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Abstract We present the material, spatial, and convective representations for elastic-
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the material and spatial symmetries of these systems. The associated constrained vari-
ational principles are formulated and the resulting equations of motion are deduced.
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representations.
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1 Introduction

In continuum mechanics, the material, spatial, and convective representations are fun-
damental for the mathematical description of the motion. Depending on the problem
and on the questions posed, one of these representations may be more convenient
than the others. Nevertheless, insight from the other representations may be crucial
in the analysis of the equations of motion.

For example, in free rigid body dynamics, the material description is preferred
when one wants to emphasize that the attitude matrix moves along a geodesic of the
metric characterized by the mass distribution of the body. In this case, the associated
variational formulation (i.e., the critical action principle) is the standard Hamilton’s
principle on the tangent bundle of the proper rotation group. However, the equations
of motion are more easily handled when written in terms of the convective or spatial
angular velocities since these variables belong to the Lie algebra rather than to the Lie
group. As opposed to what happens for the material representation, the critical action
principles underlying the convective and spatial formulations are not standard since
they require the use of constrained variations. It is, however, important to recall that
these principles can be naturally deduced and justified by applying the techniques
of Lagrangian reduction by symmetries. Among the two symmetry reduced formu-
lations (convective and spatial), the convective representation is preferred since it is
associated to a natural symmetry of the material Lagrangian and does not require the
introduction of additional variables. However, the spatial angular momentum, a quan-
tity that naturally appears in the spatial representation, is a conserved quantity which
plays a fundamental role in the description of the dynamics, and makes the spatial
formulation also attractive, at the price of introducing a new dynamic variable repre-
senting the spatial inertia tensor, as we will recall below.

For ideal homogeneous incompressible flow, one usually works in spatial repre-
sentation, since it corresponds to the natural invariance of the material Lagrangian,
namely, relabeling symmetry. But if one is interested in Lagrangian coherent states
and transport in ocean motion, for example, it is the material representation that is
best suited. In elasticity, as opposed to hydrodynamics, the convective representation
dominates because it is associated to a symmetry that is always assumed, namely,
material frame indifference. However, if the material is isotropic, the material La-
grangian also possesses a relabeling symmetry and the spatial representation gives a
lot of insight, see e.g. Chap. 12, Sect. 15 in Antman (2004). Similarly, in both fluid–
solid interactions as well as in the dynamics of complex fluids, it is desirable to have
a consistent description in the spatial, the material, or the convective pictures.

The goal of this paper is to develop such methods systematically and in an unified
way for free boundary nonlinear continuum mechanics. More precisely, the validity
of the relevant variational principles in the various representation is not postulated
in an ad hoc way but rather is derived from the standard Hamilton principle in ma-
terial representation using the geometric methods of reduction by symmetry. As we
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already mentioned for the rigid body case, these principles are not trivial when writ-
ten uniquely in terms of the convective or spatial variables, since they involve con-
strained variations. In addition, we propose a general class of continua that contains
both free boundary hydrodynamics and nonlinear elasticity, and develop the varia-
tional principles as well as the motion equations in material, spatial, and convective
representation for them. The condition under which the spatial reduction is allowable
for this general class is also determined.

In this paper we address only the Lagrangian reduction approach (as opposed to
the Hamiltonian approach related to Poisson structures) for two reasons. First, from a
practical point of view, if one needs to derive the equations of motions of a continuum
system whose energy is known, it is more efficient to work directly via the critical
action principle and its reduced version, rather than take the route of the Poisson re-
duction approach. The Lagrangian reduction approach also yields Kelvin circulation
theorems in both the spatial and the convective pictures. Second, the critical action
principle is crucial to derive discretization algorithms. For example, it is well known
that, in some particular cases, the standard (i.e., in material representation) Hamil-
ton’s principle in continuum mechanics is intimately related to the weak formulation
of the equations, which is of fundamental importance for finite element methods, as
indicated by the huge literature on the subject. We refer, e.g., to Chap. 5 in Marsden
and Hughes (1983) for further information about how these weak formulations in ma-
terial representation can be recast into the modern context of geometric Lagrangian
mechanics. However, this is not the kind of application we have in mind when devel-
oping the constrained variational principle for continua in this paper. We are thinking
of discretization methods that derive the discrete equations of motion in a geomet-
ric way directly via a discretization of the action principle and therefore respect the
geometry of the continuous system. For these discretization methods, a geometric re-
duced description, as provided in this paper, is of crucial importance. These so called
variational integrators (see Marsden and West 2001 and references therein) are exam-
ples of symplectic integrators (Hairer et al. 2000) and therefore exhibit an excellent
energy behavior; some of them even preserve exactly various conservation laws of the
original continuum system. For example, in Pavlov et al. (2011) a variational integra-
tor was developed for the Euler equations of an ideal fluid, by using the constrained
variational principle in pure Eulerian variables. Thanks to its geometrical character, it
was then possible to extend this approach to include the case of magnetohydrodynam-
ics and planar liquid crystals (Gawlik et al. 2011) and the case of rotating Boussinesq
equations (Desbrun et al. 2012) by using in a crucial way the constrained variational
principles associated to the spatial formulation of these systems (Holm et al. 1998;
Gay-Balmaz and Ratiu 2009). This program has just started and its extension to free
boundary continuum mechanics needs the developments made in this present paper
and is the subject of current work.

The results of this paper are achieved by implementing the philosophy of Euler–
Poincaré reduction for a semidirect product involving the diffeomorphism group of
the fluid’s domain. We hasten to add, however, that we cannot just apply this existing
theory since the continuum models we consider (except for the case of fixed boundary
fluid) do not satisfy the hypotheses of the Euler–Poincaré reduction theorem which
requires the configuration space to be a group. Rather, these theories are based on a
manifold of embeddings.
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Before giving the plan of the paper and recalling the Euler–Poincaré theory, we
mention now some historical considerations. It is difficult to know when variational
principles were first used in continuum mechanics but Walter (1868) and Kirch-
hoff (1883) already had such formulations. The introduction of Clebsch potentials
(Clebsch 1857, 1859) allowed a classical variational formulation at the expense of the
introduction of new variables. The same situation occurred in the search for a Hamil-
tonian formulation of the Euler equations of the free rigid body in three dimensional
space and its associated variational principle. This was accomplished by the introduc-
tion of the four Cayley–Klein parameters (Klein 1897, equivalently, Kustaanheimo–
Stiefel coordinates, or the Hopf fibration) that played the same role in rigid body
dynamics as the Clebsch variables in hydrodynamics. We refer to the extensive sur-
veys (Truesdell and Toupin 1960) and (Serrin 1959) for a historical account and many
references up to 1960. The classical Lin constraints in hydrodynamics, introduced in
Lin (1963) and applied to many examples in Seliger and Whitham (1968), were in-
timately related to the attempt to formulate a variational principle using exclusively
spatial quantities.

On the Hamiltonian side, the noncanonical Poisson structures for various systems
in continuum mechanics and its relationship with the Clebsch representation was de-
veloped in Sudarshan and Mukunda (1974), Iwinski and Turski (1976), Dzyaloshin-
skiı̆ and Volovick (1980), Morrison and Greene (1980), Holm and Kupershmidt
(1983) and others. Poisson brackets in plasma physics and continuum mechanics
were further studied and obtained by reduction of the canonical symplectic form on
the material phase space in Marsden and Weinstein (1982, 1983) and Marsden et al.
(1984) for plasmas and fluids in spatial representation, in Simo et al. (1988) for non-
linear elasticity in convective representation, in Holm et al. (1986) for fluids in the
convective representation, in Lewis et al. (1986) and Mazer and Ratiu (1989) for free
boundary fluids in spatial representation.

On the Lagrangian side, a first approach to constrained variational principles on
Lie groups and its relation with Lin constraints and Clebsch potentials for fixed
boundary fluid dynamics was established in Cendra and Marsden (1987). Lagrangian
reduction for fixed boundary fluids in the spatial representation and the associ-
ated variational principles were further developed in Holm et al. (1998), via Euler–
Poincaré reduction for semidirect products. So far, the constrained variational prin-
ciple for fixed boundary fluid in convective variables, for free boundary fluids and
nonlinear elasticity in convective and spatial variables, as well as the associated La-
grangian reduction processes have not been carried out, and the goal of this paper is
to develop these approaches.

Recently, the techniques of Hamiltonian and Lagrangian reductions have been ex-
tended to more general hydrodynamical systems such as complex fluids (e.g. liq-
uid crystals), Yang–Mills fluids, or other models of nonabelian fluids (see e.g., Gay-
Balmaz and Ratiu 2008a, 2008b, 2009, 2011; Gay-Balmaz and Tronci 2010).

The plan of the paper is the following. Section 2 applies the Euler–Poincaré reduc-
tion theorem for semidirect products to develop the Lagrangian convective formula-
tion of compressible hydrodynamics; both the constrained variational principle and
the equations of motion are presented. Nonlinear elasticity is studied in Sect. 3. In this
case, Euler–Poincaré reduction theory does not apply but we use it as a guide. The
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constrained variational principles and the equations of motion are deduced from the
material representation in both convective and spatial formulation. The same program
is carried out in Sect. 4 for free boundary compressible fluids with surface tension.
Section 5 proposes a model of continua that contains both elasticity and free bound-
ary hydrodynamics. For this model we extend some of the classical notions such as
material and spatial symmetries, deduce the constrained variational principles in pure
spatial or convective variables, and derive the equations of motion in both convective
and spatial representations.

In this paper we do not go into the analytic details of the relevant function spaces
for the problems, although for some of them, this is fairly straightforward. Our main
focus is the geometric setting. In particular, the solutions we study are assumed to
exist (prior to shocks) and to be smooth.

We close this introduction with a brief review of Euler–Poincaré reduction for
semidirect products since it will be used for the spatial and convective formulations of
fixed boundary fluids and because it serves as a guide for the variational formulation
of problems with free boundaries of general continua.

