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REDUCTIBILITIES AMONG DECISION PROBLEMS

FOR HNN GROUPS, VECTOR ADDITION SYSTEMS

AND SUBSYSTEMS OF PEANO ARITHMETIC

MICHAEL ANSHEL AND KENNETH MCALOON

Abstract. Our purpose is to exhibit reducibilities among decision problems for

conjugate powers in HNN groups, reachability sets of vector addition systems and

sentences in subsystems of Peano arithmetic, and show that although these problems

are not primitive recursively decidable, they do admit decision procedures which are

primitive recursive in the Ackermann function.

By   the   class   of   vector   groups   VA   we   understand   the   HNN   groups

G(px,qx,...,pk,qk) given by

(1) (a,.ak,b; axxbp'ax = W.akxbPiak = bq"),

where the exponent pairs/?,, qi occurring in (I) are positive and relatively prime. (For

concepts and results of a group-theoretic nature not explicitly discussed here the

reader should consult Lyndon and Schupp [5].)

Let G be a vector group, m a positive conjugate power of / in G when bm = xb'x~x,

where x in G is given by a positive word in the generators a],...,ak, b of G (i.e. one

which involves no negative exponents). The set of positive conjugate powers of / in

G, or positive conjugate power set is denoted PCP(/, G).

By the equality problem for positive conjugate power sets, we mean the question of

determining for any integers /,, l2 and vector groups G,, G2, whether PCP(/,, Gx) —

PCP(/2, G2). The special equality problem is to decide the equality problem in those

cases where /, = l2 and G2 arises from G, by removing a particular generating

symbol a, and its corresponding defining relation a~xbp,ai = bq- from the presenta-

tion of G, as in (I). The finite special equality problem is to decide the special equality

problem in those cases where PCP(/,, G) is finite.

We identify a decision problem with the set of Gödel numbers of its instances and

use this identification to discuss the complexity of the problem.

A function g is primitive recursive in a function / iff g is in the class obtained by

primitive recursion and composition from/together with the usual initial functions.

It is shown in Anshel [1] that the special equality problem for vector groups is

undecidable. In contrast, we will prove

Theorem 1. The finite special equality problem for vector groups is

(i) decidable but not primitive recursive,

(ii) primitive recursive in the Ackermann function.
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By a vector addition system (of dimension n) we mean a pair (d, W), d in A/", IV a

finite subset of Z" (where N and Z denote the nonnegative integers and integers

respectively). Let us call d' reachable in (d, W) if d = d' or d' = d + w¡ + ■ ■ ■ +wn

wi in W and d + w, + • • • + ws in TV", s = 1,..., f.

Let 7\((7, Pi7) denote the reachable vectors in (d, W) or reachability set of (í/, H7).

Let A" be a class of vector addition systems. By the equality problem for K we mean

the problem of deciding for arbitrary (dx, Wx), (d2, W2) in K whether R(d{, Wt) =

R(d2, IV2). The special equality problem for K is to decide the equality problem in

those cases where d] = d2 and W2 arises from W] by removal of a vector.

Let VAS denote the class of vector addition systems and BVAS denote the

bounded vector addition systems (i.e. (d, W) is in BVAS iff R(d,W) is finite). (For a

general introduction to vector addition systems via their graph-theoretic counter-

parts, Petri nets, the reader should consult Peterson [9].)

We say that a function / is Kalmar-elementary or simply elementary, if / can be

obtained by composition, explicit transformation and limited recursion from the

exponentiation and successor functions. Thus / is elementary if / is in the Grzegor-

cyck class S3; in machine theoretic terms/is elementary if/can be computed by a

Turing machine bounded in space or time by an iterated exponential function of the

input length, that is, predictably computable in the sense of Ritchie. For an exposition

of these results the reader may consult Yasuhara [12].

We say that a decision problem A is elementarily reducible to B provided there is

an elementary function g: A -» B such that each instance x of A may be decided by

computing the instance g(x) of B and then deciding g(x). We say that A and B are

elementarily bireducible whenever each problem is elementarily reducible to the other.

We observe that if A and B are elementarily bireducible, then A is primitive

recursively decidable (in the Ackermann function) precisely when B is primitive

recursively decidable (in the Ackermann function).

Lemma 1. The (finite) special equality problem for vector groups is elementarily

bireducible to the special equality problem for (bounded) vector addition systems.

Proof. The following reduction of the (finite) special equality problem for vector

groups to the special equality problem for (BVAS) VAS is based on one in [1]. We

may assume w.l.o.g. that / is a nonzero integer, G, is given as in (I) and G2 arises

from G, by removal of a, and a~xbPi«ai = 6V

Reduction Algorithm A.

Step 1. Input/, GX,G2.

Step 2. Create a list cx,... ,cn of the positive prime divisors of the exponents of G,.

Step 3. For i = l,...,k, create the exponent lists eu,... ,eni and e'Xi,.. .,e'ni where

Pi = c\"' ■ ■ ■ <"' and q, = ce'^ ■ ■ ■ ce„->.

Step A. Compute the list sx,...,s„ of nonnegative integers uniquely determined by

the equation / = c\* ■ • ■ csn"T where /' is relatively prime to each c„ i = l,...,n.

Step 5. Create the vector addition systems (dx,W]),(d2, W2) where d = (sx,...,sn),

Wx consists of wx,...,wk and W2= Wx — (w, ), such that m>- = («,,...,«,„) with
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ujt,t— l,...,n, given as in the following manner:

\eJt,       ife,,7

Jl     I -e'.,    otherwise.

if eJt ¥= 0,

Step 6. Output (dx, Wx), (d2, W2).

