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Much attention has been paid to photonic applications based on periodic media. Meanwhile, quasi-periodic and disordered media have

extended the research domain and provided additional novelties for manipulating and controlling light propagation. This review article

attempts to highlight the benefits of symmetry reduction in highly symmetric periodic photonic media, and applies the concept of chirality

to all-dielectric materials arranged in special orders. Two-dimensional periodic structures known as photonic crystals (PCs) are highly

symmetric in terms of structural patterns, due to the lattice types and shape of the elements occupying the PC unit-cell. We propose the

idea of intentionally introducing reduced-symmetry, to search for anomalous optical characteristics so that these types of PCs can be used in

the design of novel optical devices. Breaking either translational or rotational symmetries of PCs provides enhanced and additional optical

characteristics such as creation of a complete photonic bandgap, wavelength demultiplexing, super-collimation, tilted self-collimation,

and beam deflecting/routing properties. Utilizing these characteristics allows the design of several types of photonic devices such as

polarization-independent waveguides, wavelength demultiplexers, beam deflectors, and routers. Moreover, reducing the symmetry in the

PC unit-cell scale produces a novel feature in all-dielectric PCs that is known as chirality. On the basis of above considerations, it is

expected that low-symmetric PCs can be considered as a potential structure in photonic device applications, due to the rich inherent

optical properties, providing broadband operation, and being free of absorption losses.

[DOI: http://dx.doi.org/10.2971/jeos.2014.14045i]

Keywords: Photonic crystals, non-periodic photonic media, tilted self-collimation, super-collimation, beam deflection, beam routers, beam

splitters, wavelength demultiplexing, polarization-insensitive devices, chirality, all-dielectric medium

1 INTRODUCTION TO PHOTONIC
CRYSTALS WITH REDUCED-SYMMETRY

In order to exploit novel optical properties of light, it is essen-

tial to convert a medium with a homogeneous refractive index

into a periodically modulated one. One-dimensional configu-

rations with small refractive index contrast are the most popu-

lar structures in optical devices and have been used for a long

time. The pioneering study on multi-layered and periodic di-

electric structures was conducted by Rayleigh in 1887 [1]. That

study showed that it is possible to find a photonic band gap

(PBG) in one-dimensional periodic structures. Integrated ver-

sions of one-dimensional periodic structures have been inves-

tigated and used in photonic devices such as multi-layered

dielectric mirrors, Bragg gratings, distributed feedback lasers,

and vertical cavity surface emitting lasers [2]. The common

property of such devices is a small refractive index contrast

modulated along one dimension. Hundred years later, in 1987,

Yablonovitch and John suggested a new type of dielectric

structure called photonic crystals (PCs) that may be multi-

dimensional periodic and possess a high index contrast ra-

tio [3, 4]. Such nanoscale electromagnetic band gap materi-

als are called photonic, since strong photon interactions oc-

cur with these types of periodic structures. One of the basic

characteristics of PCs is that the refractive index variation may

appear in one, two, or even three-dimensions. The PC con-

cept has been extensively studied in the photonics field since

1987 because of its ability to control the flow of light. One of

the most attractive aspects of PCs is that the light-matter in-

teraction in PCs enables unique optical conditions that can-

not be observed in standard optical waveguides, e.g., slow-

light, graded-index PC design, optical cavities with high Q-

factor, super-prisms, self-collimators, sensitive bio-chemical

PC based sensors, specific light sources, and lasers [5]−[16].

Furthermore, light motion inside PCs can be analyzed by

scale-invariant Maxwells equations, so that structural PC unit-

cell parameters can be easily tuned either to millimeter or

micron-scale [17]−[20].

Meanwhile, research into aperiodic and disordered PC

structures has attracted the much attention [21]. The in-

teraction of photons with these types of structures allows

exciting optical phenomena to be obtained; light scattering

in disordered media may provide strong photon localiza-

tion [22]. Disordered structures have potential in some

applications such as random lasing, Anderson localization,

sub-wavelength imaging, and novel light-source designs [23].

In a recent work, a compact spectrometer with high reso-
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lution was designed by intentionally introducing disorder

into the photonic medium [24]. Utilizing random gain

medium for lasing action is another research topic that

exploits light scattering and amplification in disordered

materials [24]−[28].

Periodic structures may be disadvantageous in some cases be-

cause of their high-symmetry. For example, high-symmetric

structures are very sensitive to structural deformation.

Moreover, the operating bandwidth may be quite small

for the high-symmetric PC case. Besides, structural degra-

dation during the fabrication process can be considered

as another possible problem, since it causes deviation

from the ideal cases. Lastly, unusual optical characteris-

tics may be expected while reducing the symmetry of PC

structures.

In addition to periodic and disordered PC configurations,

quasi-crystals are a topic of much interest and have been

intensively studied. Translational symmetry is broken in

quasi-periodic structures, whereas rotational symmetry is

kept intact [29]. Although random and disordered PCs do

not have any spatial symmetry property, quasi-periodic

structures possess a reduced symmetry characteristic;

these types of periodic structures have high rotational

symmetry and, therefore, anomalous characteristics may

arise, especially in transmission spectra and photonic band

gaps [30]−[33]. Due to the high rotational symmetries

of quasi-crystals, their forbidden band gaps and light

transport properties are superior to regular PCs [34]−[40].

Furthermore, using these types of PC designs, unique

properties appear in transmission, reflection, refraction,

localization, radiation of photons, symmetry in Fourier

space, nonlinear optical, and diffraction characteristics. For

example, enhancement of the light radiation in polymer light-

emitting diodes has been achieved by using quasi-periodic

PC structures [41].