Generalities on Semidirect Products We briefly recall some general facts and for-
mulas for semidirect products. Consider a left (respectively, right) representation of a
Lie group G on a vector space V . We denote by v �→ gv (respectively, v �→ vg) this
representation. As a set, the semidirect product S = G�V is the Cartesian product
S = G × V whose group multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2), respectively,

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2).

The Lie algebra of S is the semidirect product Lie algebra, s = g�V , whose bracket
has the expression

[
(ξ1, v1), (ξ2, v2)

]
=

(
[ξ1, ξ2], ξ1v2 − ξ2v1

)
, respectively,

[
(ξ1, v1), (ξ2, v2)

]
=

(
[ξ1, ξ2], v1ξ2 − v2ξ1

)
,

where ξv (respectively, vξ ) denotes the induced action of the Lie algebra g on V .
From the expression for the Lie bracket, it follows that for (ξ, v) ∈ s and (μ,a) ∈ s∗

the infinitesimal coadjoint action reads

ad∗
(ξ,v)(μ,a) =

(
ad∗

ξ μ − v ⋄ a,−ξa
)
, respectively,

ad∗
(ξ,v)(μ,a) =

(
ad∗

ξ μ + v ⋄ a, aξ
)
,

where ξa ∈ V ∗ (respectively, aξ ∈ V ∗) denotes the induced action of g on V ∗ and
v ⋄ a ∈ g∗ is defined by

〈v ⋄ a, ξ 〉g := −〈ξa, v〉V and 〈v ⋄ a, ξ 〉g := −〈aξ, v〉V ,

where 〈·, ·〉g : g∗ × g → R and 〈·, ·〉V : V ∗ × V → R are the duality parings.
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Lagrangian Semidirect Product Theory We recall some needed facts about Euler–
Poincaré reduction for semidirect products (see Holm et al. 1998).

• Assume that we have a function L : T G × V ∗ → R which is left (respectively,
right) G-invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : T G → R by La0(vg) :=

L(vg, a0). Then La0 is right (respectively, left) invariant under the lift to T G of
the left (respectively, right) action of Ga0 on G, where Ga0 is the isotropy group
of a0.

• G-invariance of L permits us to define the reduced Lagrangian l : g × V ∗ → R by

l
(
g−1vg, g

−1a0
)
= L(vg, a0), respectively, l

(
vgg

−1, a0g
−1) = L(vg, a0).

• For a curve g(t) ∈ G, let ξ(t) := g(t)−1ġ(t) (respectively, ξ(t) := ġ(t)g(t)−1).
Define the curve a(t) as the unique solution of the following linear differential
equation with time-dependent coefficients:

ȧ(t) = −ξ(t)a(t), respectively, ȧ(t) = −a(t)ξ(t),

with initial condition a(0) = a0. The solution can be written as a(t) = g(t)−1a0,
respectively, a(t) = a0g(t)−1.

Theorem 1.1 With the preceding notations, the following are equivalent:

(i) With a0 held fixed, Hamilton’s variational principle,

δ

∫ t2

t1

La0

(
g(t), ġ(t)

)
dt = 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler–Lagrange equations for La0 on G.

(iii) The constrained variational principle,

δ

∫ t2

t1

l
(
ξ(t), a(t)

)
dt = 0,

holds on g × V ∗, upon using variations of the form

δξ =
∂η

∂t
+ [ξ, η], δa = −ηa, respectively,

δξ =
∂η

∂t
− [ξ, η], δa = −aη,

where η(t) ∈ g vanishes at the endpoints.
(iv) The Euler–Poincaré equations hold on g × V ∗:

∂

∂t

δl

δξ
= ad∗

ξ

δl

δξ
+

δl

δa
⋄ a, respectively,

∂

∂t

δl

δξ
= − ad∗

ξ

δl

δξ
+

δl

δa
⋄ a.

(1.1)
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As a basic example, for the illustration of the convective and spatial descriptions
in mechanics and its associated variational principles, we consider the case of a free
rigid body moving around a fixed point (see Holm et al. 1986 for the general case of a
heavy top). The attitude of the body is completely described by a matrix A in the Lie
group SO(3). The Lagrangian in material representation is obtain by integrating the
kinetic energy of each material point X of the body over the reference configuration
space B ⊂ R3 of the body, a compact subset of R3 with non-empty interior. Hence

L(A, Ȧ) =
1

2

∫

B

ρ(X)‖ȦX‖d3X

and the equations of motion in material representation are given by the associated
Euler–Lagrange equations, producing geodesic equations for the associated Rieman-
nian metric on SO(3). As is well known, these equations are obtained by applying
Hamilton’s principle,

δ

∫ t1

t0

L(A, Ȧ)dt = 0,

for arbitrary variations δA vanishing at the endpoints. It is readily checked that the
material Lagrangian is invariant under left translation by SO(3), so that it can be
written uniquely in terms of the convective angular velocity Ω = A−1Ȧ ∈ so(3).
This allows us to write the reduced Lagrangian as

ℓconv(Ω) =
1

2
IΩ · Ω,

where Ω ∈ R3 is the vector associated to the Lie algebra element Ω ∈ so(3) (i.e.,
Ωu = Ω × u for any u ∈ R3) and I is the inertia tensor of the body. To obtain the
classical Euler equations in convective representation

IΩ̇ = IΩ × Ω

from a variational principle in pure convective variables, one has to use constrained
variations, namely

δ

∫ t1

t0

ℓconv(Ω)dt = 0, for variations δΩ = ∂tΨ + Ω × Ψ ,

where Ψ is a arbitrary curve in R3 vanishing at the endpoints, consistently with the
general Euler–Poincaré theory recalled above.

If one wants to write the equations of motion in spatial representation, namely
by using the spatial angular momentum ω = ȦA−1, one has to implement reduction
relative to the right translation by SO(3). Such a symmetry can be obtained only by
introducing a new variable, namely, the spatial inertial tensor Ispat = AIA−1. In this
case, the associated reduction process yields the Lagrangian

ℓspat(ω, Ispat) =
1

2
Ispatω · ω.
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By applying the constrained variational principle arising from the Euler–Poincaré
theory, namely

δ

∫ t1

t0

ℓ(ω, Ispat)dt = 0 for variations δω = ∂tϕ − ω × ϕ, δIspat = [ϕ, Ispat],

where ϕ is a arbitrary curve in R3 vanishing at the endpoints, we get the equations of
the free rigid body in pure spatial variables as

∂t (Ispatω) = 0, ∂t Ispat = [ω, Ispat],

where ω ∈ so(3) is the matrix corresponding to ω ∈ R3. From the preceding theorem,
we know that all these formulations are equivalent.

2 Lagrangian Convective Formulation of Hydrodynamics

Consider the motion of an ideal compressible barotropic fluid on a smooth orientable
n-dimensional Riemannian manifold D with smooth boundary ∂D.

The geometric description presented below is valid only for smooth solutions up
to the first shock time. The motion of the fluid is completely described by a curve ηt

in the diffeomorphism group Diff(D). We shall denote the material points by capital
letters X and spatial points by lower case letters x so that we have the relation x =

ηt (X), where t �→ ηt (X) is the trajectory of a fluid particle that at time t = 0 is at
X ∈ D. The material velocity field is defined by

Vt (X) :=
∂ηt (X)

∂t

and the spatial velocity field by vt (x) := Vt (X) = (η̇t ◦ η−1
t )(x). Note that

Vt ∈ Tηt Diff(D) and vt ∈ Te Diff(D) = X‖(D),

where Tηt Diff(D) denotes the tangent space to the diffeomorphism group at ηt and
Te Diff(D) the tangent space at the identity. The latter consists of vector fields on D

parallel to the boundary, denoted by X‖(D). The convected velocity Vt is the negative
of the spatial velocity of the inverse motion (or back to labels map) lt := η−1

t , i.e.,

Vt (X) := −
(
l̇t ◦ l−1

t

)
(X).

We thus we have the following relations between the three velocities:

Vt = T η−1
t ◦ η̇t = η∗

t vt .

Choosing a Riemannian metric g on D and denoting by ρ : D → R the mass den-

sity of the fluid, the equations of motions of a barotropic fluid in spatial representation
are

⎧
⎨
⎩

∂tv + ∇vv = −
1

ρ
gradgp, p = ρ2 ∂e

∂ρ
,

∂tρ + divg(ρv) = 0, v‖∂D,

(2.1)
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where the function e = e(ρ) is the internal energy of the fluid, and the operators ∇ ,
divg , and gradg denote, respectively, the Levi-Civita covariant derivative, the diver-
gence, and the gradient associated to g. It is simpler, and geometrically more natu-
ral, to consider as variable the density ρ̄ := ρμ(g) rather than the function ρ. Here,
μ(g) denotes the volume form associated to the Riemannian metric g. In terms of
the density ρ̄, the mass conservation equation (the second equation in (2.1)) reads
∂t ρ̄ + £uρ̄ = 0.

Spatial Formulation As shown in Holm et al. (1998), the equations of motion
(2.1) are the (right) Euler–Poincaré equations (1.1) for the semidirect product
Diff(D)� F (D), where F (D) denotes the vector space of smooth functions on D,
associated to the Lagrangian

ℓspat(v, ρ̄, g) =
1

2

∫

D

g(x)
(
v(x),v(x)

)
ρ̄(x) −

∫

D

e
(
ρ(x)

)
ρ̄(x). (2.2)

Thus, in material representation, the equations of motion are given by the ordinary
Euler–Lagrange equations associated to the material Lagrangian L( ¯̺ ,g) on the tan-
gent bundle T Diff(D). In order to obtain L( ¯̺ ,g), we use a change of variables in the
spatial Lagrangian given by a diffeomorphism η : D → D, x = η(X). We obtain the
expression

L( ¯̺ ,g)(Vη) =
1

2

∫

D

g
(
η(X)

)(
Vη(X),Vη(X)

)
¯̺ (X)

−

∫

D

E
(
¯̺ (X), g

(
η(X)

)
, TXη

)
¯̺ (X),

where ̺ is the mass density of the fluid in the reference configuration, related to ρ̄ by
the formula ̺(X)μ(g)(X) := ¯̺ (X) := (η∗ρ̄)(X), and the Lagrangian internal energy

E is given by

E
(
¯̺ (X), g

(
η(X)

)
, TXη

)
:= e

(
¯̺ (X)

μ(η∗g)(X)

)
. (2.3)

The function E is introduced in order to facilitate a comparison with the Lagrangian
formulation of elasticity in Sect. 3.

