3 − 1. By taking a quick look at sum and carry equations, we

will find that the sum output for two bits are complement if the carry inputs are different

as we can see in table 3.1.

Cin=0 Cin=1

A B Sum Cout Sum Cout

0 0 0 0 1 0

0 1 1 0 0 1

1 0 1 0 0 1

1 1 0 1 1 1

Table 3.1: Ripple carry outputs

Therefore, we can conclude that the output bits computed by ripple carry adder with

Cin=1 are complement of outputs computed with Cin=0 if the carry inputs propagated

to those bits are different, otherwise they are the same. For the first bit, S0, we can say

that S0 − 1 = S0 − 0, because the input carry to the first bits are different, so in this case

we do not need to compute S0 − 1 as it is simply obtained by inverting S0 − 0. We can

expand this relation for other bits as well and omit the other parallel ripple carry adder to

save area and power. This kind of carry select adders have been proposed in the literature

before [24, 25], but we have implemented it in another fashion based on the following

observations: according to the above table, carry outputs for Cin=0 and Cin=1 for each

bit pair (A,B) are the same when A XOR B=0 and are complement when A XOR B=1.

We already have (A0,1,2 XOR B0,1,2) results in the 4-bit adder with Cin = 0 and these

signals can decide if S1,2,3−1 are equal to or complement of S1,2,3−0 and this decision can

simply be implemented by XOR functions. The structure of this reduced area ripple carry

adder is shown in the Figure 3.11. By using this structure, instead of using 62 transistors
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to implement another ripple carry adder in parallel with the first one, we can implement

three XOR gates and one inverter with 26 transistors.
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Figure 3.11: Carry select adder implemented with one ripple carry adder and XOR gates

3.4.3 Output Multiplexer and Latches

As it was sketched in the adder architecture, the outputs of the ripple carry adders go to the

multiplexer inputs and carry outputs of the carry merge tree go to the multiplexer select

inputs. Since the multiplexers are in the critical path, they are implemented with domino

gates to be as fast as possible [13, 14]. The output latch has a simple static structure to

save power and is also compatible with dual supply design (proposed in the next chapters),

since putting the clock signal on a lower voltage than the main power supply does not

cause static power dissipation. The structure of multiplexer and output latches are shown

in the Figures 3.12 and 3.13 respectively.
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Figure 3.12: Output multiplexer circuit

According to the ALU system design, the outputs of the adder should be finally ready

after passing positive and negative phases of the clock. In this design, the negative edge

boundary starts from the multiplexers. Therefore, the multiplexer and its following latches

are evaluating at the negative edge of the clock. The clk signal is asserted one inverter

delay sooner than clk in order to speed up the critical path operation. The output latches

should be transparent in a short period of time to save the adder results and after that

it should become opaque, otherwise the latch data will be distorted when the multiplexer
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Figure 3.13: Output latch circuit

output is precharged.



Chapter 4

Adder Transistor Sizing

4.1 Introduction

When a circuit is implemented, transistor sizes determine if the circuit works and wether it

meets the requirements or not. In this chapter, we introduce a simple model for calculating

transistor sizes based on the theory of logical effort [26, 27, 28, 29]. In this simple model, we

assume a linear relationship between the gate driving strength and the delay, by assigning

a simple RC circuit to each gate. The gate driving strength determines the values of

transistor widths. Finally, we apply this method to the designed adder to find appropriate

transistor sizes for driving the load and meeting the power and performance requirements.

4.2 Calibrating RC Models

A simple way to compute the gate delay is to model the gate with an equivalent resistor

(R) and capacitor (C). Considering a simple inverter, during pull up or pull down, the

transistors can be replaced by a resistor (R). The inverter output capacitor is composed of

40
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two capacitive effects; one is the internal gate capacitors like diffusion caps (Cdiff ) and the

other is the load capacitor (Cload) which is imposed by the following gates. According to

the first momentum approximation, the delay can be estimated with the following formula:

Delay = R ∗ (Cdiff + Cload) (4.1)

With this simple equation, we can obtain a rough estimation for the gate delay. The

precise calculation of gate delay is very complicated and depends on too many factors; like

the input rise and fall times, the transistor behavior in each region of operation (linear,

saturation,..), short channel effects and threshold voltage variation due to DIBL (drain

induced barrier lowering) effect and the load capacitor of the following gates. Even the

load capacitor which is the input capacitance of the next stage varies during different

operational region of transistors. For example, when the transistors are in saturation,

their input capacitance is 2
3
Cgs and when they are in linear region their input capacitance

is just Cgs. Therefore, computing the precise gate delay and optimizing the transistor

widths based on them needs a very complete CAD tool. However, we need to do some

hand calculation at the first step of the design to estimate the transistor widths. The

method of logical effort is based on the first momentum approximation (Equation 4.1) and

offers a good idea for designing a chain of gates, like the one we have in the designed adder.

MOSFET devices are not linear resistors and MOSFET capacitances are not linear

either, since they both vary over the different operational regions of transistors. In order

to have a good approximations for R and C to calculate the gate delay, we use calibration

simulation methods [26]. In calibration method, we do a number of simulations for a

specific technology, like 0.18µm and 0.13µm , to derive the equivalent R and C for our

models. For example, to derive the equivalent capacitor for each gate, we measure the

delay for the two circuits shown in Figure 4.1 and we try to adjust Cload to match their
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delay in order to find an approximation for Cgate of the inverter B. The same approach can

be taken for computing the diffusion caps.

Delay2Delay1 C
load

B

Figure 4.1: Capacitor model calibration

In order to derive the gate resistance, we do simulation on the two circuits shown in Figure

4.2 to match their delay and find the resistor value.