In this study, low-symmetric PCs, which are different types

of PCs to those mentioned above, will be presented and re-

viewed. What we refer to by low-symmetric or reduced-

symmetry PCs is that, in principle, either rotational or trans-

lational symmetry is broken in the PC unit-cell. The rotational

symmetry in PCs can be broken by locating more than one PC

rod at different positions in the PC unit-cell. Duplication of

such a unit-cell in certain directions creates a periodic struc-

ture, either in a square or triangular-lattice form. On the other

hand, discrete translational symmetry holds in PCs when they

are periodic, and in that case, the eigenmodes for PC struc-

ture can be identified by Bloch-Floquet states [42]. The trans-

lational symmetry property can be broken by introducing de-

fects/cavities into the structure and constructing disordered

or quasi-periodic PC lattices [43].

Limited attempts were made to investigate low symmet-

ric PCs solely for enhanced photonic band gap proper-

ties [44]−[51]. Either the lattice type or scatterer shape was

manipulated to produce an enlarged photonic band gap.

Forbidden band gap features can be utilized for waveguide

and cavity designs by using low symmetry PCs. Such an

approach has not been widely discussed in the literature. We

know that PCs do not only work under photonic band gap

and defect mode scenarios; defect free versions of the designs

also yield novel light propagation characteristics. Moreover,

the limited low symmetry studies rarely promote photonic

modes interacting with such structures.

Band diagram engineering has been performed, paying spe-

cial attention to enlarging the gap opening and maximizing

the gaps overlap. On the other hand, both band movements

(slope and form change of the dispersion curves) and degen-

eracy point splitting, at the symmetry points of the irreducible

Brillouin zone, occur depending on symmetry-reduction in

PC unit-cell. Iso-frequency contour engineering is an addi-

tional mechanism to inspect photonic periodic structures. For

the low symmetry unit-cells, iso-frequency contours may in-

dicate unique optical properties for photons. Symmetry re-

duced photonic media have great potential for several im-

portant concepts such as light propagation, reflection, refrac-

tion, slow-light, diffraction-free beam propagation, and wave-

length de-multiplexing. In the present review, we discuss re-

cent progress in the field by referencing papers, mainly by the

current authors, and speculate on feasible, future research di-

rections.

The symmetry reduction in our case is achieved by intro-

ducing either more than one piece of dielectric or a complex

shaped element, and choosing appropriate locations for them

inside the unit-cell. Then it is possible to implement a unit-

cell such that the mirror image of the unit-cell is not super-

posable. This is similar to a chiral molecule in chemistry that

has a non-superposable mirror image. A materials chirality

provides comprehensive information on its stereochemistry.

The spatial arrangement of the atoms of molecules and how

this affects the physical and chemical properties of the species

plays an important role in stereochemistry. Different struc-

tural arrangements of atoms may demonstrate different chem-

ical characteristics, even with the same molecular formula. As

a result, motivated by the concept of chirality in chemistry, we

intend to use PCs with chiral unit-cells. We expect to obtain

novel light propagation characteristics in such photonic struc-

tures.

The rest of the paper is organized as follows: In Section 2,

we provide symmetry definitions in PCs. Then, an analyti-

cal approach for the calculation of the band-structure of low-

symmetric PCs is presented in Section 3. We introduce a new

concept by making an analogy to chirality in Section 4. The

last two sections (Sections 5 and 6) include discussions of po-

tential applications, future research directions, and the conclu-

sions.

2 SYMMETRY DEFINITION IN PHOTONIC
CRYSTALS

Square lattice PCs have translational symmetry with re-

spect to lattice vectors, a1 and a2, so that the dielectric

permittivity of the periodic structure can be defined by,

ε(r) = ε(r + la1 + ma2), in which l and m are integers. As

shown in Figure 1(a), for the square lattice PC cylinders, the

corresponding lattice unit vectors are, a1 = ax̂ and a2 = aŷ,
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FIG. 1 (a) Symmetry operations for the square-lattice PCs. (b) The corresponding Bril-

louin zone.

where x̂ and ŷ are the base vectors in the spatial domain

and a is the lattice constant. In addition to translational

symmetry, two-dimensional PCs may have other types of

symmetries such as mirror and rotational symmetries. If the

PC design is invariant under the mirror reflection along the

x-axis by the operation, σx, then the corresponding dielectric

constant function does not change depending on sign of x,

i.e., ε(x, y) = ε(−x, y). Similarly, if the PC structure has a

mirror symmetry under an operation, σy, then the dielectric

permittivity function is invariant to the change of sign y,

ε(x, y) = ε(x,−y). The mirror symmetry operators, σx and

σy, are given as insets in Figure 1(a). The rotational symmetry

operation is another symmetry operation to be considered.

It is denoted by Cn, which means the PC structure can be

rotated by 2π
n radian in a counterclockwise direction about the

origin without altering its geometry [52]. Figure 1(a) shows

schematic representations of two examples of rotational

symmetry operations, namely C2 and C4.