By construction, the Lagrangian L is right-invariant under the action of ϕ ∈

Diff(D) given by

(Vη, ¯̺ , g) �→
(
Vη ◦ ϕ,ϕ∗ ¯̺ , g

)

and the reduction map

(Vη, ¯̺ , g) �→ (v, ρ̄, g) :=
(
Vη ◦ η−1, η∗ ¯̺ , g

)

induces the spatial Lagrangian ℓspat = ℓspat(v, ρ, g). Note, in particular, that when
(η, ¯̺ ) �→ (η ◦ ϕ,ϕ∗ ¯̺ ) the Lagrangian internal energy transforms as

E( ¯̺ , g ◦ η,T η) �→ E
(
ϕ∗ ¯̺ , g ◦ η ◦ ϕ,T η ◦ T ϕ

)
= E( ¯̺ , g ◦ η,T η) ◦ ϕ. (2.4)
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The Riemannian metric g is not acted on by the diffeomorphism group. It can be
therefore considered as a constant in the spatial formulation. This will not be the case
for the convective description.

In order to write the Euler–Poincaré equations, we identify the dual of F (D) with
the vector space |Ωn(D)| of densities on D and the dual of X‖(D) with the vector
space Ω1

‖ (D) ⊗ |Ωn(D)| of one-form densities tangent to ∂D, that is,

Ω1
‖ (D) :=

{
α ∈ Ω1(D)

∣∣ ι∗(⋆α) = 0
}
,

where ι : ∂D →֒ D is the inclusion and ⋆ : Ω1(D) → Ωn−1(D) is the Hodge star
operator associated to the Riemannian metric g and the given orientation μ(g) on D.
The corresponding L2 duality pairings are given by

〈h, ρ̄〉 =

∫

D

h(x)ρ̄(x), h ∈ F (D), ρ̄ ∈
∣∣Ωn(D)

∣∣,

〈m,v〉 =

∫

D

m(x) · v(x), m ∈ Ω1
‖ (D) ⊗

∣∣Ωn(D)
∣∣, v ∈ X‖(D),

where m · v ∈ |Ωn(D)| is the density obtained by contracting the one-form density m

with the vector field v.
By Euler–Poincaré theory for semidirect products (with respect to a right action

and a right representation), the motion equations are obtained by the variational prin-
ciple

δ

∫ t1

t0

ℓspat(v, ρ̄, g)dt = 0,

relative to the constrained variations

δv = ξ̇ + [v, ξ ], δρ̄ = −£ξ ρ̄,

where ξ is an arbitrary curve in X‖(D) vanishing at the endpoints. Using the spatial
Lagrangian (2.2), we get the Euler equations (2.1); see (Holm et al. 1998).

Remark 2.1 (Ideal homogeneous incompressible fluids) In this case the configuration
space is the group Diffμ(D) := {η ∈ Diff(D) | η∗μ(g) = μ(g)}, where μ(g) is the
volume form associated to the Riemannian metric g on D. The Lagrangian is

ℓspat(v, g) =
1

2

∫

D

g(x)
(
v(x),v(x)

)
μ(g)(x). (2.5)

The Lie algebra of Diffμ(D) is the space Xdiv,‖(D) of divergence free vector fields
relative to the volume form μ(g) tangent to ∂D. The formal dual Xdiv,‖(D)∗ has
two possible convenient representations (see Marsden and Weinstein 1983). The
first formal dual is obtained using the natural pairing between one-forms and vec-
tor fields relative to integration with respect to μ(g); then Xdiv,‖(D)∗ is identified
with Ω1

δ,‖(D) := {v♭g | v ∈ Xdiv,‖(D)}, where ♭g is the index lowering operator given

by the metric g. The second formal dual has an easy description if H 1(D,R) = 0 and
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equals Ω2
ex(D), the vector space of exact two forms on D; the pairing is in this case

given by

〈ω,v〉 =

∫

D

α(v)μ(g), where ω = dα.

Writing the Euler–Poincaré equations for the first choice of the dual yields the clas-
sical Euler equations ∂tv + ∇vv = −gradp. Using the second description of the dual
one gets ∂tω + £vω = 0, where ω := dv♭g is the vorticity.

Convective Formulation Recall that the convective velocity Vt is obtained from the
material velocity Vt by the formula Vt = T η−1

t ◦ Vt . From the Lie group point of
view, this corresponds to the relation Vt = T L

η−1
t

(Vηt ), that is, the convective repre-
sentation of the equations of motion is obtained by a reduction relative to the tangent
lifted action of left translation. Thus, in order to recover the equations of motion in
convective form by Euler–Poincaré reduction, we need to show that the material La-
grangian L is left-invariant under the tangent lift of left translation Vη �→ T ψ ◦ Vη.
This is accomplished by letting the diffeomorphism group act on the left also on the
Riemannian metric g that used to be constant in the spatial representation. Indeed,
the material Lagrangian L is left-invariant under the action of ψ ∈ Diff(D) given by

(Vη, ¯̺ , g) �→ (T ψ ◦ Vη, ¯̺ ,ψ∗g).

To see this, it suffices to observe that the Lagrangian internal energy E is invariant
under the transformation (η, g) �→ (ψ ◦ η,ψ∗g):

E( ¯̺ , g ◦ η,T η) �→ E
(
¯̺ ,ψ∗g ◦ (ψ ◦ η),T ψ ◦ T η

)
= E( ¯̺ , g ◦ η,T η).

In contrast to the spatial representation, the mass density ¯̺ is not acted on by the
diffeomorphism group. It is therefore a constant in the convective description.

By left invariance, L induces the convective Lagrangian ℓconv : X‖(D)×|Ωn(D)|×

S2(D) → R via the quotient map

(Vη, ¯̺ , g) �→ (V , ¯̺ ,C) :=
(
T η−1 ◦ Vη, ¯̺ , η∗g

)
,

where S2(D) denotes the space of two-covariant symmetric tensor fields, and C :=

η∗g is the Cauchy–Green tensor. We obtain the expression

ℓconv(V , ¯̺ ,C) =
1

2

∫

D

C(V , V ) ¯̺ −

∫

D

E ( ¯̺ ,C) ¯̺ , (2.6)

where E denotes the internal energy in convective representation given by

E ( ¯̺ ,C) := e

(
¯̺

μ(C)

)
.

In order to write the Euler–Poincaré equation, we choose the L2 duality pairings

〈
M, V

〉
=

∫

D

M(X) · V (X), M ∈ Ω1
‖ (D) ⊗

∣∣Ωn(D)
∣∣,
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〈
T ,C

〉
=

∫

D

T : C, T ∈ S2(D) ⊗
∣∣Ωn(D)

∣∣,

where S2(D) denotes the vector space of two-contravariant symmetric tensors and
T : C ∈ |Ωn(D)| is the contraction on both indices. By the Euler–Poincaré theory for
semidirect products (with respect to a left action and a left representation), the motion
equations are obtained by the variational principle

δ

∫ t1

t0

ℓconv(V , ¯̺ ,C)dt = 0,

relative to the constrained variations

δV = ζ̇ − [V , ζ ], δC = £ζ C,

where ζ is an arbitrary curve in X‖(D) vanishing at the endpoints. We compute

δ

∫ t1

t0

ℓconv(V , ¯̺ ,C)dt =

∫ t1

t0

∫

D

(
−∂t

δℓconv

δV
+ £V

δℓconv

δV

)
· ζ

−

∫

D

£V

(
δℓconv

δV
· ζ

)
+

∫

D

δℓconv

δC
: £ζ C. (2.7)

In order to obtain the equations, we make use of the following particular instances of
Stokes’ theorem (see e.g. Marsden and Hughes 1983, Problem 7.6, Chap. 1, for the
second identity):

∫

D

£V

(
δℓconv

δV
· ζ

)
=

∫

∂D

δ̃ℓconv

δV
· ζC(V ,NC)γ (C), (2.8)

∫

D

δℓconv

δC
: £ζ C = 2

∫

D

δℓconv

δC
: ∇ζ ♭C

= −2
∫

D

ζ · DivC

(
δℓconv

δC

)♭C

+ 2
∫

∂D

(
δ̃ℓconv

δC

)♭C

(NC, ζ )γ (C),

(2.9)

where γ (C) denotes the volume form induced by μ(C) on the boundary, T̃ denotes
the tensor field defined by T = T̃ μ(C) for a given tensor density T , and NC is the
unit outward-pointing unit normal vector field, relative to the Cauchy–Green tensor.
The operator DivC : S2(D)⊗|Ωn(D)| → X(D)⊗|Ωn(D)| is the divergence operator
associated to the Riemannian metric C operating on S2(D).

Using these formulas and the fact that ζ is arbitrary in X‖(D) we get the equation

∂t
δℓconv

δV
− £V

(
δℓconv

δV

)
= −2 DivC

(
δℓconv

δC

)♭C

on D. (2.10)

The boundary term in (2.8) vanishes since the convective velocity is parallel to the
boundary. The boundary term in (2.9) does not vanish, in general, and produces
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a boundary condition. However, as we will see below, it vanishes for the convective
Lagrangian (2.6) due to the special form of the internal energy.

Theorem 2.2 The Euler–Poincaré equations associated to ℓconv produce the Euler

equations in convective description

⎧
⎨
⎩

¯̺ (∂t V + ∇V V ) = 2 DivC

(
∂E

∂C
¯̺

)
,

∂tC − £V C = 0, V ‖∂B,

(2.11)

where the right hand side is related to the spatial pressure p by the formula

2
∂E

∂C
¯̺ = −(p ◦ η)μ(C)C♯, and thus 2 DivC

(
∂E

∂C
¯̺

)
= −gradC(p ◦ η)μ(C),

where C♯ ∈ S2(D) is the cometric and gradC denotes the gradient relative to C.