Delay1

Delay2

C
load

RC
load

Figure 4.2: Resistor model calibration

After finding the capacitor and resistor for a simple inverter, we do normalize them

to the width of transistors used in the inverter, so that we can use them as units for

calculating the resistance and capacitance of other gates as well. In order to have equal

rise and fall times in static gates, PMOS size is (µn

µp
) larger than NMOS size, where, µn and

µp represents carrier mobility in NMOS and PMOS devices respectively. If the normalized

gate capacitance and resistance for an inverter are Cg and Rsq, then we can estimate the

following parameters for an inverter with NMOS size of Wn and (µn

µp
)=2.
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1. Input capacitance is : Cin=3WnCg

2. Parasitic or diffusion capacitances are assumed to be a fraction of input capacitance,

because they are proportional to the transistor width, this prpoprtionality is denoted

by parameter α: Cdiff = αCin

3. The gate driving resistance is: Rdrive = Rsq
W
L

4. Assuming the inverter is driving Cload, delay is calculated through this equation:

Delay = 3RsqLCg(
Cload

Cin

+ α) (4.2)

The first parameter in the above equation (3RsqLCg) is constant for each technology and

as of now we simply show it by τinv. The above calibration could be done for other gates

like NAND and NOR as well. By knowing the normalized value of τ for each gate and the

approximate value of α for each technology, we can estimate the gate delay to some extent

without dealing with complex formulas.

4.3 Logical Effort Methodology

The method of Logical effort introduced by Ivan Sutherland [27] is an easy way to estimate

delay in CMOS circuits. It provides insight into how the transistor sizes, gate topology

and number of stages affect the circuit delay. It is easy to use at the early stages of the

design and good as a starting point for more intricate optimizations like the ones done by

CAD tools. This model separates the delay caused by the capacitive load that the logic

drives and by the topology of the logic gates and quantifies them.

The delay of a logic gate is composed of two components: a fixed parameter which

is caused by the parasitic capacitances (p) and another part which is proportional to the
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load that the gate drives and we call it effort delay (f). The effort delay itself depends

on the load and the gate topology which are expressed with two terms: logical effort and

electrical effort. Logical effort (g) is related to the properties of a gate and electrical effort

(h) characterizes the load. Therefore, the total gate delay is :

delay = gh + p (4.3)

Electrical effort (h) combines the effects of external load Cload and the transistor sizes in

the gates, in the following manner:

h =
Cload

Cin

(4.4)

It basically determine the load driving capability of the gate. Logical effort (g) describes the

ability of the gate to drive currents in comparison with a simple inverter and is described

by the following formula:

g =
τgate

τinv

=
(Rdrive.Cin)gate

(Rdrive.Cin)inv

(4.5)

Logical effort shows how much more input capacitance a gate needs in order to deliver the

same output current as an inverter. In order to calculate the logical effort for different

gates, we usually assign the appropriate sizes to the transistors in the gate to have the

same resistance as an inverter and then we take the ratio of the input capacitance that

each input sees to the input capacitance of a simple inverter. Therefore, the logical effort

of an inverter is one and as the gates become more complicated, their logical effort become

larger. The logical efforts of some simple gates are shown in Figure 4.3. As we can see in

the figure, the sizes of NMOS transistors in the stack are twice of the inverter to have the

same resistance as an inverter.

The normalized delay for an inverter and a 2-input NAND gate and a 2-input NOR gate

are plotted in terms of Electrical effort in Figure 4.4. When the fan out is zero, gate delay
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Figure 4.3: Inverter, NAND and NOR Logical efforts

is equal to its parasitic delay (P) and the slope of the curve is the gate logical effort. As it

is observed in the plot, more complex gates have larger logical effort and larger parasitics.

Now we want to see how we can take advantages of the introduced parameters for

optimizing the transistor sizes in a chain. Considering a simple chain of gates shown in

Figure 4.5, the total delay is computed through the Equation 4.6.

Delay

τinv

=
τnand

τinv

(
Cj+1

Cj

+ αnand) +
τinv

τinv

(
Cj+2

Cj+1

+ αinv) +
τnor

τinv

(
Cj+3

Cj+2

+ αnor) (4.6)

This equation can be written in another fashion to include the logical effort and electrical

effort parameters of each gate.

Delay = (gnandhnand + pnand) + (ginvhinv + pinv) + (gnorhnor + pnor) (4.7)

To minimize the delay, we take the partial derivative with respect to ’h’ parameter for each
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gate which results in the fact that the delay is minimized when each stage bears the same

effort:

gnandhnand = ginvhinv = gnorhnor = f (4.8)

In general, when we have a chain of gates, we define a term called path effort as follows:

F = (g1h1)(g2h2)(g3h3)...(gnhn) (4.9)

The minimum delay is achieved when all the gate efforts are equal:

F = fn (4.10)

and the total delay is:

Delay =
∑

(gihi + pi) = nf
1
n + P (4.11)

It should be mentioned here that, if a gate is connected to more than one gate in a

chain, then a factor called ”branching effort” appears at the above equation which is the

product of all number of branches along the chain. Since the parasitic delays are constant,

they do not affect the procedure of finding the least delay. Now, we can find the electrical

effort of each gate by the following equation:

hi =
f

gi

(4.12)

By using the above equation, we can find transistor sizes in the chain, starting from the

end of the path and going backward. Since the capacitive load at the output of a chain is

defined, by knowing the stage effort and logical effort for the last gate, we can determine

the required input capacitance of that stage. Input capacitance then can be distributed



Transistor sizing 48

appropriately among the transistors connected to the input. After that, we can find the

input capacitance of the next stage because we know its output load, and so on. It is good

to point that the Cout

Cin
ratio or electrical effort is simply the transistor width ratio if the

transistors have the same length which is usually the case in digital design.