The band structure of a crystal provides significant informa-

tion about its optical properties. When the PC lattice has ro-

tational or mirror symmetry, then the band structures also

have that symmetry [52]. In such a case, we do not need to

consider every k point in the Brillouin zone. The smallest re-

gion within the Brillouin zone is called the Irreducible Bril-

louin zone, where the symmetries in frequency bands cannot

be taken into account. Figure 1(b) shows a schematic diagram

of the first Brillouin zone of the square lattice PC, in which

the Irreducible Brillouin zone is represented by the shaded

region. On the other hand, when either the mirror or rota-

tional symmetry of the structure is broken at a unit-cell scale,

by reducing the symmetry of PC rods, the photonic band cal-

culations in the Irreducible Brillouin zone are not sufficient

anymore. Instead, every k- point at the edges of first Bril-

louin zone should be considered, and, thus, the band struc-

ture of low-symmetric PCs should be calculated along the

[Γ − X − M − X1 − M1 − X2 − M2 − X3 − M3 − X − Γ] path,

which is shown by the arrows in Figure 1(b). In such a low-

symmetric PC case, maxima and minima of photonic bands at

high-symmetry points in the Brillouin zone may shift accord-

ingly, which results in the variation of the band gap bound-

aries [53].

The detailed analytical investigation for the reduced symme-

try PCs will be conducted in the next section.

3 AN ANALYTICAL APPROACH TO THE
BAND STRUCTURE OF LOW
SYMMETRIC PHOTONIC CRYSTALS

An analytical approach can be made in order to determine

band-structure of periodic PCs as well as to better understand

how the band structure is affected when a low-symmetry is

introduced to the PC unit-cell. For that purpose, one should

consider the well-known time-dependent Maxwells equations

in source-free dielectric media:

∇ · H(r, t) = 0, ∇× H(r, t)− ε(r)
∂E(r, t)

∂t
= 0, (1)

∇ · ε(r)E(r, t) = 0, ∇× E(r, t) + µ0
∂H(r, t)

∂t
= 0, (2)

where H and E represent the magnetic and electric fields, re-

spectively, depending on the coordinates in space and time,

(r, t). Moreover, ε and µ0 are the position-dependent dielectric

permittivity and the permeability in free space, respectively.

Time-harmonic E(r, t) and H(r, t) field vectors can be repre-

sented in terms of the vector field phasors, E(r) and H(r), such

that

E(r, t) = E(r) exp (−iωt), H(r, t) = H(r) exp (−iωt), (3)

in which ω is the angular frequency. Then, Maxwell’s equation

for the steady state can be written in terms of the vector field

phasors as follows:

∇ · H(r) + iω(ε(r)E(r)) = 0,

∇ · E(r)− iω(µ0H(r)) = 0. (4)

In dielectric media, Maxwells equation can be expressed in

terms of only the magnetic field phasor, H(r), as follows:

∇×

[

1

ε(r)
∇× H(r)

]

=

(

ω

c0

)2

H(r). (5)

This equation is called the Master equation and the term c0 is

the phase velocity of wave propagation in vacuum. Thus, the

Master equation can be expressed in terms of an eigenvalue

problem, and according to Bloch’s theorem [42], the electro-

magnetic field in periodic media can be expanded into a set

of harmonic (Bloch) modes, which must satisfy the following

relations:

H(r) = Hk(r) exp (ik · r) (6)

where Hk(r) is a periodic function of the lattice structure, i.e.,

Hk(r) = Hk(r + R), where R is the lattice vector and k is the

Bloch wavevector in the first Brillouin zone. The methodology

used for the following derivations is similar to one used pre-

viously [54]. Using the Fourier transformation, the magnetic

field, Hk(r), and the dielectric function, ε(r), can be expressed

as the sum of plane waves,

Hk(r) = ∑
G

∑
j=1,2,3,...

êj Hj,k exp (iG · r), (7)

ε(r) = ∑
G

ε(G) exp (iG · r), (8)

where êj denotes the unit vector for the magnetic field and G is

the reciprocal lattice vector. Then, substituting the expansions
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from Eqs. (7) and (8) into the Master equation, Eq. (5), one can

obtain two equations for two-dimensional periodic lattices,

∑
G′

|k + G| |k + G′| ε−1 (G + G′) H⊥,kG′ =
(

ω
c0

)2
H⊥,kG, (9)

∑
G′

(k + G) (k + G′) ε−1 (G + G′) H‖,kG′ =
(

ω
c0

)2
H‖,kG, (10)

for transverse-magnetic (TM, Hx, Hy, Ez) and transverse-

electric (TE, Ex, Ey, Hz) polarizations. In Eqs. (9) and (10),

ε−1(G − G′) is the inverse matrix of ε(G − G′) and the

subscripts ‖ and ⊥ stand for the directions parallel and

perpendicular to the z-axis. The dielectric permittivity matrix

can be calculated as:

ε(G) =
1

A

∫

A
ε(r) exp (−iG · r)dr, (11)

in which A is the area per PC unit-cell and the integral is taken

over that area. Eq. 11 may also be simplified in such a way

that,

ε(G) =

{

f εd + (1 − f )εb for G = 0,

(εd − εb)S(G) for G 6= 0,
(12)

where εd and εb refer to the dielectric constants of the cylin-

drical PC rods and background and f is the corresponding

filling factor. The function, S(G), is the structure factor and it

depends directly on the geometry of dielectric region in the

PC unit-cell. It is given by the following relation:

S(G) =
1

A

∫

A
exp (−iG · r)dr, (13)

where the integration is taken over one PC unit-cell. From

the relations given above, it can be understood that while the

dielectric distribution in the PC unit-cell, ε(r), is modified,

then S(G) is directly influenced; therefore, by solving Eqs. (9)

and (10), the investigated band structures in either TM or TE

polarizations may become completely different. To clarify our

discussion, we applied the above formulas for different types

of square lattice PC configurations and calculated the corre-

sponding structure factor, S(G).