From Lemma 1 of [1] we have that PCP(/,G,) = PCP(/,G2) iff R(d,Wx) =

R(d,W2). Moreover, PCP(/, G.) is finite iff R(d,Wl) is finite. That algorithm A

above defines an elementary function follows from the fact that the lists created in

Steps 2-4 are computable by elementary functions.

The required reduction of the special equality problem for (B)VAS to the (finite)

special equality problem for vector groups is exhibited below. Let (d, Wx), (d,W2)

be vector addition systems where d = (sx,...,s„), Wx = (wx,...,wk), W2= Wx —

(w: > and w¡ = («,,,.. .,«„,), ' = L- ■ • ,k. Also let cy denote they'th positive prime,

/= 1,...,«.
Reduction Algorithm B.

Step 1. Input (cf, Wx), (d, W2).

Step 2. Compute / = c\< ■ ■ ■ csn-.

Step 3. For i — l,...,k, compute p¡ = cf" • • • cenln, q¡ = c(u • ■ ■ c$", such that

/= I,---,«,

u,j,     ifuiJ>0, __ (-u,j,     if w, ̂  0,
e,j —

[0,       otherwise. [0, otherwise.

Step A. Create the vector groups GX,G2; G, = G(px,qx,...,pk,qk) and G2 ob-

tained from G, by omitting a, and the relation a~bp'oa¡ — bqi» from the presenta-

tion of G,.

Step 5. Output/, G ,,G2.

Now R(d, W¡) = R(d, W2) iff PCP(/, G,) = PCP(/, G2),and R(d, Wx) is finite iff

PCP(/, G,) is finite. That algorithm B defines an elementary function follows from

the fact that /, p¡, q¡, i = l,...,k, are computable by elementary functions.    D

The boundedness problem for a class K of vector addition systems (resp. vector

groups) is to decide for any (d, W) in K (resp. G in K and integer /) whether

R(d, W) is finite (resp. PCP(/, G) is finite).

Corollary 1. The boundedness problem for vector groups is elementary recursive.

Proof. Rackoff [10] has shown that the boundedness problem for VAS is

elementary recursive. The result is then immediate from Lemma 1 above.    D

Lemma 2. The special equality problem for bounded vector addition systems is (i)

decidable, (ii) not primitive recursive but (in) primitive recursive in the Ackermann

function.

Proof, (i) With each (d, W) in VAS we can recursively associate its Karp-Miller

coverability tree T which is finite (cf. Karp and Miller [3]). Moreover, if R(d, W) is

finite, then the nodes of T consist precisely of the reachable vector of (d, W). Thus
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given (dx, W7, ) and (d2, W2) in BVAS, to compare their reachability sets, it is enough

to compare their associated Karp-Miller coverability trees.

(ii) It follows from the proof of the reduction of the reachability set inclusion

problem (which asks if R(dx, W7,) is contained in R(d2, W2)) to the equality problem,

as given in Hack [2], that the inclusion problem for (B)VAS is elementarily

bireducible to the special equality problem for (B)VAS (a fact also understood by

Mayr [6]). It is a consequence of the Corollary to Theorem 7 of Mayr [6] that the

inclusion problem for BVAS is not primitive recursively solvable, and neither is the

special equality problem for BVAS.

(iii) By (i) it is enough to give an upper bound for the map KM: (d,W)h+ T

which associates with each (d, W) in VAS its Karp-Miller coverability tree T. The

proof that KM is primitive recursive in the Ackermann function is carried out in

McAloon [7]. The main steps are the following: Let 72, be the subsystem of Peano

Arithmetic obtained by restricting the induction scheme to 2 °-formulas (i.e. to those

of the form (3x)<P(x, h~) where í> contains only bounded quantifiers). Now given

(d, W), one has

(*) 72, I- 3T(T = KM(d, w)).

To obtain (*) one has to analyze the proof that the tree T associated with (d, W)

is, in fact, finite. One then has

(**) 72, + 1 — Consistency (72,) h 7<Mis a total function

(where 1 — Consistency (72,) asserts that every 2°-sentence provable in 72, is

true). By applying results of Kirby and Paris [4] and Paris [8], all recursive functions

provably total in 72, + 1 — Consistency (72,) are primitive recursive in the Acker-

mann function.    D

Observe that Theorem 1 follows directly from Lemmas 1 and 2 above.

Let (B)VAS„ denote the class of (bounded) vector addition systems of dimension

n. For each of the decision problems discussed above, there is naturally a version at

dimension n. We have the following result.

Theorem 2. Let n > 0; the inclusion, equality and special equality problem for

BVAS„ are all primitive recursive.

Idea of Proof. For each dimension n, we have again by an analysis of the proof

that the Karp-Miller coverability tree associated with a system is finite

72, I- \f(d,W) [(dxW) of dimension n - 3T (T = KM(d,W'))].

Hence, by the methods of Proof Theory (cf. Takeuti [11]) or by the methods of

Model Theory (cf. Kirby and Paris [4], Paris [8]) the function KM restricted to

systems of dimension n is primitive recursive.

Remark. The above result shows that the complexity of the special equality

problem for BVAS comes from the fact that the arbitrary dimensions are considered.

Remark. The above result also leads to some open questions as to what reducibili-

ties exist among the various decision problems at dimension n. From the work of
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Hack [2] we do know that the inclusion problem for (B)VAS at dimension n is

polynomial time reducible to the special equality problem for (B)VAS at dimension

n + 5.

Our reductions imply that there should be a notion of dimension of vector groups.

The one which emerges is the following: define the dimension of a vector group

G(px,qx,...,pk,qk) as the number of distinct positive prime divisors of the expo-

nents Pi, q¡, i = l¡,...,k. We then have

Corollary 2. Let n > 0; the finite special equality problem for VAn, the class of

vector groups of dimension n, admits a primitive recursive decision procedure.
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