Usually there are two cases encountered during gate sizing in a path. In one of them,

the input and output capacitances are known and the number of stages are fixed; therefore

the whole path effort is determined and based on that we can find the stage effort and size

the transistors for each gate by using the above equations. In the other case, the input and

output capacitances are known, but the number of stages are flexible. In this case, even

if the logic has already been implemented by a specific number of gates, we can add extra

inverters to optimize the path. If we assume that the logic is implemented by n1 stages

and now we have added some inverters to make them N stages, then the delay would be:

D = NF
1
N + (

∑
Pi) + (N − n1)pinv (4.13)

Taking the derivative of the above equation with respect to N, gives the following equation:

Pinv + ρ(1− ln ρ) = 0 (4.14)

Where ρ is the stage effort or F ( 1
N

). As we can see in the above equation, the optimum

value of ρ depends on the parasitic delay of inverters. Finding the value of ρ leads to

finding the optimum number of stages which is estimated by ( ln F
ln ρ

). Assuming Pinv = 0,

ρ is computed to be e=2.718. There is not a fixed solution for this parameter, but if

we sketch the delay in terms of it, we will see that it has a smooth change from 2 to 5;

therefore, we can choose ρ in this range and find the optimal stage effort and also number

of stages based on trial and error. If we need to add extra inverter stages, we should be

careful to add even number of them and this limitation may deviate us from the optimum
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number, but it is not that much critical, since the deviation is so small that can not be

sensed in the total delay. Sometimes the number of stages in a design is more than the

optimum number gained by logical effort formulas, so we have to stick to the stage effort

number (ρ ) and size our transistors based on that.

The concept of logical effort can help us to decide on the type of logic families as well.

For instance, a pseudo-NMOS circuit does not have a large PMOS transistor network in

the pull-up path; therefore it has less input capacitance than its conventional static gate

counterpart and hence lower logical effort. Domino circuits are even better than pseudo-

NMOS gates because they avoid static power consumption and the contention of PMOS

current during evaluation. In dynamic gates, the pull down path transistors are sized

for current equal to that of a unit inverter and the input capacitance is not wasted on

slow PMOS transistors like static gates; therefore their logical effort is lower than static

circuits and they are almost two times faster. As a rule of thumb, it has been indicated by

professional designers that stage effort of 2 usually gives the optimal answer in domino logic

design [19, 27]. There are two special cases in logical effort approach which are explained

here:

Logical effort for asymmetric logic gates:

Unlike the NAND and NOR gates, not all logic gates have the same logical effort for each

input. For instance, the static gates used in our designed adder are asymmetric gates and

each input has a different logical effort. In these kind of gates, the path effort calculation

is done for each input separately. As an example, one asymmetric gate is shown in Figure

4.6. In this gate, it is assumed that µn

µp
is two and the gate is sized to have the same rise

and fall time. Due to the asymmetry, input C has a different capacitance from input A

and B and therefore, its logical effort is 5
3

while logical effort for input A and B is 6
3
.
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Figure 4.6: Logical effort for asymmetric logic

Logical effort for skewed logic gates:

In a specific circuit, when the transition in one direction is more critical than transition

in the other direction, it is possible to design the gates in favor of that critical transition

[30]. These kind of gates are called skewed gates and they use more fraction of their input

capacitance for the critical transition. Skewed gates are sized such that they produce

current equal to the inverter in critical transitions and less current in noncritical transition.

Therefore, they have lower logical effort for the critical transition. It should be pointed

that since the gates are skewed in one direction, rise and fall times are not equal and path

effort should be calculated for each edge separately.

In domino design, since the evaluation is done through one direction, dynamic outputs

going down and static outputs going up, the static gates between the domino stages can

be highly skewed in favor of this transition, meaning that PMOS pull-up transistors can

be stronger than NMOS pull-down transistors. But, there is a limit for how far they can
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be skewed, in other words, how much we can make the noncritical transistors smaller.

Skew improves the logical effort and hence the delay in one direction (evaluation time) but

it retards the noncritical transition drastically. In domino design, noncritical transition

happens during the precharge time which is not important for us in terms of data and

information, but the problem is that we should be able to precharge all the nodes inside

the circuit in half of the clock period and consume as small power as we can. Therefore

the amount of skew should be such that the precharge time does not limit the performance

and does not consume too much power.

Series stacks revisited:

One of the prime assumptions in our models for logical effort was that connecting two

devices in series doubles Rdrive and so the two circuits in the Figure 4.7 have identical

current to discharge the output capacitor and hence the same delay ignoring the stack

effect and threshold variation of the transistors in the stack.

2Wn

2Wn

Wn

Driving Current

Figure 4.7: Series stack comparison

It can be proved that two transistors in series are equivalent to one transistor of twice

the channel length [31]. Since the transistor length is twice, it is less velocity saturated or it
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is less affected by short channel effects than the transistor with half of its length; therefore

it has more than half of the current of the original transistor. It can be analyzed through

the velocity saturation model as well [32]. In short channel regime, NMOS transistor

current is computed through the following formula:

ID = WvsatCox
(VGS − VTH)2

(VGS − VTH) + EcL
(4.15)

As we can see in this formula, increasing L by a factor of two does not give half of the

original current. For instance in 0.35 µm technology , EcL=2.4 for VGS=3.3v, so doubling

the transistor length drops the current to 68% rather than 50% and we need to make

transistors in the stack almost 1.5 times wider to have the same driving capability as one

NMOS transistor [26]. As a result, the logical effort of the gates becomes smaller than

before. Simulation results in 0.18µm technology have shown that NMOS transistor in a

two series stack should be 1.6 times wider than one single NMOS transistor and in a three

series stack, almost 2.3 times of one single transistor to have the same driving current in

the pull down path. Since PMOS transistors are less affected by velocity saturation effects,

they should still be about 1.9-2 times wider than a single PMOS transistor to have the

same current, as it is proved through the simulation.