As can be seen in Figure 2(a), in the square lattice case with

a lattice constant, a, the corresponding lattice vectors are,

a1 = ax̂ and a2 = aŷ where x̂ and ŷ are the base vectors in

the spatial domain. Then, the corresponding set of recipro-

cal lattice base vectors (b1, b2) should be
(

2π
a x̂, 2π

a ŷ
)

in or-

der to satisfy the reciprocity condition, ai · bj = 2πδi j, where

δi j is the Kronecker delta function [55]. The reciprocal lat-

tice vectors then, G = lb1 + mb2 where l and m are inte-

gers. Considering the circular (symmetric) PC cylinders with

radii, r, as in Figure 2(a), the structure factor is found from

Eq. (13) as, S(G) = 2 f
J1(Gr)

Gr , in which the function, J1(.), is

the first order Bessel function of the first kind. For the rect-

angular PC case, as in Figure 2(b), the corresponding struc-

ture factor is, S(G) = f sinc
(

Gxd
2

)

sinc
(

Gyd
2

)

, where Gx and

Gy are the x and y-components of the reciprocal lattice vec-

tor, G. When the symmetry is reduced in the PC unit-cell

by etching an off-centered hole inside the PC rod (see Fig-

ure 2(c)), the corresponding structure factor transforms into

S(G) = S1(G) − exp(−iG · s)S2(G). Here S1(G) and S2(G)

are the structure factors for the large (with a radius of r1) and

small (with a radius of r2) circular PC cylinders encircling the

FIG. 2 Geometrical representations of two-dimensional square-lattice PCs composed of

a periodic array of dielectric (a) regular (symmetric) cylinders, (b) square cylinders,

and (c) C1 symmetric cylinders. The corresponding band diagrams are represented in

(d)-(f), respectively. Through the dispersion-relation analyses, the geometrical param-

eters r, d, r1, and r2 were set to 0.37a, 0.66a, 0.40a, and 0.15a, respectively.

origin and s is the shifting vector for a small cylinder of air

along the x-direction. The dispersion relations of the prede-

termined three cases are also numerically investigated by us-

ing the plane wave expansion method [56] and are shown in

Figures 2(d)–2(f). Note that all the band structure calculations

and iso-frequency contour (IFC) analyses were conducted by

the same method. The geometrical parameters r, d, r1, and r2

were set to 0.37a, 0.66a, 0.40a, and 0.15a, respectively, in order

to equalize the corresponding filling factors to f = 0.432. The

shifting parameter was fixed at s = 0.20a. The correspond-

ing band structures for circular, rectangular, and circular with

etched off-center hole PC cylinders were calculated along the

Γ − X − M − Γ direction and are shown in Figures 2(d)–2(f),

respectively. The corresponding unit-cell configurations for

each case are shown as insets in the same figures. The dielec-

tric PCs were made of silicon, with εd = 12, and the back-

ground, as well as the inside of the etched hole, was air, i.e.,

εb = 1. As can be clearly observed from the dispersion rela-

tions for the three cases in Figures 2(d)–2(f), the shapes of first

TM bands resemble each other, which means all the configu-

rations behave as a homogeneous media at long wavelengths,

so that the effective medium theory holds [57]. However, in-

creasing the frequency (shortening the wavelengths) causes

the Bloch modes to be more sensitive to the unit-cell configu-

ration, especially at the edges of Brillouin zone [58]. By com-

paring the band structures in Figures 2(d)–2(f), it can be seen

that reducing the rotational and mirror symmetries (from the

circular to circular with off-center hole cases) in the PC unit-

cell produces higher TM bands, and low-symmetry introduc-

tion in PC unit-cell lifts the degeneracies of the optical modes

at some points of the Brillouin zone, which are labeled A, B, C,

D, and E in Figures 2(d). Therefore, one may expect that intro-

ducing a symmetry reduction in the unit-cell scale enables the

desired dispersion engineering, which will be discussed later

in detail.

In the next section, an intriguing phenomenon called Chiral

PCs will be discussed and the optical responses of isomers

will be compared in the all-dielectric low-symmetric PC case.

Under some circumstances, the mirror image of the PC unit-

cell may become chiral in form. Thus, chirality concept will be

mentioned for the manipulation of light.
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4 WHAT DOES "CHIRALITY" MEAN IN
CHEMISTRY AND PHOTONICS?

Several crystals and molecules exist in nature with a char-

acteristic that even though they may have the same com-

positions, their physical and chemical properties may dif-

fer. In other words, despite having the same molecular for-

mula, some types of compounds may exhibit different char-

acteristics due to different structural arrangements of atoms.

This phenomenon is known as isomerism, and compounds

that have the same molecular formula but different chemi-

cal structures are called isomers [59]. Isomers may have two

forms: either structural (constitutional) isomers or stereoiso-

mers. Structural isomers have identical molecular formulas,

but different connectivity of atoms. For stereoisomers on the

other hand, although the chemical structures and their atomic

bonds are the same, they differ in spatial orientation, i.e., the

positioning of the crystal compositions in space varies. More-

over, stereoisomers can be subdivided into two types: enan-

tiomers and diastereomers. By definition, enantiomers are

stereoisomers for which the mirror-image and the molecule

itself cannot be superposed [60]. Examples of well-known

enantiomers are chiral molecules, which have the property of

handedness (left and right-handed) [61]. The chirality prop-

erty was discovered by the famous experiment of Louis Pas-

teur in 1848 [62]. He re-crystallized a salt of tartaric acid and

obtained two kinds of crystals, with shapes that were mirror-

images of each other. Thereafter, intensive studies of chiral

molecules have revealed that mirror-image isomers, such as

chiral crystals, may display different characteristics in terms

of optical activity, viz. the optical response of the structures

while interacting with light waves [63].