Proof The functional derivatives are given by

δℓconv

δV
= V

♭C ¯̺ ,
δℓconv

δC
=

1

2
V ⊗ V ¯̺ −

∂E

∂C
¯̺ .

The motion equations (2.11) are obtained by replacing these functional derivatives in
the Euler–Poincaré equations (2.10) and making use of the following formulas:

∂t

(
V

♭C
)
= (∂t V )♭C + £V

(
V

♭C
)
,

(
DivC(V ⊗ V ¯̺ )

)♭C = ¯̺∇V V
♭C + £V

(
¯̺ V

♭C
)
− ¯̺£V V

♭C .

To show that the boundary term in (2.9) vanishes as well as to prove the relation with
the pressure, we recall that E (C, ¯̺ ) = e( ¯̺/μ(C)). Using the formulas δ(μ(C)) =
1
2μ(C)TrC(δC) and ¯̺ = η∗ρ̄ = η∗(ρμ(g)) = (ρ ◦ η)μ(C), we obtain the desired
relation 2 ¯̺∂E /∂C = −(p ◦ η)μ(C)C♯. �

Hypothesis on the Lagrangian Throughout this paper we assume that the La-
grangian admits functional derivatives in the following sense. For any variable θ

(a tensor field or a tensor field density) on which the Lagrangian depends, we can
write

d

dε

∣∣∣∣
ε=0

ℓ(θε) =

∫

D

δℓ

δθ
: δθ,

where the symbol: means contraction on all indices. This hypothesis may not be
verified if the Lagrangian depends on derivatives of θ .

Remark 2.3 (Ideal homogeneous incompressible fluids) Recall that the convective
velocity Vt is expressed in terms of the spatial velocity vt by Vt = η∗

t vt which implies
that div Vt = 0. The convective Lagrangian has the expression

ℓconv(V ,C) =
1

2

∫

D

C(V , V )μ(g). (2.12)
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As in Remark 2.1 there are two choices for the dual: Ω1
δ,‖(D) and Ω2

ex(D). Proceed-
ing as in the compressible barotropic case, but recomputing the functional derivatives
relative to the first pairing giving the formal duals Ω1

δ,‖(D), we get the analogue of
(2.10)

P

(
∂t

δℓconv

δV
− £V

(
δℓconv

δV

)
+ 2 DivC

(
δℓconv

δC

)♭C
)

= 0 on D, (2.13)

where P : Ω1(D) → Ω1
δ,‖(D) is the orthogonal Hodge projector using the metric g.

For the convective Lagrangian (2.12) using

δℓconv

δV
= P

(
V

♭C
)

and
δℓconv

δC
=

1

2
V ⊗ V

we get the equations of motion

∂tP
(

V
♭C

)
= 0 and ∂tC − £V C = 0.

An analogous computation using the second pairing yielding the formal dual Ω2(D)

gives the equations of motion

∂tΩ = 0 and ∂tC − £V C = 0,

where Ω := dV ♭C is convective vorticity. Note that the two systems are equivalent,
as expected.

The same equations could have been obtained in a different manner, namely, the
first equation on both systems is simply Noether’s Theorem, i.e., conservation of the
momentum mapping for the right action of the diffeomorphism group on its cotangent
bundle, as a direct verification shows.

3 Lagrangian Reduction in Nonlinear Elasticity

We consider elastic bodies whose configuration at each time can be described by an
embedding η : B → S , where B is a compact n-dimensional submanifold of S = Rn,
with smooth boundary. We denote by Emb(B, S) the manifold of all embeddings of
B into S . A motion of a body is thus a curve t �→ ηt in Emb(B, S).

The Lagrangian of classical nonlinear elasticity in material representation is given
by

L(Vη, ¯̺ , g,G) =
1

2

∫

B

g
(
η(X)

)(
Vη(X),Vη(X)

)
¯̺ (X)

−

∫

B

W
(
g
(
η(X)

)
, TXη,G(X)

)
¯̺ (X). (3.1)

In this expression, Vη ∈ Tη Emb(B, S), the tangent space to Emb(B, S) at η, rep-
resents the material velocity. As for fluids, ¯̺ ∈ |Ωn(D)| is the mass density in the

reference configuration and g ∈ S2(S) is a Riemannian metric on S . For elasticity,
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we also need an additional Riemannian metric G ∈ S2(B) on B. By the hypothesis of
material frame indifference, the material stored energy function W is assumed to be
invariant under the transformations

(η, g) �→ (ψ ◦ η,ψ∗g), ψ ∈ Diff(S).

By definition, this means that for each η ∈ Emb(B, S) and all diffeomorphisms ψ :

η(B) → B we have

W
(
ψ∗g

(
ψ

(
η(X)

))
, Tη(X)ψ ◦ TXη,G(X)

)
= W

(
g
(
η(X)

)
, TXη,G(X)

)
.

In particular, we can define the convective stored energy W by

W
(
C(X),G(X)

)
:= W

(
η∗g(X), I,G(X)

)
= W

(
g
(
η(X)

)
, TXη,G(X)

)
. (3.2)

Material and Convective Tensors The Cauchy stress tensor σ ∈ S2(η(B)) is related
to the stored energy function by the Doyle–Ericksen formula

σ = 2ρ
∂W

∂g
,

where we recall that ρ̄ = ρμ(g). This relation can be obtained by the axioms for
constitutive theory; see Marsden and Hughes (1983), Sect. 3.2. By pulling back σ to
B we obtain the convected stress tensor Σ := η∗σ ∈ S2(B), related to the convective
stored energy function by

Σ = 2R
∂W

∂C
, (3.3)

where R is the convected mass density defined by the equality ¯̺ = Rμ(C), i.e.,
R ◦ η = ρ. The first Piola–Kirchhoff tensor is the two-point tensor over η defined by

P(αX, βx) := Jη(X)σ
(
η(X)

)(
T ∗η−1(αX), βx

)
, x = η(X),

where αX ∈ T ∗B, βx ∈ T ∗S , Jη is the Jacobian of η relative to the metrics g and G,
i.e., η∗μ(g) = Jημ(G). We thus have the relations

P(αX, βx)μ(G) = σ
(
η(X)

)(
T ∗η−1(αX), βx

)
μ(C) = Σ(X)

(
αX, T ∗η(βx)

)
μ(C)

and the Doyle–Ericksen relation reads

P = 2̺

(
∂W

∂ T η

)♯g

,

where ♯g denotes the index raising operator associated to the Riemannian metric g.

Boundary Conditions We can consider two types of boundary condition (see Mars-
den and Hughes 1983). For pure displacement boundary conditions, the configuration
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η ∈ Emb(B, S) is prescribed on the boundary ∂B:

η|∂B = η̃. (3.4)

For traction boundary condition, the traction P · NC is prescribed on the boundary:

P · NC |∂B = τ̃ , (3.5)

where P is the first Piola–Kirchhoff tensor and NC is the normal to the boundary
relative to the Cauchy–Green tensor. Below we will treat only the case τ̃ = 0; the
case τ̃ �= 0 requires the addition of another term in the Lagrangian.

One can also consider mixed boundary conditions by imposing (3.4) on ∂d B and
(3.5) on ∂τ B, where

∂d B ∪ ∂τ B = ∂B, ∂d B ∩ ∂τ B = ∅.

We call η|∂d B = η̃ the essential boundary condition and build it directly into the
configuration space, defined to be

C :=
{
η ∈ Emb(B, S) | η|∂d B = η̃

}
.

3.1 Convective Representation

Using material frame indifference of the stored energy function, one notes that the
material Lagrangian depends on the Lagrangian variables only through the convective
quantities

(V , ¯̺ ,C,G) :=
(
T η−1 ◦ Vη, ¯̺ , η∗g,G

)
∈ X(B) ×

∣∣Ωn(B)
∣∣ × S2(B) × S2(B),

where T η−1 : T (η(B)) �→ T B denotes the tangent map of the diffeomorphism
η−1 : η(B) → B. Note that for elasticity, contrary to the case of fluids, the convective
velocity is not tangent to the boundary. In terms of these variables, the Lagrangian
reads

ℓconv(V , ¯̺ ,C,G) =
1

2

∫

B

C(V , V ) ¯̺ −

∫

B

W (C,G) ¯̺ .

The essential boundary condition on the convective velocity reads V |∂d B = 0. We will
denote by X0(B) the corresponding space of vector fields.

Reduced Variations In order to write the Euler–Lagrange equations in terms of the
variables (V , ¯̺ ,C,G) we first need the expression of the reduced variations. Note
that this is not a particular case of the Euler–Poincaré reduction theorem since the
Lagrangian is not defined on the tangent bundle of the symmetry group. Therefore
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we need to compute the variations by hand. Let ηε ∈ C ⊂ Emb(B, S) be a variation
of the embedding η0 := η. Viewed as a vector in TV X0(B), the variation of δV is

δV =
d

dε

∣∣∣∣
ε=0

T η−1
ε ◦ η̇ε = −T T η−1 ◦ T δη ◦ T η−1 ◦ η̇ + T T η−1 ◦ δη̇

= −T T η−1 ◦ T δη ◦ T η−1 ◦ η̇ +
d

dt

(
T η−1 ◦ δη

)
+ T T η−1 ◦ T η̇ ◦ T η−1 ◦ δη

=
d

dt
ζ + T V ◦ ζ − T ζ ◦ V ,

where we defined ζ := T η−1 ◦ δη ∈ X0(B). Thus, as an element in X0(B), the varia-
tion δV of the convective velocity reads

δV = ζ̇ − [V , ζ ]. (3.6)

The variation δC of the Cauchy–Green tensor reads

δC =
d

dε

∣∣∣∣
ε=0

η∗
εg = η∗

£δη◦η−1g = £T η−1◦δηη
∗g = £ζ C. (3.7)

Note that the constrained variations are identical to those of the convective repre-
sentation of fluids. However, as we have seen, the computation of these variations is
more involved since η is in this case an embedding and not a diffeomorphism.