4.4 Application of Logical Effort to CDL Chain of

Gates

Here, the implementation of logical effort technique on a chain of compound domino (CDL)

gates is demonstrated. This chain of gate, shown in Figure 4.8 is considered as a simple

vehicle for applying different techniques discussed in the next chapter and is similar to the
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longest path in the carry merge tree structure. The load size at the output is 20um and

the stage effort is 2. The static gates are skewed by a factor of 3 and we can not go beyond

that, because we want to keep the precharge time almost the same as the evaluation time.

The logical effort of dynamic gates with two transistors in the stack is 1.6/3 instead of

2 and 2.3/3 for dynamic gates with three transistors in series according to the previous

discussion. At the first step, the PMOS precharge transistors are sized such that they

provide half of the current provided by NMOS pull down path, but after the sizing is done

we should upsize them so that the precharge time does not exceed the evaluation time.

W=10u

W=11.6u

W=20u

W=2.5uW=2.5u

W=15u

W=15u

W=9.3u

W=9.3u

W=6u

W=2.3uW=2.3u

W=13.8u

W=13.8u

W=8.6u

W=8.6u

W=5.5u

W=2.15u
W=2.15u

W=13u

W=13u

W=11.6u

W=11.6u

Figure 4.8: CDL chain of gate sizing

4.5 32-bit Adder Transistor Sizing

As explained before, carry merge tree and ripple carry adder outputs are connected to

the multiplexer inputs and multiplexer outputs are driving latches. In order to size the

transistors in the adder blocks, we should know about the load sizes driven at the outputs.
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In the ALU system, the outputs of the latches are seeing a load of approximately 20um

size; therefore the transistors in the latch are sized according to these loads and based on

the logical effort. In this design, we have assumed stage ratio of two for sizing the gates

in a chain and after the sizing is done, we fine tune transistor sizes in the critical path to

improve the delay. This task can be completely done by an advanced CAD tool which is

found in the industry and is mostly based on Lagrange multipler . We size the transistors

starting from the latch and going backward to the first stage of the carry merge tree and

ripple carry adder with a stage effort of two.

By doing some calibration simulation in 0.13µm technology, we have observed that in

order to have the same rise and fall delay in a simple inverter, the PMOS size should be

approximately two times of the NMOS transistor. This rule should be applied to transistor

sizing in the ripple carry adder, since delay should remain the same for both transitions.

Worst case delay in the ripple carry adder is measured at the time that the worst case

input vectors are exerted to that. These vectors are the ones that cause the carry to

ripple through all four bits and are either ’1111’, ’0001’ , Cin=0 or ’1111’, ’0000’, Cin=1.

On the other hand, in order to have the same rise and fall time in the wave shape, the

PMOS transistor should be approximately three times of NMOS, and this rule is applied

to the input and clock buffer sizing, since there, we need a symmetric edge shape for both

transitions.

In the carry merge tree structure, the evaluation is done in one direction as it was

mentioned before; therefore the static gates are skewed intentionally in favor of evaluation

phase. We have used PMOS/NMOS ratio of 4 and 5 in static gates across the carry merge

tree. The PMOS precharge transistors in the dynamic gates are sized to be almost 1/3 of

the equivalent NMOS transistor of the pull down path, but this rule can not be followed

through the whole design, because the precharge time limits us in another way. Since
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the NMOS footer transistors are eliminated from all dynamic gates except the first stage,

the precharge time gets very slow due to the contention that exists in dynamic gates. In

dynamic gates, the PMOS precharge transistor wants to pull up the dynamic node while

the static gate outputs have not been pulled down yet and thus keep the NMOS transistor

in the dynamic gates on during precharge, causing short circuit current which leads to

extra power consumption as well. As of now we call this effect, ”precharge contention” to

be referred easily in the next chapters. Due to the mentioned effect, the PMOS precharge

transistors should be sized large enough to be able to pull up the dynamic nodes at half

of the clock period and the static gates can not be skewed too much in favor of evaluation

time. The worst case input vector for the carry merge tree is ’FFFF’, ’0001’, because it

causes the carry to ripple through all stages of the tree. The designed adder was simulated

under the worst condition temperature which is 110 ◦[C] and worst condition input vectors

and the delay was measured to be 342 ps in 0.13 µm technology.



Chapter 5

High performance and Low power

Circuit Techniques

5.1 Introduction

In order to meet the demand for high performance applications, the cycle time in mi-

croprocessors has been dramatically decreased. The frequency of operation has increased

faster than that provided by technology scaling due to the high level of pipelining in the

architecture level and using new high performance circuit techniques at the circuit level.

The frequency increase and the larger number of transistors on the chip along with slower

decrease in supply voltage have led to more power dissipation and high chip power density

which cause problems in chip thermal management and heat removal process. Recently

different design techniques were proposed in order to decrease the power dissipation in

different types of circuit design and the most efficient is the power supply voltage reduc-

tion. But the supply voltage decrease causes an increase in the delay time and retards

the circuit speed. Therefore, we need to investigate the new techniques that decrease the

56
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power dissipation without any performance penalty.

In this chapter, we explain some techniques which have been investigated to be used in

the designed adder to reduce its power consumption. In order to introduce these techniques,

we use the simple chain of compound domino gates explained in the previous chapter as a

benchmark for its simplicity.