In a similar fashion, when a low-symmetry is introduced to

the PC configuration so that the rotational symmetry of the

PC unit-cell is broken, then the resulting PC structure and

its mirror-image may not be superimposable. These types of

low-symmetric PCs may be designated as Chiral PCs. Nu-

merical calculations indicate that Chiral PCs and their images

may react differently to light illumination. To be more specific,

a basic two-dimensional chiral structure, such as a square-

lattice PC configuration with C1 symmetry (with no spatial-

symmetry), is chosen, and the related dispersion relations as

well as IFCs for both the low-symmetric PC and its mirror-

image are compared. These results are presented in Figure 3.

As shown in Figure 3(a), the large circular PC cylinder with

radius, r1 = 0.20a, is placed at the origin and the circular rods

with small radii, r2 = 0.10a, are located at the right-side of the

larger PC rod. It is important to note that only the rotational

symmetry of the proposed Chiral PCs is broken, whereas the

translational symmetry is kept intact. In this case, the mirror-

image structure in Figure 3(a) cannot be superimposed on the

designed structure with C1 symmetry, i.e. with no rotational

symmetry, and, therefore, that type of structure can be desig-

nated as a Chiral PC. The dispersion diagrams of both square

lattice PC configurations are investigated and plotted in Fig-

ure 3(b). The regarding PC cylinders are composed of silicon,

with a dielectric permittivity, εd = 12 and the background is

air, i.e., εb = 1. Although the calculated TM bands for both

the Chiral PC and its mirror-image overlap at lower frequen-

cies, they start not to coincide with each other at higher bands,

FIG. 3 (a) Illustration of C1 symmetric PC configuration (with no spatial symmetry)

as chiral PC and its mirror-image isomer. The large circular PC cylinder with radius,

r1 = 0.20a, is placed at the origin and the circular rods with small radii, r2 = 0.10a,

are located at the right-side of the larger PC rod in a primitive cell. The resulting dis-

persion diagram is calculated and shown in (b). Second and third TM band IFCs for the

proposed Chiral PC and its isomer are represented in (c)-(d) and (e)-(f), respectively.

especially along the edge of Brillouin zone, from Γ to M. In ad-

dition, IFCs of the proposed Chiral PCs in Figure 3(a) are ana-

lyzed in order to better understand how the optical responses

of chiral dielectric PCs differ depending on the direction of

wave propagation. As an illustration, the IFCs of second and

third TM bands for both the asymmetric chiral PC and its im-

age are calculated and shown in Figures 3(c)–3(f). It is known

that the energy flow of light is in the direction perpendicular

to the calculated IFCs [64]. Therefore, if the designed square

lattice Chiral PC is excited by an incident beam along the

Γ− X direction, with a centered frequency of a/λ = 0.402 (see

Figure 3(c)), the propagating beam starts to deflect, and fol-

lows a tilted optical path inside the structure with a positive

deflection angle. On the other hand, the incident beam with

the same frequency propagates along the Γ − X direction in-

side the mirror-image Chiral PC with a negative deflection an-

gle. Gray arrows have been inserted in Figures 3(c) and 3(d), in

order to demonstrate the direction of tilted beam propagation

inside the designed Chiral PC and its image. The comparisons

of the dispersion relations of designed PC configurations in

Figure 3(a) support the chirality idea: In other words, a dielec-

tric PC structure which is not superimposable with its mirror-

image can be considered as a chiral PC, since it may possess

dispersive characteristics different from its mirror-image iso-

mer.

There have been conducted numerous studies in literature

that investigate PCs with chiral optical properties. Especially,

optical activity characteristic has been reported before in dif-

ferent types of materials such as in cholesteric liquid crys-

tals [65, 66], photonic metamaterials [67, 68] and plasmonic

structures [69]. Moreover, circular dichroism effect is also re-

ported in 3D PCs composed of polymeric helices [70, 71] and

some potential applications of that chiral optical property are

investigated [72]. Plum et al. experimentally verified chirality-

induced negative index of refraction in 3D bilayered meta-

materials with four-folded rotational symmetry [73]. Apart

from these, there are limited numbers of studies that demon-

strate chirality phenomenon in semiconductor-based materi-

als: a 3D rotationally-stacked woodpile PC structure has been
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fabricated and a large optical rotation is observed in such

semiconductor-based PCs [74].

There are also relatively few publications that study the ef-

fect of low-symmetry on chirality property: In one paper, an

efficient polarization control of light is realized by using all-

dielectric 2D planar PCs with four-fold rotational symme-

try [75]. In our study, we numerically proved that keeping the

direction of incident light illumination as the same, specifi-

cally designed 2D PCs with low-symmetry and its mirror im-

age may optically respond in different manners at certain fre-

quencies (see Figure 3). Chiral PCs either planar 2D or 3D have

also been studied for modulating intensity of light and shap-

ing light emission pattern [76, 77]. One other difference be-

tween the previously published results and the idea proposed

in this article is the way of light interaction with the chiral

photonic crystals. Incident light interacts with the chiral de-

vice along the out-of-plane direction. On the contrary, we al-

low light propagation in the plane.

In the following section, several low-symmetric PC studies

previously conducted by the authors will be summarized, and

based on these studies, some of the potential photonic device

applications will be discussed.

5 POTENTIAL APPLICATIONS BASED ON
OUR STUDIES

There have been an intensive number of studies to investigate

all-dielectric two-dimensional PCs that have an intentionally

introduced reduced symmetry; to search for their anomalous

optical characteristics and to implement these types of PCs in

optical device design. In this section, different potential pho-

tonic applications are discussed. Firstly, symmetry reduction

in PC unit-cells may provide complete PBGs (CPBGs), which

occur due to overlapping of TE and TM gaps. Several differ-

ent approaches have been proposed in the literature [78]−[80].