Reduced Convective Euler–Lagrange Equations By reduction of the variational
principle associated to the Euler–Lagrange equations on T C , the convective equa-
tions of motion are given by the stationarity condition

δ

∫ t1

t0

ℓconv(V , ¯̺ ,C,G)dt = 0, (3.8)

relative to the constrained variations (3.6) and (3.7). The computation of the station-
arity condition is similar to that for fluids and we get the relations (2.7), (2.8), and
(2.9), replacing D by B. The only difference is that now V and ζ are not tangent to
the boundary and vanish on the subset ∂d B of the boundary. In this case, we get the
equations

∂t
δℓconv

δV
− £V

(
δℓconv

δV

)
= −2 DivC

(
δℓconv

δC

)♭C

on B (3.9)

and

δℓconv

δV
C(V ,NC) = 2iNC

(
δℓconv

δC

)♭C

on ∂τ B. (3.10)

Applying these relations to the Lagrangian ℓconv of elasticity, we obtain the following
result.
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Theorem 3.1 The reduced Euler–Lagrange equations associated to ℓconv produce

the equations for elasticity in the convective description

⎧
⎨
⎩

¯̺ (∂t V + ∇V V ) = 2 DivC

(
∂W

∂C
¯̺

)
,

∂tC − £V C = 0,

with boundary conditions

V |∂d B = 0, Σ · N
♭C

C

∣∣
∂τ B

= 0,

where ∇ is the Levi-Civita covariant derivative associated to the Cauchy–Green ten-

sor C. The first equation can equivalently be written as

R(∂t V + ∇V V ) = DivC(Σ),

where Σ is the convected stress tensor.

Proof The motion equation is obtained as in Theorem 2.2, by using the expression
of the functional derivatives

δℓconv

δV
= V

♭C ¯̺ ,
δℓconv

δC
=

1

2
V ⊗ V ¯̺ −

∂W

∂C
¯̺ .

To obtain the boundary condition, we insert the functional derivative in (3.10) and use
the Doyle–Ericksen formula (3.3). After a remarkable cancellation, we get the desired
boundary condition. To obtain the last equation, we recall the relation ¯̺ = Rμ(C). �

3.2 Spatial Representation

We now search conditions under which the material Lagrangian (3.1) is invariant
under the right action of Diff(B) given by

(Vη, ¯̺ , g,G) �→
(
Vη ◦ ϕ,ϕ∗ ¯̺ , g,ϕ∗G

)
,

for all diffeomorphisms ϕ ∈ Diff(B). The kinetic energy part of L is clearly right-
invariant. Note that a sufficient condition to have right invariance of the internal en-
ergy term is that

W
(
g
(
η
(
ϕ(X)

))
, TX(η ◦ ϕ),ϕ∗G(X)

)
=

(
W

(
g
(
η(_ )

)
, T_ η,G(_ )

)
◦ ϕ

)
(X),

for all ϕ ∈ Diff(B). This is equivalent to

W
(
ϕ∗C,ϕ∗G

)
= W (C,G) ◦ ϕ, (3.11)

for all ϕ ∈ Diff(B) by the defining relation (3.2) for W . This condition on the stored
energy function is called material covariance (as defined in Marsden and Hughes
1983, Definition 3.3.4) and implies that the material is isotropic (see Marsden and
Hughes 1983, Proposition 3.5.7).

We shall assume material covariance when working in the spatial representation.
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The Spatial Lagrangian Under the hypothesis of material covariance, the material
Lagrangian depends on the variables Vη, ¯̺ , and G only through the spatial quantities

v := Vη ◦ η−1 ∈ X(DΣ ), ρ̄ := η∗ ¯̺ ∈
∣∣Ωn(DΣ )

∣∣, c := η∗G ∈ S2(DΣ ),

where Σ = η(∂B) is the boundary of the current configuration DΣ := η(B) ⊂ S .
For the kinetic energy, a change of variables yields

∫

B

g
(
η(X)

)(
Vη(X),Vη(X)

)
¯̺ (X) =

∫

η(B)

g(x)
(
Vη

(
η−1(x)

)
,Vη

(
η−1(x)

))
η∗ ¯̺ (x)

=

∫

DΣ

g(x)
(
v(x),v(x)

)
ρ̄(x).

It is important to notice that the current boundary Σ is itself a variable and that the
above defined spatial quantities are defined on the current configuration.

For the internal energy, by material covariance, we can define a function wΣ as-
sociated to the current configuration DΣ , by

wΣ (c, g) := W
(
η∗g,η∗c

)
◦ η−1,

where η is a parametrization of DΣ , that is, η : B → S is an embedding such that
η(B) = DΣ . The right hand side does not depend on the embedding η since, if one
takes another parametrization η̄, then η̄ = η ◦ ϕ for some ϕ ∈ B and hence we clearly
have

W
(
η̄∗g, η̄∗c

)
◦ η̄−1 = W

(
η∗g,η∗c

)
◦ η−1.

Note that the functions wΣ , W , and W are related by the formula
(
wΣ (c, g) ◦ η

)
(X) = W

(
η∗g(X),η∗c(X)

)
= W

(
g
(
η(X)

)
, TXη,η∗c(X)

)
.

In spatial formulation, the Doyle–Ericksen formula (3.3) can be written as

σ = 2ρ
∂wΣ

∂g
, (3.12)

where σ ∈ S2(DΣ ) is the Cauchy stress tensor. By a change of variable and using
(3.2) we can write

∫

B

W
(
g
(
η(X)

)
, TXη,G(X)

)
¯̺ (X)

=

∫

η(B)

(
W

(
g
(
η(_ )

)
, T_ η,G(_ )

)
◦ η−1)(x)(η∗ ¯̺ )(x)

=

∫

DΣ

(
W

(
η∗g(_ ),G(_ )

)
◦ η−1)(x)ρ̄(x)

=

∫

DΣ

wΣ

(
c(x), g(x)

)
ρ̄(x)
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and we get the Lagrangian in spatial representation

ℓspat(Σ,v, ρ̄, g, c) =
1

2

∫

DΣ

g(v,v)ρ̄ −

∫

DΣ

wΣ (c, g)ρ̄, (3.13)

recalling that the variables are defined on the current configuration DΣ and that Σ is
a variable.

Reduced Variations The computations below will be done using the following ob-
servation. Assume that ηε ∈ Emb(B, S) is a small perturbation of η ∈ Emb(B, S),
that is, ηε → η as ε → 0 in the Whitney C∞-topology of Emb(B, S). Let Σε :=

ηε(∂B) be the boundary of the submanifold ηε(B). Consider a tubular neighborhood
Nδ of the submanifold Σ with radius δ. By uniform convergence, for any δ > 0, we
have the inclusion Σε ⊂ Nδ for all ε sufficiently small.

Let x ∈ intDΣ and take δ strictly smaller than half of the distance from x to Σ .
Thus the open ball Bx centered at x of radius strictly less than half of this distance is
contained in intDΣε for all ε sufficiently small.

Using this observation, the computations below can be made in an appropriate
open ball Bx containing x ∈ intDΣ . Then the formulas are extended to DΣ by conti-
nuity.

Let ηε ∈ Emb(B, S) be a variation of the embedding η. Viewed as a vector in
TvX(DΣ ), the variation of v is

δv =
d

dε

∣∣∣∣
ε=0

η̇ε ◦ η−1
ε = δη̇ ◦ η−1 − T η̇ ◦ T η−1 ◦ δη ◦ η−1

=
d

dt

(
δη ◦ η−1) + T δη ◦ T η−1 ◦ η̇ ◦ η−1 − T η̇ ◦ T η−1 ◦ δη ◦ η−1

= ξ̇ + T ξ ◦ v − T v ◦ ξ,

where ξ := δη ◦ η−1 ∈ X(DΣ ) is an arbitrary curve with vanishing endpoints. Thus,
as an element in X(DΣ ), the variation of the spatial velocity is

δv = ξ̇ + [v, ξ ]. (3.14)

Since the only part of ξ contributing to the motion of the boundary Σ is its normal
part, we define for any x ∈ Σ ,

δΣ(x) := g(x)

(
d

dε

∣∣∣∣
ε=0

ηε

(
η−1(x)

)
,ng(x)

)
, (3.15)

where ng is the outward-pointing unit normal vector field relative to g. Therefore,

δΣ = g(ξ,n). (3.16)

The variation of ρ̄ is computed in the following way:
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δρ̄ : =
d

dε

∣∣∣∣
ε=0

(ηε)∗ ¯̺ =
d

dε

∣∣∣∣
ε=0

(ηε)∗η
∗η∗ ¯̺ =

d

dε

∣∣∣∣
ε=0

(
η ◦ η−1

ε

)∗
ρ̄

= −£ξ ρ̄ (3.17)

because

d

dε

∣∣∣∣
ε=0

η ◦ η−1
ε = −T η ◦ T η−1 ◦ δη ◦ η−1 = −δη ◦ η−1 = −ξ.

Similarly, the variation of c is

δc :=
d

dε

∣∣∣∣
ε=0

(ηε)∗G =
d

dε

∣∣∣∣
ε=0

(ηε)∗η
∗η∗G =

d

dε

∣∣∣∣
ε=0

(
η ◦ η−1

ε

)∗
cΣ = −£ξ c.

(3.18)
These computations are also valid on the submanifold C := {η ∈ Emb(B, S) | η|∂d B =

η̃} associated to the essential boundary condition. In this case, the subset Σd :=

η̃(∂d B) of the current boundary Σ = η(∂B) is fixed. Thus, in the variations above,
ξ is an arbitrary curve in X0(DΣ ) := {ξ ∈ X(DΣ ) | ξ |Σd

= 0}, with vanishing end-
points. We will use the notation Στ := η(∂τ B) for the part of the current boundary
that is allowed to move.