5.2 Dynamic gate power consumption

Domino circuits are a popular circuit style to meet the performance requirement of today’s

microprocessor circuits. However they are less power efficient compared to static logic due

to significant clock loading and high switching activity. The total power in dynamic logic

block is composed of the clock tree power and the power burned in the gates [33]. The

total power consumption of a dynamic logic blocks is represented by:

Ptotal = Pclk + Plogic (5.1)

Pclk = αclk.Cclk.VDD.Vclk−swing.fclk (5.2)

Plogic =
∑

i

αlogic(i).Clogic(i).VDD.Vlogic−swing.fclk (5.3)

Where, αclk and αlogic(i) are the the switching probability of clock and each domino gate

respectively. Cclk is the total transistor capacitance in the clock network and Clogic(i) is the

output node capacitance of each domino gate (i). Vclk−swing and Vlogic−swing are the voltage

swing level of clock and dynamic logic gates which are equal to the used power supply in

conventional design and fclk is the operating clock frequency. It should be pointed out

that the static gates (the inverter or complex static gates after dynamic stages) power

consumption is not included in the above equations. Since the power consumption is

proportional to the clock and logic voltage swing, voltage swing reduction can be an efficient
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way to reduce the total power. In the compound domino logic structure, the evaluation

is done in one direction in which precharged dynamic outputs go low and pre-discharged

static outputs go high. Therefore, not only reducing the voltage swing at the output of

dynamic gates do not degrade the circuit speed in this direction but it can improve it,

because dynamic outputs reach to the static gate trip point sooner. On the other hand, we

can not reduce the static gates voltage swing because their delay is directly proportional

to that in evaluation direction. As it can be observed in Figure 5.1, static gate delay

degradation due to voltage swing reduction is more than dynamic gate speed enhancement

due to lower swing. Therefore, in order to achieve power saving without any performance

trade-off, we have to use a low swing design for dynamic gates and keep the static gates in

their previous voltage swing.
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Figure 5.1: Static and dynamic gate delay versus voltage swing
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5.3 Low Swing Domino Techniques

There are some low swing domino circuits [34, 35, 36, 37] proposed in the literature, in

which, one NMOS transistor is used as a level shifter to shift the voltage by an amount of

VTH . They are all shown in Figure 5.2.

In circuit ’a’, NMOS transistor is used as the precharge transistor to obtain a swing of

VDD − VTH at the dynamic node. Since the precharge is done through NMOS transistors,

we need two inverters at the output to drive the NMOS keeper. These two inversions at

the output increase the contention time between the keeper and the pull down path during

evaluation and affects the performance and power. In circuit ’b’ and ’c’ , one NMOS

transistor is positioned after the precharge transistor to shift the voltage. Circuit ’d’ is

using NMOS transistor to make a virtual power supply at the source node. According to

our simulation results on adder critical path (CDL chain of gates) shown in Figure 5.3 in

0.13µm technology, in all these techniques, we are able to achieve almost 4% performance

improvement but we do not have power saving.

It is important to mention that this speed enhancement is smaller than what is expected

in low swing gates. If we model the dynamic branch transistors with ideal current sources

during output discharge, according to the Equation 5.4, we expect 23% speed improvement

when we move from 1.3V to 1V, because the static gate’s switching threshold voltage, for

both is the same.

Delay ∝ C

I
V (5.4)

However, while the delay gets better, the transition fall time at the output node is de-

graded by almost 10%, because the amount of current in the above equation changes with

transistors’ VDS voltage and more VDS causes stronger current sources and thus a sharper
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Figure 5.3: CDL chain of gate

transition at the output. Slower fall time in the static gates inputs adds to their delays

and thus cancel out the delay reduction obtained through lower swing on dynamic gates

and remain almost 4% performance enhancement. In addition to that, slower fall time at

the static gates’ inputs causes more short circuit power consumption and cancel the power

saving achieved on low swing domino gates. There are some effects like keeper contention

in circuit ’a’ and capacitor charging and discharging in NMOS level shifter’s drain (node c)

in circuits ’b’ and ’c’ which cause more power consumption in these configurations. How-

ever, there is a major problem in these circuit styles that we name it as ”dynamic offset

voltage”. Our investigation has shown that after some cycles of inactivity in the dynamic

gates, the output voltage will increase by an order of 50mv. This effect is shown in the

CDL chain output waveforms in Figure 5.4.

This offset becomes larger for longer time of inactivity. Therefore, the circuit does not

show the same delay and power all the time and its behavior changes with the input and

previous state condition which makes it an unreliable design style. Here, we explain the
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Voltage increase

Figure 5.4: Output of CDL chain implemented with low swing dynamic gates

reasons behind this observation.

Leakage current:

In digital gates, when we pass the power supply through NMOS transistor, we assume that

the source node is charged up to VDD − VTH and after that the transistor is turned off,

while in real life it is not true and we have leakage current through that transistor which

can steadily increase the voltage over source node [31]. Therefore, if the NMOS transistor

stays at precharge mode for a long time, the source voltage will go up beyond the amount

of VDD − VTH that we expected and we no longer get the benefit of the low swing effects.

In other words, the low swing voltage is dependent on data activity of the circuit.

Charge injection:

When NMOS transistor is placed on the supply path in a circuit, it acts as a diode, because

it does not convey current from the source to drain as long as the source node is lower than
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the drain node voltage. This diode causes some bootstrap effects in these circuits. When

the transistor turns off, its channel charge discharges from both ends and the charge which

finds the path through the source, stays there and accumulates at the source node. This

phenomena happens in normal designs with PMOS precharge transistors as well, but the

extra charge will go back to the supply in the next cycle that the PMOS transistor turns

on, while when we have NMOS transistors, the charge does not go away because of its

diode behavior. This effect is similar to charge injection effect in sample and hold circuits.

Therefore, some voltage offset at the dynamic gate output happens when we have some

cycles of inactivity.

Since the charge injection problem is similar to what which happens in sample and

hold circuits, we have investigated some solutions which are suggested in those circuits

[38] to avoid this offset problem to some extent. Circuit D in the Figure 5.5 uses a PMOS

dummy switch at the drain node of precharge transistor (it can be placed at the source

node or both, as well) which switches in the opposite way of precharge transistor and

therefore is able to sink the channel charge inside and cancel the charge injection effect but

its sizing should be carefully done to behave in this way. The problem of having dummy

transistors is that they consume power and it is not desirable at all. In transmission gate

precharge form, circuit E in Figure 5.5, we add one NMOS transistor in parallel to the

PMOS precharge to be switched in the opposite way and cancel the charge injection effect.

It can help PMOS transistor in the precharge mode and therefore it does not waste power.