In one of our previous studies [81], a low-symmetric annu-

lar PC structure, called a modified annular PC (MAPC), was

designed to obtain larger CPBGs. The designed structure is

schematically shown in Figure 4(a). An air hole (or a PC rod)

with radius, r2, was introduced into the PC rod (or an air hole)

having the radius, r1, where the background was air (dielec-

tric with the permittivity εb). The inner unit was off-center

with a distance parameter, s, and rotated with respect to the

lattice axis by a rotation angle, θ. Figure 4(b) and 4(c) repre-

sent the schematic diagrams of square and triangular MAPC

lattices in cases where the background is either air, εb = 1,

or Si, εb = 3.45. In all the configurations, the lattice constant

was fixed at 1a. The dispersion relations of a symmetric-type

annular PC as well as a MAPC with C1 symmetry were cal-

culated and are presented in Figure 4(d) and 4(e), in order to

better understand the effect of symmetry-reduction. As can

be seen in Figure 4(d), CPBG regions do not exist in the sym-

metric annular PC case; whereas CPBG regions occur in the

MAPC case (see Figure 4(e)). Symmetry breaking in the prim-

itive cell lifts the degeneracies in the band structure. As a re-

sult, CPBGs appear in the band diagrams [82]. The band gap

regions are shaded in Figure 4(e), to clearly show the forbid-

den frequency intervals. The square lattice MAPC rods with

FIG. 4 (a) Geometrical representation of low-symmetric PC unit-cell (MAPC) and cor-

responding schematic diagrams, for (b) square-lattice and (c) triangular-lattice PCs.

Dispersion relations of (d) annular PC and (e) MAPC are shown. TM modes are rep-

resented by solid-lines while dashed-lines demonstrate the TE Bloch modes in the

figures. For the square lattice MAPCs in air background, the geometrical parameters

are set to θ =45◦, r1=0.360a, r2=0.150a, and s=0.180a while r1 and r2 are kept the

same for the annular PC case. (f) Complete PBG map by varying the inner radii of the

off-center air-hole, r2/a, for the square-lattice MAPC configuration. The corresponding

PC unit-cell is shown as an inset in the figure. Reprinted with permission [81], I. H.

Giden et al., Appl. Optics 51, 1287−1296 (2012). ©2012, Optical Society of America.

off-centered air holes having the parameters of, θ = 45◦,

r1 = 0.360a, r2 = 0.150a, and s = 0.180a, the calculated CPBG

width was ∆ω/ω = 7.06% that lies between a/λ = 0.5851

and a/λ = 0.6279. There also exists a CPBG region lying in

the normalized frequency range, a/λ = 0.4441 − 0.4671, hav-

ing a CPBG width, ∆ω/ω = 5.05%. A CPBG map is prepared

as a function of inner radius and shown in Figure 4(f). The

difference between the upper and lower limits of the bands

gives the CPBG width, ∆ω. According to the CPBG map, band

gap regions shift upward with increasing inner hole radius,

since the resulting filling factor reduces. Moreover, the CPBG

around ∆ω/ω = 6.30% was calculated with the inner hole

radius, r2 = 0.125a. These results support the use of low-

symmetric PCs for polarization-insensitive photonic device

applications.

Mode-order conversion applications using low-symmetric

PCs have already been studied [83]. For that purpose, a

heterostructure is formed by regular (symmetric) PCs and

C1 symmetric PCs (MAPCs). It should be noted that we

fix θ = 90◦ to implement heterostructure investigated in

Figure 5. The working principle is that an incident beam

is exposed to phase retardation while propagating through

the heterostructure. Such a type of phase delay originates

from the phase index difference between the conventional

PC and MAPC. Figure 5(a) shows the band structures of

both the symmetric PC and MAPC when radii of regular

PCs are r = 0.36a and geometric parameters of MAPCs are

fixed as {r1, r2, ∆s} = {0.40a, 0.19a, 0.15a}. The corresponding

phase refractive indices are plotted in Figure 5(b). The shaded

region in Figure 5(a) designates the frequency interval in

which a linear pattern is observed in the second band of the

PC and MAPC with respect to the wavevector. By employing

the band diagrams shown in Figure 5(a), the corresponding

phase indices are obtained depending on normalized fre-

quencies from the formula, np = −k/ω, where k = 2π/λ.

In this expression, the parameters, k and ω, represent the

relevant wavevector and angular frequency, respectively.

The corresponding phase indices for both symmetric and

low-symmetric PCs were calculated and are demonstrated in
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FIG. 5 (a) Dispersion relations and (b) corresponding phase index distributions of

square-lattice MAPC (solid-red line) and PC (dashed-black line) structures. In band-

structure calculations, radii of regular PCs are r=0.36a and geometric parameters of

MAPCs are fixed as {r1, r2, ∆s} = {0.40a, 0.19a, 0.15a}. (c) Schematic view of di-

electric PC heterostructure design for the even-to-odd mode-conversion application.

The longitudinal lengths of MAPCs, dm, and the heterostructure, d, were adjusted to

15a and 25a, respectively, in order to achieve a π-phase shift at the output channel.

The calculated steady-state electric-field distributions of (d) regular square-lattice PCs

and (e) PC heterostructure at the operating frequency, a/λ=0.325. Reprinted with per-

mission [83], N. Erim et al., J. Opt. Soc. Am. B 30, 3086−3094 (2013). ©2013, Optical

Society of America.