Spatial Reduced Euler–Lagrange Equations By reduction of the variational princi-
ple associated to the Euler–Lagrange equations on T C , the spatial equations of motion
are given by the stationarity condition

δ

∫ t1

t0

ℓspat(Σ,v, ρ̄, g, c)dt = 0,

relative to the constrained variations (3.14), (3.15), (3.17), and (3.18). In our compu-
tation below, we need take into account the fact that the current boundary Σ is time
dependent. We will make use of the following consequence of the transport formula
and divergence theorem. Let ηε be a flow on DΣ and let fε ∈ F (S) be an ε-dependent
function with f0 = f . Then we have

d

dε

∣∣∣∣
ε=0

∫

ηε(DΣ )

fεμ(g) =

∫

DΣ

d

dε

∣∣∣∣
ε=0

fεμ(g) +

∫

Σ

fg(ξ,ng)γ (g), (3.19)

where ξ := dηε/dε|ε=0, γ (g) is the boundary volume induced by g, and ng is the
outward-pointing unit normal vector field along the boundary, associated to g. We
first consider the variation δv = ξ̇ + [v, ξ ]. Using (3.19) and the fact that ξ vanishes
at the endpoints, we have

∫ t1

t0

∫

DΣ

δℓspat

δv
· ξ̇ = −

∫ t1

t0

(∫

DΣ

∂t

δℓspat

δv
· ξ +

∫

Σ

˜δℓspat

δv
· ξg(v,n)γ (g)

)
,

where the symbol˜on a tensor density denotes the tensor obtained by removing the
Riemannian volume. On the other hand, by the divergence theorem, we get

∫

DΣ

δℓspat

δv
· £vξ = −

∫

DΣ

(
£v

δℓspat

δv

)
· ξ +

∫

Σ

˜δℓspat

δv
· ξg(v,n)γ (g).
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Using these two equalities, formula (2.9), and the expressions of the constrained vari-
ations δv, δρ̄, δc, δΣ , we compute

δ

∫ t1

t0

ℓspat(Σ,v, ρ̄, g, c)dt

=

∫ t1

t0

∫

DΣ

δℓspat

δv
· δv +

∫

DΣ

δℓspat

δρ̄
δρ̄ +

∫

DΣ

δℓspat

δc
: δc +

∫

Σ

δℓspat

δΣ
δΣ

=

∫ t1

t0

∫

DΣ

(
−∂t

δℓspat

δv
− £v

δℓspat

δv
+ ρ̄ d

δℓspat

δρ̄
+ 2 Divc

(
δℓspat

δc

)♭c
)

· ξ

+

∫ t1

t0

∫

Σ

( ˜δℓspat

δΣ
− ρ

δℓspat

δρ̄

)
g(ξ,ng)γ (g) − 2

∫

Σ

( ˜δℓspat

δc

)♭c

(ξ,nc)γ (c),

where nc denotes the outward-pointing unit normal vector field relative to the met-
ric c. Since ξ is an arbitrary curve in X0(DΣ ), we get the stationarity condition

∂t

δℓspat

δv
+ £v

δℓspat

δv
= ρ̄ d

δℓspat

δρ̄
+ 2 Divc

(
δℓspat

δc

)♭c

on DΣ (3.20)

and
( ˜δℓspat

δΣ
− ρ

δℓspat

δρ̄

)
(ng)

♭gγ (g) − 2inc

( ˜δℓspat

δc

)♭c

γ (c) = 0 on Στ . (3.21)

Applying these relations to the Lagrangian of elasticity we get the following result.

Theorem 3.2 The reduced Euler–Lagrange equations of an isotropic material asso-

ciated to ℓspat produce the equations for nonlinear elasticity in spatial formulation

{
ρ(∂tv + ∇vv) = Divg(σ ),

∂tc + £vc = 0, ∂t ρ̄ + £vρ̄ = 0
(3.22)

with boundary conditions and boundary movement

v|Σd
= 0, σ · ng|T Στ = 0, ∂tΣ = g(v,ng),

where σ is the Cauchy stress tensor related to wΣ by the Doyle–Ericksen formula

(3.12).

Note the difference between the two boundary conditions. The first one requires
that v(x) = 0 for all x ∈ Σd . The second one means that σ (x)((ng)

♭g (x),αx) = 0 for
all α ∈ T ∗

x Στ .

Proof The functional derivatives of the Lagrangian (3.13) are

δℓspat

δv
= v♭g ρ̄,

δℓspat

δρ̄
=

1

2
g(v,v) − wΣ (c, g),

δℓspat

δc
= −

∂wΣ

∂c
ρ̄, (3.23)
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where ♭g is the index lowering operator associated to the metric g on S . Inserting
these expressions in (3.20) and using the relations £vv♭g = ∇vv♭g + 1

2 d(g(v,v)) and
∂t ρ̄ + £vρ̄ = 0, we get

(∂tv + ∇vv)♭g ρ̄ = −2 Divc

(
ρ̄

∂wΣ

∂c

)♭c

− ρ̄ d
(
wΣ (c, g)

)
. (3.24)

Equation (3.19) yields then

δℓspat

δΣ
=

(
ρ

1

2
g(v,v) − ρwΣ (c, g)

)
γ (g),

as a density on Σ . Therefore, the first two terms in (3.21) simplify to

inc

(
∂wΣ

∂c

)♭c

ρ̄ = 0 on Στ . (3.25)

We shall transform the right hand sides of (3.24) and (3.25) using the isotropy of
the material, that is, condition (3.11). Suppose that ϕt ∈ Diff(B) fixes ∂d B and is the
flow of the vector field U ∈ X‖(B). Taking the time derivative in (3.11) yields the
identity

d
(

W (C,G)
)
· U =

∂W

∂C
(C,G) : £UC +

∂W

∂G
(C,G) : £UG.

Integrating, we get

∫

B

¯̺ d
(

W (C,G)
)
· U =

∫

B

¯̺
∂W

∂C
(C,G) : £UC +

∫

B

¯̺
∂W

∂G
(C,G) : £UG.

Using formula (2.9), the relation above becomes

∫

B

¯̺ d
(

W (C,G)
)
· U = −2

∫

B

DivC

(
¯̺
∂W

∂C

)♭C

· U − 2
∫

B

DivG

(
¯̺
∂W

∂G

)♭G

· U

+ 2
∫

∂B

(
∂W

∂C

)♭C

(NC,U)γ (C)

+ 2
∫

∂B

(
∂W

∂G

)♭G

(NG,U)γ (G)

for all U. Thus we get

¯̺ d
(

W (C,G)
)
= −2 DivC

(
¯̺
∂W

∂C

)♭C

− 2 DivG

(
¯̺
∂W

∂G

)♭G

, on B

and

iNC

(
∂W

∂C

)♭C

= −iNG

(
∂W

∂G

)♭G

,
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as one-forms on ∂τ B. Taking the push forward of these identities by η ∈ C we get the
formulas

ρ̄ d
(
wΣ (g, c)

)
= −2 Divg

(
ρ̄

∂wΣ

∂g

)♭g

− 2 Divc

(
ρ̄

∂wΣ

∂c

)♭c

, on DΣ

and

ing

(
∂wΣ

∂g

)♭g

= −inc

(
∂wΣ

∂c

)♭c

,

as one-forms on Στ . Thus (3.24) and (3.25) produce the desired equations of motion
and boundary conditions. �

4 Free Boundary Hydrodynamics

The Hamiltonian description of free boundary fluids has been studied in Lewis et al.
(1986), Mazer and Ratiu (1989). The goal of this section is to carry out Lagrangian
reduction for free boundary fluids and deduce the equations of motion and their as-
sociated constrained variational principles in convective and spatial representation.

The kinematic description of a free boundary fluid is the same as that for elasticity.
The motion is described by a curve η in the space Emb(B, S) of embeddings. The
material Lagrangian of a barotropic free boundary fluid is

L( ¯̺ ,g)(Vη) =
1

2

∫

B

g(Vη,Vη) ¯̺ −

∫

B

E
(
¯̺ (X), g

(
η(X)

)
, TXη

)
¯̺ − τ

∫

∂B

γ
(
η∗g

)
,

(4.1)
where E is the Lagrangian internal energy, related to the spatial energy e as in (2.3)
and τ is a constant. The third term is proportional to the area of the current configu-
ration and represents the potential energy associated with surface tension.

4.1 Convective Representation

The Lagrangian is invariant under the left action of the diffeomorphism group Diff(S)

and produces the convective expression

ℓconv(V , ¯̺ ,C) =
1

2

∫

B

C(V , V ) ¯̺ −

∫

B

E ( ¯̺ ,C) ¯̺ − τ

∫

∂B

γ (C).

The computation of the reduced Euler–Lagrange equation goes exactly as for elastic-
ity, except that one needs to take into account the surface integral, whose variation
is

d

dε

∣∣∣∣
ε=0

∫

∂B

γ
(
η∗

εg
)
=

∫

∂B

κCC(ζ,NC)γ (C),

where κC denotes the mean curvature of ∂B relative to C. This formula is an analogue
of the transport theorem restricted to the boundary. Thus, for a general convective



J Nonlinear Sci (2012) 22:463–497 487

Lagrangian whose boundary term is given as above, formula (3.10) is replaced by

δℓconv

δV
C(V ,N) + τκCγ (C)(NC)♭C = 2iNC

(
δℓconv

δC

)♭C

on ∂B. (4.2)

In a similar way as in Theorems 2.2 and 3.1, we obtain the following result.

Theorem 4.1 The reduced Euler–Lagrange equations associated to ℓconv produce

the equations for free boundary hydrodynamics in the convective description

⎧
⎨
⎩

¯̺ (∂t V + ∇V V ) = 2 DivC

(
∂E

∂C
¯̺

)
,

∂tC − £V C = 0,

with the boundary condition

p ◦ η|∂B = τκC,

where κC is the mean curvature of ∂B relative to C and p is the spatial pressure. In

terms of p, the right hand side of the motion equation reads −gradC(p ◦ η)μ(C).

4.2 Spatial Representation

By a change of variables, one observes that the material Lagrangian (4.1) is invariant
under the right action of Diff(B) given by

(Vη, ¯̺ , g) �→
(
Vη ◦ ϕ,ϕ∗ ¯̺ , g

)
, ϕ ∈ Diff(B).