In both techniques (D, E), the sizing is very important because it should have the same

amount of channel charge as the PMOS transistor, so they are very sensitive to process

variation. The CDL chain output waveforms which uses technique E are shown in Figure

5.6. As we can see through the figure, the wave forms have become flat, but still we see

the voltage increase after some cycles of inactivity due to the leakage current and having
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Figure 5.5: Solutions for charge injection problem

unmatched transistors.

Another solution is to add a large capacitor at the NMOS source (node c in Figure

5.2), so that the charge injected at that node can not change the voltage significantly for

the worst case data activity condition. If we use a fairly large capacitor like 8 pF at that

node, we see some fluctuations by an order of 50mv during 10-20 cycles of inactivity as is

shown by waveform ’O1’ in Figure 5.7.

All the circuit styles which were introduced as low swing domino gates are not robust

and do not show a constant behavior for random data activities. Therefore, they should be

used in designs that has a certain amount of data activity. In some digital blocks, we want

to reduce the delay in some parts of the critical path without changing the configuration

too much, these circuit styles can be helpful in those, if we can make sure they show a
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Figure 5.6: Outputs of CDL chain implemented with circuit E
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Figure 5.7: Outputs of CDL chain implemented with circuit C and large capacitors
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continuous behavior for the circuit function.

5.3.1 Dual Supply Scheme for CDL gates

As it was seen before, low swing domino circuits do not show a robust behavior for all

circuit conditions. The other option is using a lower supply for dynamic gates and clock

network and keeping the static gates on the conventional supply as illustrated in Figure 5.8.

In this configuration, both swing and supply voltage is reduced and therefore we expect a

quadratic power reduction in clock network and dynamic gates. However, there are some

issues in this style which will be explained here.

Dynamic Static Static

VDD (Low) VDD VDD (Low) VDD

Clock

Dynamic

VDD (Low)

Dynamic Static Static

VDD (Low) VDD VDD (Low) VDD

Clock

Dynamic

VDD (Low)

Figure 5.8: Dual supply scheme for CDL chain of gates

5.3.2 Static Leakage Current

Keeping the static gates at a higher supply than dynamic gates’, causes static leakage

current in the circuit, because the PMOS transistors in the static gates pull up path are

not completely off and as a result, the subthreshold leakage current increases. This leakage

current puts a constraint on how far we can reduce the dynamic gate supply voltage. In

the Figure 5.9, the average leakage current of the designed CDL chain is shown for two
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technologies: 0.18µm and 0.13µm and for different supply voltages on domino gates. The

measurement is done at 110 ◦[C] temperature for the worst case analysis, since the leakage

current increases with temperature. As we can see in the figure for 0.18µm, the curve has a

breakpoint around 1.5V and we have a sharp increase in leakage current below this voltage

which is not tolerable in today’s microprocessors’ chips. The same effect can be seen for

0.13µm technology around 1.1V. By comparing these two technologies (0.18 and 0.13µm)

we find that the voltage range in which the leakage current is tolerable is wider for 0.18µm

technology. The reason behind this observation is that PMOS threshold voltage is higher

in 0.18µm technology and we have more room for voltage reduction until PMOS transistors

turn on. We can conclude that for shorter channel lengths, this range will become too small

that we can not get any benefit out of dual supply technique.

5.3.3 Increased Noise Vulnerability

Low voltage swing at the domino outputs make them more vulnerable to the noise, because

the amount of voltage drop on the domino nodes to reach the static gates’ trip point is

lower and the dynamic gates inputs are driven by the higher supply voltage. In order

to measure the quality of dynamic gates’ noise robustness, we use the concept of UNGM

(unity noise gain margin) [39] which is defined as the amount of dc-noise level on the

inputs of the precharged gate generating an equal level of noise at the output of the static

inverter immediately after the precharged gate. In order to measure UNGM in simulation,

we apply a slow ramp at the input of dynamic gates and measure the voltage intersection

of the ramp input with the static gate output. The ratio of this voltage to the supply

voltage is taken as UNGM factor. Simulation results for 0.18µm technology on CDL chain

show 7.5% reduction in UNGM when the dynamic gates are on 1.5V in comparison with

the conventional design in which all the gates are on 1.8V. In order to pull up the noise
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Figure 5.9: Normalized leakage current in two technologies

robustness of the dual supply design, we can increase the PMOS keeper transistor sizes.

Simulation results have shown that the keeper sizes in dual supply technique for 0.18µm

design should be boosted almost 1.6 times to reach the same robustness as that of the

single supply design as it is shown in Figure 5.10.

5.3.4 Precharge Time Increase

Since the NMOS transistors in the static gate pull down path are driven by lower supply,

they are not strong enough to pre-discharge the static gates and forward the precharge

wave along the chain, therefore; the precharge delay in dual supply style is more than the

single supply design. Large delay in precharge cycle can limit the performance and should
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Figure 5.10: UNGM measurement

be avoided by using extra reset devices. In this design, we can simply use some NMOS

pre-discharge transistors driven by clk at the output of static gates, shown in Figure 5.11.