Figure 5(b). Their values are negative for the second bands

because the corresponding frequencies in the second TM

bands decrease depending on the increasing propagation

constant. A nearly constant phase refractive index difference,

∆np = 0.0634, was calculated in a broad frequency interval,

a/λ = 0.275 − 0.350, which is represented by the shaded

region in Figure 5(b). This type of phase index difference

causes the propagating light to travel at different phase

velocities and, hence, different optical path lengths occur

inside the heterostructure. Therefore, a π-phase shift can be

achieved at the output by selecting the length of the MAPC

region, which is given as dm in Figure 5(c). The required

length, dm, can be calculated by the following expression,

∆φ = ∆np · k(λ) · dm, where ∆φ represents the output phase

shift. In our design, the longitudinal lengths of MAPCs,

dm, and the heterostructure, d, were adjusted to 15a and

25a, respectively, in order to obtain a π-phase shift at the

output channel. The width of the structure, w, was set to 8a.

Finite difference time domain (FDTD) analyses were also

conducted to investigate how low-symmetric PCs affect the

shape of propagating beams’ mode profiles [84]. Figures 5(d)

and 5(e) compare the beam propagation inside regular PCs

and the designed heterostructure. The structures were excited

by a guided fundamental TM mode (TM0), with a center

frequency fixed at a/λ = 0.325. The term ”mode” means

the field amplitude shape of allowed modes (Ez component

for TM modes) inside the structure. As can be seen from

the steady-state field distribution in Figure 5(d), the incident

beam still propagates with a fundamental TM0 mode profile,

despite reaching the end of the regular PC structure. On

the other hand, the propagating beam in the designed PC

heterostructure is exposed to π-phase difference at the end;

Figure 5(e) represents a snapshot of this beams electric field.

The FDTD results indicate that the fundamental even mode

profile (TM0) can be efficiently converted into the odd (TM1)

mode or to higher order TM modes, just by introducing a

low-symmetric PC region inside the regular PC configuration.

A non-diffracting dispersive effect called self-collimation

or, sometimes, super-collimation and its various optical

applications have been studied intensively [85]−[87]. Such

a dispersive property enables guiding of light, while propa-

gating inside a PC structure, without significant diffraction.

Super-collimation characteristic have already been investi-

gated for low symmetric PCs over a broad bandwidth [88].

A C4 symmetric PC is proposed in order to achieve super-

collimation over a wide frequency interval. The designed

two-dimensional PC configuration is called a star-shaped

PC (STAR-PC). Low-symmetry was introduced in the scale

of PC unit-cell and the resulting primitive cell is presented

in Figure 6(a). The proposed configuration has four vertices

and eight edges. The width of each edge is denoted by w

and internal angle, θ, of each vertex is fixed at θ = 45◦. The

width of the edges was fixed at w = 0.30a and, thus, the

resulting filling factor was f = 3 · w2 = 0.27. The investigated

PC cylinders were composed of silicon, εd = 12 and the

background was air, i.e., εb = 1. Reduction of rotational sym-

metry in the unit-cell has significant effects on the dispersion

characteristics of PCs, especially at higher bands. To better

understand the effect of low-symmetry on the dispersion

relations of PCs, the equi-frequency contours (EFCs) of

both a C4 symmetric STAR-PC and a symmetric PC were

calculated, with the same filling factor and corresponding

EFCs at the fifth TM band, and are shown in Figures 6(b)

and 6(c), respectively. Linear sections in the curves appear for

the low-symmetric PC case, which is shaded in Figure 6(b),

and, therefore, that bring about a strong super-collimation

property over a large bandwidth, ∆ω = 16.42%, in the

frequency range, a/λ = [0.492, 0.580]. On the other hand, as

can be seen in Figure 6(c), the regular PC has flat contours

in the frequency interval, a/λ = [0.577, 0.581], and, thus, the

available bandwidth is ∆ω = 0.69%, which is very small

compared to the STAR-PC case. FDTD analyses have also

been conducted in order to observe the beam evolution inside

the designed structure. For this reason, a continuous TM

polarized beam was propagated in air and in the STAR-PC,

and their steady-state electric field patterns are depicted

in Figures 6(d) and 6(e), respectively. Dashed lines in the

figures represent the envelope of the propagating beam.

Moreover, arrows inserted in the figures indicate the direction

of source-illumination. The width of the beam is 11a and the

operating frequency is a/λ = 0.540. As can be clearly seen

in Figures 6(d) and 6(e), after propagation over a distance,

L = 200a, there is no observable spatial broadening in the

STAR-PC configuration, whereas a significant spreading

of beam is observed in air. The calculated results show

that by means of low-symmetric PCs, one may realize

super-collimation based single-mode optical devices, such as

optical interconnects and routers, without substantial light

diffraction.

As we discussed previously, breaking the structural symmetry

in the unit-cell causes dramatic effects on the dispersion char-

acteristics. In the dispersion diagram for low symmetry struc-

ture, the first band behaves like an isotropic medium for lower

frequencies. However, for higher bands, considerably differ-

ent EFCs occur due to the lack of symmetry in the PC unit-cell,

as can be seen in Figure 6(b). It is important to note that the

higher frequencies are influenced strongly by the symmetry
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FIG. 6 (a) Geometrical representation of low-symmetric STAR-PC unit-cell with its struc-

tural parameters. IFCs of the fifth TM band for square lattice (b) STAR PC and (c) regular

(symmetric) PC configurations. The width of the STAR-PC edges is fixed at w=0.30a. The

shaded region in (b) represents the frequency interval in which the contours appear

as linear (flat) curves. Steady-state electric-field patterns of a continuous beam that

propagates in (d) free space and (e) designed STAR PC structure. Dashed lines in the

figures indicate the envelope of propagating beam. The incident beam operates at the

normalized frequency, a/λ=0.540. Reprinted with permission [88], I. H. Giden et al.,

Photonics and Nanostructures - Fundamentals and Applications 11, 132−138 (2013).