Using the same notations as in Sect. 3.2, this leads to the spatial expression

ℓspat(Σ,v, ρ̄, g) =
1

2

∫

DΣ

g(v,v)ρ̄ −

∫

DΣ

e(ρ)ρ̄ − τ

∫

Σ

γ (g). (4.3)

In order to take into account the boundary term, we will use a slight reformulation
of the formula above, obtained by a change of variables. Given a path ε �→ ηε ∈

Diff(DΣ ), we have

d

dε

∣∣∣∣
ε=0

∫

ηε(Σ)

γ (g) =

∫

Σ

κgg(ξ,ng)γ (g), (4.4)

where ng is the outward-pointing unit normal vector field relative to g, ξ is the tangent
vector to ηε at ε = 0, and κg is the mean curvature of Σ in the metric g. Adding this
contribution to the boundary condition (3.21) (and eliminating the variable c), we get
the relation

( ˜δℓspat

δΣ
− ρ

δℓspat

δρ̄

)
(ng)

♭gγ (g) = τκg(ng)
♭gγ (g) on Σ, (4.5)
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where ℓconv = ℓ(Σ,v, ρ̄, g) is an arbitrary Lagrangian whose boundary term is given
as above. This leads to the boundary condition

˜δℓspat

δΣ
− ρ

δℓspat

δρ̄
= τκg.

In the particular case of the Lagrangian (4.3) we get the following result.

Theorem 4.2 The reduced Euler–Lagrange equations associated to ℓspat produces

the equation for free boundary hydrodynamics,

{
ρ(∂tv + ∇vv) = −gradg p

∂t ρ̄ + £vρ̄ = 0
on Σ (4.6)

with the boundary condition and boundary movement

p|Σ = τκg, ∂tΣ = g(v,ng).

5 Lagrangian Reduction for General Continua

We consider the general form of the Lagrangian for elasticity in material representa-
tion given by

L(Vη, ¯̺ , g,G) =
1

2

∫

B

g
(
η(X)

)(
Vη(X),Vη(X)

)
¯̺ (X)

−

∫

B

U
(
g
(
η(X)

)
, TXη,G(X), ¯̺ (X)

)
− τ

∫

∂B

γ
(
η∗g

)
, (5.1)

where U is a density on B. Note that this form is more general than the Lagrangian
for free boundary fluids and for elastic materials considered before.

The hypothesis of material frame indifference assumes that U has the following
invariance property: for all η ∈ Emb(B, S) and all diffeomorphisms ψ : η(B) → B

we have

U
(
ψ∗g

(
ψ

(
η(X)

))
, Tη(X)ψ ◦ TXη,G(X), ¯̺ (X)

)

= U
(
g
(
η(X)

)
, TXη,G(X), ¯̺ (X)

)
.

Therefore, we can define the convective energy density U by

U
(
C(X),G(X), ¯̺ (X)

)
: = U

(
η∗g(X), I,G(X), ¯̺ (X)

)

= U
(
g
(
η(X)

)
, TXη,G(X), ¯̺ (X)

)
. (5.2)
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5.1 Convective Representation

Using the covariance assumption on the energy density U , one notes that the ma-
terial Lagrangian depends on the Lagrangian variables only through the convective
quantities

(V , ¯̺ ,C,G) :=
(
T η−1 ◦ Vη, ¯̺ , η∗g,G

)
∈ X(B) ×

∣∣Ωn(B)
∣∣ × S2(B) × S2(B).

In terms of these variables, the Lagrangian is

ℓconv(V , ¯̺ ,C,G) =
1

2

∫

B

C(V , V ) ¯̺ −

∫

B

U (C,G, ¯̺ ) − τ

∫

∂B

γ (C).

The essential boundary condition on the convective velocity is V |∂d B = 0. We will
denote by X0(B) the corresponding space of vector fields. The convective equations
of motion are derived in the same way as in Theorem 3.1, so we get

⎧
⎨
⎩

¯̺ (∂t V + ∇V V ) = 2 DivC

(
∂U

∂C

)
,

∂tC − £V C = 0,

(5.3)

with boundary conditions

V |∂d B = 0,

(
2
∂U

∂C
· N

♭C

C + τκCγ (C)N
♭C

C

)∣∣∣∣
∂τ B

= 0, (5.4)

where ∇ is the Levi-Civita covariant derivative associated to the Cauchy–Green ten-
sor C.

5.2 Spatial Representation

We now search conditions under which the material Lagrangian (5.1) is invariant
under the right action of Diff(B) given by

(Vη, ¯̺ , g,G) �→
(
Vη ◦ ϕ,ϕ∗ ¯̺ , g,ϕ∗G

)
,

for all diffeomorphisms ϕ ∈ Diff(B). The kinetic energy and the boundary term on
the potential energy are clearly right-invariant. For right invariance of the first term
in the potential energy it suffices that

U
(
g
(
η
(
ϕ(X)

))
, TX(η ◦ ϕ),ϕ∗G(X),ϕ∗ ¯̺ (X)

)

= ϕ∗
(
U

(
g
(
η(_ )

)
, T_ η,G(_ ), ¯̺ (_ )

))
(X),

for all ϕ ∈ Diff(B). This is equivalent to

U
(
ϕ∗C,ϕ∗G,ϕ∗ ¯̺

)
= ϕ∗

U (C,G, ¯̺ ), (5.5)

for all ϕ ∈ Diff(B) by the defining relation (5.2) for U .
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Isotropy and Covariance An internal energy density satisfying (5.5) is said to be
materially covariant.

Note that this definition is more general than the usual one given in Marsden and
Hughes (1983, Definition 3.3.4) and recovers it if U (C,G, ¯̺ ) = W (C,G) ¯̺ for some
function W . In this section we shall extend the notions of isotropy and material co-
variance to continua described by the material Lagrangian (5.1). As we shall see, this
will include both free boundary fluids and classical nonlinear elasticity.

Define material symmetry at X ∈ B to be a linear isometry λ : TX B → TX B rela-
tive to G(X) such that

λ∗
[

U
(
C(X),G(X), ¯̺ (X)

)]
= U

((
λ∗C

)
(X),G(X),

(
λ∗ ¯̺

)
(X)

)
.

The material is called isotropic if, for each X ∈ B, all proper rotations in TX B are
material symmetries at X. With these definitions, a direct verification shows that the
proofs in Marsden and Hughes (1983, Proposition 3.5.7 and Corollary 3.5.11) go
through which shows that isotropy is equivalent to material covariance.

From now on, we shall assume material covariance (5.5).

The Spatial Lagrangian Under the invariance hypothesis (5.5), proceeding as in
Sect. 3.2, we see that the material Lagrangian induces the spatial Lagrangian

ℓspat(Σ,v, ρ̄, g, c) =
1

2

∫

DΣ

g(v,v)ρ̄ −

∫

DΣ

uΣ (c, g, ρ̄) − τ

∫

Σ

γ (g), (5.6)

where

uΣ (c, g, ρ̄) := η∗

(
U

(
η∗g,η∗c, η∗ρ̄

))
,

η is a parametrization of DΣ , that is, η ∈ C = Emb(B, S) such that η(B) = DΣ ,
Σ = η(∂B), and the spatial variables are

v := Vη ◦ η−1 ∈ X(DΣ ), ρ̄ := η∗ ¯̺ ∈ F (DΣ )∗, c := η∗G ∈ S2(DΣ ).

By Lagrangian reduction on T C , the spatial equations of motion are given by the
stationarity condition

δ

∫ t1

t0

ℓspat(Σ,v, ρ̄, g, c)dt = 0,

relative to the constrained variations (3.14), (3.15), (3.17), and (3.18). We get

∂t

δℓspat

δv
+ £v

δℓspat

δv
= ρ̄ d

δℓspat

δρ̄
+ 2 Divc

(
δℓspat

δc

)♭c

, on DΣ (5.7)

and
( ˜δℓspat

δΣ
− ρ

δℓspat

δρ̄

)
(ng)

♭gγ (g) − 2inc

˜δℓspat

δc
γ (c) = 0 on Στ . (5.8)

Applying these relations to the Lagrangian (5.6) we get the following result.
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Theorem 5.1 The reduced Euler–Lagrange equations associated to ℓspat produce the

equations for nonlinear elasticity in spatial formulation

⎧
⎨
⎩

ρ̄(∂tv + ∇vv) = 2 Divg

(
∂uΣ

∂g

)
,

∂tc + £vc = 0, ∂t ρ̄ + £vρ̄ = 0
(5.9)

with boundary conditions and boundary movement

v|Σd
= 0,

(
τκg(ng)

♭g + 2ing

(
∂uΣ

∂g

)♭g
)∣∣∣∣

T Στ

= 0, ∂tΣ = g(v,ng).

The second boundary condition says that the total sum of forces exerted on the
free boundary Στ is zero: it is the sum of the surface tension force and of the internal
traction force.

Proof The functional derivatives of the Lagrangian (5.6) are

δℓspat

δv
= v♭g ρ̄,

δℓspat

δρ̄
=

1

2
g(v,v) −

∂uΣ

∂ρ̄
,

δℓspat

δc
= −

∂uΣ

∂c
, (5.10)

where ♭g is associated to the metric g on S . Inserting these expressions in (5.7) and
using the relations £vv♭g = ∇vv♭g + 1

2 d(g(v,v)) and ∂t ρ̄ + £vρ̄ = 0, we get

(∂tv + ∇vv)♭g ρ̄ = −2 Divc

(
∂uΣ

∂c

)♭c

− ρ̄ d
∂uΣ

∂ρ̄
. (5.11)

Equations (3.19) and (4.4) imply

δℓspat

δΣ
=

(
ρ

1

2
g(v,v) − τκg

)
γ (g) − uΣ (c, g, ρ̄),

as a density on Σ . Therefore, the first two terms in (5.8) simplify and we get

−2inc

(
∂uΣ

∂c

)♭c

=

(
ρ

∂uΣ

∂ρ̄
− τκg

)
(ng)

♭gγ (g) − uΣ (c, g, ρ̄)(ng)
♭g on Στ .