These NMOS transistors should be carefully sized to enhance the precharge delay while

they do not burn too much power. The first stage NMOS transistors are the most effective

ones and should be strong enough to pre-discharge the first stage static gates and moves

the preacharge wave faster to forward to impede the contention caused by ”precharge

contention” effect as much as possible. In other words, by looking at the transitions in

precharge cycle, we find that the first stage NMOS transistors are more efficient in power

saving and reducing the precahrge time delay. Simulation results in 0.18µm technology has

shown that the pre-discharge NMOS transistor at the first stage can improve the precharge

time by 22% and reduce the total energy by 4% in comparison with the design without the

pre-discharge transistor. It should be mentioned that the amount of energy which is wasted

due to charge and discharge of these NMOS parasitic capacitances have been included in

the above numbers.
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Figure 5.11: Insertion of NMOS pre-discharge transistor

5.3.5 Dual Supply Simulation Results for 0.18µm Technology

Here, we want to compare the delay and power between the conventional or single supply

design and dual supply style. According to the leakage current measurement done in

0.18µm technology, we have chosen a supply voltage of 1.5V for dynamic gates and clock

network and 1.8V for the static gates. The transistor sizes are kept the same as conventional

design and NMOS pre-discharge transistors are added at the static gate outputs to have

the same precharge time as single supply design. The PMOS keeper sizes at the output of

dynamic gates have also been upsized by a factor of 1.6 to have the same noise robustness

as single supply design. Simulation results have shown 3.5% performance improvement

over the single supply design. It is important to mention that this speed enhancement

is smaller than what is expected in low swing gates due to the fact that was mentioned

before in low swing domino circuits. Slower fall time in the static gates inputs adds to their
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delays and that, along with lower driving voltage on the first stage clock footer transistor,

larger keeper sizes and NMOS pre-discharge parasitic capacitors approximately cancel out

the performance improvement we achieved through low swing dynamic gates.

Domino outputs precharge and static outputs pre-discharged conditions are considered

as the worst case situation in terms of leakage current, since at that time the PMOS tran-

sistors in the static gates are leaking and there is a path for this current to ground in

the NMOS pull down branch. The longer the clock cycle is, the more energy is wasted

in static gates, so the leakage energy is proportional to clock period. On the other hand,

during evaluation cycle, if the dynamic gate does not discharge the output, it will remain in

precharge mode and worst case leakage condition, so, the leakage power is closely propor-

tional to data activity or dynamic output switching probability. As a result of the above

mentioned facts, in order to have a fair energy comparison between the two designs, we

have measured the total energy over equal clock cycles for a data activity range of 0.05-0.6

and for different clock frequencies. The results are shown in Figure 5.12. ’D’ and ’S’ signs

beside each curve show if it is related to dual supply or single supply design, respectively

and ’a’ is the data activity factor.

As we can see in Figure 5.12, the energy benefit out of dual supply technique diminishes

as the frequency of operation decreases, on the other hand as the clock period decreases

and gets closer to the total path evaluation time which is the usual case in microprocessor

design, we see more energy saving in dual supply technique. As we expected from the

above discussion, energy saving in dual supply technique is more when we have high data

activity, but we see the benefit even at 0.05, which is considered as the lowest data activity

in digital blocks. On the average, simulation results has shown about 23% energy saving

in dual supply technique in comparison with single supply at 1GHz clock frequency. Since

energy has quadratic relationship with supply voltage, theoretically the amount of energy
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Figure 5.12: Energy comparison in dual supply technique

saving is 30% by changing the supply voltage from 1.8V to 1.5V; therefore the number

that we got through simulation is reasonable, because static gates are still on higher supply

and in addition we have more leakage current and short circuit current due to the slow

transitions at the static gates’inputs.

5.3.6 Dual Supply Simulation Results for 0.13µm Technology

Dual supply technique has been applied to the CDL chain of gates in 0.13µm technology as

well, in which the dynamic gates and clock network are on 1.1V voltage supply and static



74

gates are on 1.3V supply. The NMOS transistors have been used at the static gates output

to reduce the precharge time to reach the single supply precharge time and PMOS keepers

have been upsized by a factor of 1.5 to have the same noise robustness as single supply

design. The performance enhancement in this technology is around 3% and the energy

comparison for different data activities is sketched in the Figure 5.13. According to the

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Data activity

N
o

rm
a

li
z
e

d
e

n
e

rg
y

Conventional design

Dual supply design
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simulation results, we have almost 21% energy improvement in this style, in comparison

with the conventional design.



Chapter 6

Low Power 32-bit Adder

6.1 Dual Supply Technique implementation on the

High Performance Adder

In the previous chapter, some circuit ideas were introduced to increase performance and

reduce energy in digital circuits. In addition, their advantages and disadvantages were

investigated. Among all of them, dual supply technique shows better energy-delay product

enhancement and is the most robust and reliable technique. In this section, we apply dual

supply technique to the designed 32-bit adder, introduced in chapter 3, and compare its

energy and delay with the conventional design which is implemented with single voltage

supply.

Carry merge tree is composed of compound domino logic and therefore it can be designed

with two voltage supplies. At 0.13µm technology, dynamic gates and clock network are on

1.1V and static gates are on 1.3V. The keeper sizes have been upsized for all dynamic gates

to have the same noise robustness as single supply design. Since the dynamic gates in the
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adder block have different transistor sizes in their pull down path and have different static

gates sizes in front, we have done the measurement and boosted the keeper sizes to have

the same UNGM as of single supply design for each dynamic cell separately. In this way,

we make sure that all the dynamic cells have the same noise robustness as the conventional

design and we can do a fair comparison between them. In addition to that, NMOS pre-

discharge transistors have been added at the first and final stage static gates’ outputs to

reduce the precharge time which is degraded due to the lower voltage swing on dynamic

gates. According to the simulation results, we have about 3.5% performance improvement

over single supply design. In addition to that, simulation results show that the amount of

switching energy during evaluation cycles is reduced by 16.7% . This energy saving comes

from lower swing on both dynamic gates and clock network. During the cycles that we

do not have switching in dynamic gates, we have 26.4% energy saving, meaning that, the

amount of power reduction on clock switching is more than the leakage power increase.

These comparison is shown for normalized values of delay and energy in Figure 6.1. Now,

the amount of total power saving depends on the number of cycles that we have activity

in the circuits. For example for data activity of 0.1, we have 24% energy saving and for

data activity of 0.5, we have 19.4% energy saving.