©2013, Elsevier.

of the primitive PC cell. Moreover, even a rotational operation

on the PC unit-cell provides intriguing characteristics, such as

wavelength selectivity [89]. The proposed structure is shown

in Figure 6(a), and its geometrical parameters are represented

in Figure 7(a). This structure was rotated through 45◦ in a

clockwise direction. The resulting structural parameters (fill-

ing factor, internal angle, dielectric permittivity, and air back-

ground) were kept the same as the structure in Figure 6(a).

The rotation of the symmetric PC structure in C4 caused tilt-

ing of the IFCs at the fifth TM band, which is presented in

Figure 7(b). As can be seen in that figure, the amount of tilt in

the nearly flat EFCs (self-collimation contours) increases with

the normalized frequency. Therefore, a light beam can follow

different paths (directions) inside the periodic structure due

to the tilting self-collimating effect. This property may allow

for the spatial resolution of different wavelengths at the out-

put of the PC structure. The EFCs for the frequencies at which

the wavelength selectivity behavior appears are presented in

Figure 7(c), and the corresponding Brillouin zone of the STAR-

PC is shown as an inset in the figure. The corresponding fre-

quency contours are selected from the fifth band EFCs in Fig-

ure 7(c), and lie between a/λ = 0.520 and a/λ = 0.568, with a

broad bandwidth, 8.82%. Numerical analyses have also been

conducted in order to examine the wavelength division be-

havior of the STAR-PCs. For this reason, a STAR-PC was se-

quentially illuminated by a continuous TM polarized beam,

and Figure 7(d) shows their steady-state electric field patterns

at three selected wavelengths (λ1 = 1621.5 nm, λ2 = 1550 nm

and λ3 = 1484.5 nm) within the region of interest. The cas-

caded slices taken at the output of the field distributions are

shown to demonstrate the spatial shifts of the output signal.

The spatial separation of output signals in terms of their wave-

FIG. 7 (a) Unit-cell of proposed STAR-PC. It is composed of a dielectric material (Si

with a refractive index of 3.45) in an air background. Calculated EFCs of the fifth

TM-band of the square lattice (b) STAR-PCs and (c) detailed representation of the

same band EFCs for the selected frequencies. In this case, the width of the STAR-PC

edges is fixed at w=0.30a. (d) The spatial distribution of electric field intensity for

the beam propagating in the tilted self-collimated manner inside the square lattice

STAR-PC. Inset shows illustration of n channel wavelength selective device. Reprinted

with permission [89], M. Turduev et al., Photonics and Nanostructures - Fundamentals

and Applications 11, 241−252 (2013). ©2013, Elsevier.

lengths is accomplished by means of diffraction-free beam

propagation (tilted self-collimation). By this means, sufficient

spatial shifts can be introduced between each channel, since

the spatial beam profile is almost preserved as it propagates

inside the structure. This phenomenon increases the potential

of STAR-PCs as a wavelength selective medium. To better un-

derstand the bandwidth enhancement for super-collimation,

the role of the order of the symmetry reduction will be further

explored in the future.

Other type of low-symmetric unit cells can produce super-

collimation and wavelength selectivity. On the other hand,

bandwidth and wavelength sensitivity may change from

structure to structure. Since these properties appear at rel-

atively high band, feature sizes in terms of sharp corners

enhance the observed physical characteristics.

Apart from the above-mentioned applications, by using

the intrinsic dispersive characteristics of the low-symmetric

PCs, different types of photonic devices such as beam

routers, splitters, and deflectors can be realized [90]. More-

over, polarization-independent waveguide design can be

implemented by PCs with reduced-symmetry [91].

6 FUTURE EXPECTATIONS AND
CONCLUSION

In this review paper, we investigated the effect of symmetry-

reduction on the dispersive characteristics of all-dielectric

PCs. Breaking the rotational symmetry of a PC unit-cell

produces various anomalous optical characteristics such as

complete PBG, tilted self-collimation, super-collimation, and
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wavelength selectivity. Besides, the low symmetric unit-cell

provides additional parameters to control the dispersive fea-

tures of Bloch modes. Furthermore, the symmetry-reduction

in PC unit-cell scale produces a novel feature named ”chiral-

ity”, which has not been thoroughly studied for all-dielectric

PCs. Using such intrinsic properties of low-symmetric PCs,

it is feasible to design a variety of photonic integrated

devices such as polarization-insensitive waveguides, beam

routers/deflectors, splitters, and wavelength demultiplex-

ers. Moreover, it is important to investigate these types of

photonic media in the presence of point or line defects.

Resonance modes in the cavities can be manipulated by the

reduced symmetry in a PC unit-cell. Dispersion manage-

ment of waveguide modes may uniquely sustain slow light

propagation.

As a future goal, we intend to study the symmetry-

reduction in PCs by rearranging the lattice periodicity into

quasi-periodic and disordered lattices. Moreover, we will

investigate the cavity and resonator effects in low-symmetric

PCs by introducing intentional perturbations (point and

line-defects) inside the all-dielectric periodic media. We also

plan to conduct detailed investigations of all-dielectric chiral

PCs. Further investigations are required to fully exploit the

potential of symmetry reduction and the chirality concept in

photonic crystals.
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