(5.12)
We shall transform the right hand side of (5.11) and (5.12) using the isotropy of the
material, that is, condition (5.5). Suppose that ϕt ∈ Diff(B) fixes ∂d B and is the flow
of the vector field U ∈ X‖(B). Taking the time derivative in (3.11) yields the identity

∫

B

£U

(
U (C,G, ¯̺ )

)
=

∫

B

∂U

∂C
(C,G, ¯̺ ) : £UC +

∫

B

∂U

∂G
(C,G, ¯̺ ) : £UG

+

∫

B

∂U

∂ ¯̺
£U ¯̺ .
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Using formula (2.9), the relation above becomes
∫

∂B

U (C,G, ¯̺ )C(U,NC)

= −2
∫

B

DivC

(
∂U

∂C

)♭C

· U − 2
∫

B

DivG

(
∂U

∂G

)♭G

· U −

∫

B

¯̺ d
∂U

∂ ¯̺
· U

+ 2
∫

∂B

(
∂U

∂C

)♭C

(NC,U)γ (C) + 2
∫

∂B

(
∂U

∂G

)♭G

(NG,U)γ (G)

+

∫

∂B

¯̺
∂U

∂ ¯̺
C(U,NC)

for all U ∈ X‖(B). Thus we get

2 DivC

(
∂U

∂C

)♭C

+ 2 DivG

(
∂U

∂G

)♭G

+ ¯̺ d
∂U

∂ ¯̺
= 0, on B

and

U (C,G, ¯̺ )N
♭C

C = 2iNC

(
∂U

∂C

)♭C

+ 2iNG

(
∂U

∂G

)♭G

+ ¯̺
∂U

∂ ¯̺
N

♭C

C ,

as one-forms on ∂τ B. Taking the push forward of these identities by η ∈ C we get the
formulas

2 Divg

(
∂uΣ

∂g

)♭g

+ 2 Divc

(
∂uΣ

∂c

)♭c

+ ρ̄ d
∂uΣ

∂ρ̄
= 0, on DΣ

and

uΣ (g, c, ρ̄)(ng)
♭g = 2ing

(
∂uΣ

∂g

)♭g

+ 2inc

(
∂uΣ

∂c

)♭c

+ ρ̄
∂uΣ

∂ρ̄
(ng)

♭g ,

as a one-forms on Στ . Thus (5.11) and (5.12) produce the desired equations of motion
and boundary conditions. �

5.3 Kelvin–Noether Theorems

We shall derive the Kelvin–Noether theorems for the spatial and convective represen-
tations of the elastic materials given by the general Lagrangian (5.1). We begin with
the spatial representation.

Given a solution v of the system (5.1), let γ be a loop in B and γt := γ ◦ ηt . Then

d

dt

∮

γt

v♭g =

∮

γ

d

dt
η∗

t v♭g =

∮

γ

η∗
t

(
∂tv

♭g + £vv♭g
)

=

∮

γt

(
∂tv

♭g + ∇vv♭g
)
= 2

∮

γt

(
1

ρ̄
Divg

(
∂uΣ

∂g

))♭g

,
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where we have used the formula £vv♭g = ∇vv♭g + 1
2 dg(v,v). Thus the Kelvin circu-

lation theorem for the spatial representation is

d

dt

∮

γt

v♭g = 2
∮

γt

(
1

ρ̄
Divg

(
∂uΣ

∂g

))♭g

. (5.13)

To find a Kelvin circulation theorem for the convective representation, we pick a
loop γ in B and a solution V of (5.3) and we recall that ∂t (V ♭C ) = (∂t V )♭C +£V (V ♭C ).
We thus obtain the Kelvin–Noether theorem,

d

dt

∮

γ

V
♭C =

∮

γ

(
(∂t V )♭C + £V

(
V

♭C
))

=

∮

γ

(
(∂t V )♭C + ∇V V

♭C
)

= 2
∮

γ

1

¯̺
DivC

(
∂U

∂C

)♭C

. (5.14)

5.4 Recovering the Classical Cases

So far we have used three type of internal energy densities in material, convective,
and spatial representations. In this section we have considered the most general form
of internal energy densities U(g,T η,G, ¯̺ ). The internal energy density is assumed
to satisfy the material frame indifference axiom which states that U is left invariant
under the spatial diffeomorphism group, that is,

U
(
ψ∗g

(
ψ

(
η(X)

))
, Tη(X)ψ ◦ TXη,G(X), ¯̺ (X)

)

= U
(
g
(
η(X)

)
, TXη,G(X), ¯̺ (X)

)
,

for all ψ ∈ Diff(S). This is always assumed in continuum mechanics and only such
internal energy densities have physical meaning. Material frame indifference allows
the definition of the internal energy density U in convective representation, namely

U (G,C, ¯̺ ) := U(g ◦ η,T η,G, ¯̺ ), C := η∗g.

On the other hand, right invariance under the particle relabeling group Diff(B)

does not hold, in general. If it does, that is,

U
(
g
(
η
(
ϕ(X)

))
, TX(η ◦ ϕ),ϕ∗G(X),ϕ∗ ¯̺ (X)

)

= ϕ∗
(
U

(
g
(
η(_ )

)
, T_ η,G(_ ), ¯̺ (_ )

))
(X),

for all ϕ ∈ Diff(B), then, as we have seen, the material is isotropic. Isotropic mate-
rials admit a description in spatial representation since the internal energy density U

induces the spatial internal energy density by

uΣ (c, g, ρ̄) := η∗

(
U

(
η∗g,η∗c, η∗ρ̄

))
, c := η∗G, ρ̄ = η∗ ¯̺ .

Two important special cases appear in continuum mechanics.
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Classical Elasticity Classical nonlinear elasticity assumes that U is linear in ¯̺ , that
is, U(g,T η,G, ¯̺ ) = W(g,T η,G) ¯̺ . The convective internal energy density is

U (G,C, ¯̺ ) = W (G,C) ¯̺

The second boundary condition (5.4) becomes Σ · N
♭C

C |∂τ B = 0 recovering the form
in Theorem 3.1. We now obtain Kelvin’s circulation theorem using the general ex-
pression (5.14). We have

d

dt

∮

γ

V
♭C = 2

∮

γ

1

¯̺
DivC

(
∂U

∂C

)♭C

=

∮

γ

1

¯̺
DivC

(
2
∂W

∂C
R

)♭C

μ(C)

=

∮

γ

1

R
DivC(Σ)♭C ,

by the Doyle–Ericksen formula (3.3) and the relation ¯̺ = Rμ(C).
The material covariance condition (5.5) becomes in this case

W
(
g
(
η
(
ϕ(X)

))
, TX(η ◦ ϕ),ϕ∗G(X)

)
=

(
W

(
g
(
η(_ )

)
, T_ η,G(_ )

)
◦ ϕ

)
(X),

for all ϕ ∈ Diff(B) which recovers the classical definition from elasticity (see Mars-
den and Hughes 1983, Definition 3.3.4) and hence the material is isotropic in the
usual sense. For such isotropic materials one can define the spatial energy density by

uΣ (g, c, ρ̄) := wΣ (g, c)ρ̄

and hence, if σ denotes the Cauchy stress tensor, we have

∂uΣ

∂g
=

∂wΣ

∂g
ρ̄ =

1

2
σμ(g)

by the Doyle–Ericksen formula.
The second boundary condition in Theorem 5.1 reduces to σ · ng|T Στ = 0, which

coincides with the second boundary condition in Theorem 3.2 for classical elasticity.
Kelvin’s circulation theorem (5.13) becomes

d

dt

∮

γt

v♭g =

∮

γt

1

ρ
Divg(σ )♭g .

Note that the general approach considered here allows for surface tension in an
elastic material in which case the conditions at the free boundary are

(
τκCN♭C + Σ · N♭C

)∣∣
∂τ B

= 0, respectively,
(
τκgn♭g + σ · n♭g

)∣∣
T Στ

= 0.

Hydrodynamics Fluids are defined by requiring that the internal energy density de-
pend only on the Jacobian of the deformation η. This is equivalent to the condition

U(g,T η,G, ¯̺ ) = E(g,T η, ¯̺ ) ¯̺ = e

(
¯̺

μ(η∗g)

)
¯̺ ,
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where e is the internal energy density in spatial representation. Indeed, if this condi-
tion holds then U depends only on the Jacobian ¯̺

μ(η∗g)
=

¯̺
η∗μ(g)

of the configuration
η relative to the volume μ(g) defined by the spatial metric g and the material mass
density ¯̺ .

The internal energy density in convective representation is

U (G,C, ¯̺ ) = E (C, ¯̺ ) ¯̺ = e

(
¯̺

μ(C)

)
¯̺ , C := η∗g.

The second boundary condition (5.4) becomes p ◦ η|∂B = τκC ; it appears in Theo-
rem 4.1.

A straightforward verification shows that fluids are isotropic materials and hence
they have a spatial representation. The spatial internal energy density is

uΣ (g, c, ρ̄) := e

(
ρ̄

μ(g)

)
ρ̄, c := η∗G, ρ̄ = η∗ ¯̺ .

We have

∂uΣ

∂g
= −

1

2
pμ(g)g♯, p = ρ2 ∂e

∂ρ
, ρ =

ρ̄

μ(g)

which recovers the definition of pressure in fluid dynamics.
The second boundary condition in Theorem 5.1 reduces to p|Σ = τκg , which co-

incides with the second boundary condition in Theorem 4.2 for free boundary fluids.
The Kelvin circulation theorems for both the convective and spatial representations
state that the circulation of the convective or spatial vector fields is zero:

d

dt

∮

γ

V
♭C = 0,

d

dt

∮

γt

v♭g = 0.

The fluids we considered here are barotropic, that is, the internal energy density e

depends only on ρ. Had the fluid been isentropic, that is, had e depended also on
entropy, the right hand sides in the Kelvin circulation theorems would not vanish; see
(Holm et al. 1998).
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