6.2 Clock Network Power Reduction

Since the clock network switching is one of the big sources of energy wasting in dynamic

digital blocks, reducing the clock load can significantly help to save the energy. In the

designed adder, only the first stage dynamic gates have clock footer transistors. Since

there are two parallel pathes in the first stage, for generating ’p’ and ’g’ signals, we can

share the footer transistor between them and size it according to the larger transistor
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between the two branches as it is shown in Figure 6.2.

Clock footer transistor sharing does not degrade the performance, because any extra de-

lay is absorbed in the performance gain that we have achieved before. However, it can

save clock network switching energy by an amount of 15% which is proved through the

simulation results.

Delay and power measurement results for single supply design, dual supply design and dual

supply with shared clock footer transistors are summarized in table 6.1.

Delay Switching energy Leakage+clock energy

Single supply 342 ps 122.5mW 46.2mW

Dual supply 330 ps 102mW 34mW

Dual supply with

shared clock transistors 332 ps 100mW 29mW

Table 6.1: 32-bit adder simulation results
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Figure 6.2: Clock footer sharing at the first stage

6.3 Post-layout Simulation Results

The layout of the CDL chain of gates (shown in Figure 6.3) which simulates the critical

path in the adder structure has been done in 0.18um technology for both single supply

and dual supply techniques. The long wires in the carry merge tree has been imitated

in this chain as well. The chip has also been submitted. Since the gates with different

supply are placed in a row, routing two power supply is easier than the case in which

they are in different columns. In addition to that, routing overhead can be mitigated if

we use the shared Nwell process [40]. The amount of delay in layout in only 2% higher

than schematic, because the delay imposed by the long wires has been canceled by smaller

transistor parasitic capacitors gained by finger techniques.
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Figure 6.3: CDL chain of gate layout

6.4 DC-DC converters

In dual supply technique, there is an overhead due to the requirement for having two

different power supplies. We need to have a DC-DC converter which is usually built on

board. DC-DC converters subject is a vast area in electronic design and is beyond the

scope of this thesis. The main point here is the converter efficiency. For every DC-DC

converter, there is an efficiency number associated with it. One of the common types

of DC-DC converters are switched-capacitor ones [16] which can have 75%-98% efficiency

factor. In order to have a fair energy comparison between dual and single supply technique,

we should include converter efficiency factor. For instance if the efficiency is 90%, then the

total power saving is 12% rather than 22%. Therefore, in order to have significant power

saving, we need to have a DC-DC converter with high efficiency.
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Conclusions

In this thesis, different state of the art adder architectures were explained and a hybrid

architecture which is combined of carry select adder and radix-2 Han-Carlson carry merge

tree was introduced for designing a high performance 32-bit adder. After that, different

logic styles which are used in today’s digital circuits were addressed and among them,

transmission gate logic and compound domino logic (CDL) were selected to be used in

the designed adder in order to achieve high speed and to dissipate as little power as

we can. Logical effort methodology for transistor sizing was discussed and applied to

the designed adder to obtain a high speed of 2.9GHz. Then, some low power and high

performance circuit techniques were analyzed and their energy and delay were compared

with the conventional circuit methods. Finally, a dual supply technique for compound

domino logic was proposed and implemented in the designed adder. With this technique,

we achieved an average power saving of 22% and 3.5% performance improvement over the

conventional design. However, there is an area overhead due to dual supply routing on the

chip and there is a requirement for having a high efficiency DC-DC converter.
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7.1 Future Works

A. Adaptive Scaling of the Supply Voltage

In today’s digital system design, power factor goes side-by-side with performance when

designing a computer system. For some systems, careful circuit design may be sufficient

to meet the system’s power goals. Often, however, the power and performance goals are

aggressive enough that a range of circuit, architecture, and software techniques must be

used together. There are some power aware softwares and compatible architectures which

are able to manage the total system power according to the applications and performance

requirement for each function. Different techniques have been suggested in the literature

to be used at the architectural level to make it adaptable in terms of performance and

energy and one of the most efficient one is adaptive power supply scaling [41, 42, 43]. In

this approach, the power supply of some circuit blocks is dynamically changed according

to the work load and system speed requirement. The introduced dual supply adder can

be used easily in these compatible architectures. By changing the supply voltage on static

gates, we can change the performance and energy in both directions. In other words, while

the whole system is on the lower supply like 1.1V, changing the static gates’ supply toward

1.1V reduces the power and pushing it toward 1.3V enhances the circuit speed.

The power management can be applied inside the adder itself, according to the input data

vectors [43]. As it was mentioned before, the adder performance is defined for the worst

case input vector which is ’FFFF’ and ’0001’ and causes the carry input to be propagated

in the whole carry merge tree. In other words, the worst case delay condition happens when

the group P (P0...31) signal is one. Now, if we divide the number of inputs to N sections

and generate the group P signal for each N parts, we can predict if the carry outputs can

be defined sooner or we should wait for the whole carry merge tree to generate the carry
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outputs, and according to that, we can switch between different supplies on static gates

to meet the worst case delay time and save energy. This technique can be applied if we

have enough setup time at the input to generate group P signals and switch the proper

power supplies on static gates. The amount of power saving is based on the statistics of

the input data. Further exploration of this topic is beyond the scope of this project and is

encouraged to be done for future work.

B. Leakage Power Reduction

Another task which is mostly done by power aware softwares is to position the circuit blocks

in sleep mode during their inactivity periods to avoid leakage power dissipation. Using

sleep mode transistors, adaptive body biasing and applying specific sleep vectors are some

common techniques for leakage power reduction during idle times. The dual supply adder

dissipates more leakage energy than the conventional one during the precharge condition,

because the PMOS transistors in the static gates are not completely off. Therefore, one

method for leakage energy reduction during idle times could be applying body bias to

PMOS transistors in the static gates to increase their threshold voltage. An other method

is using sleep vectors like ’FFFF’ that causes all the dynamic gates to be discharged and

all the static gates to be charged. This condition is the low-leakage inactive state, in which

the voltage difference over the gates does not affect the leakage power.
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