Reducibility among Geometric
Location-Allocation
Optimization Problems*

Chanderjit Bajaj

TR 84-607
May 1984

Department of Computer Science
Cornell University
Ithaca, New York 14853

*This research was supported by NSF grant MCS81-01220.



Reducibility among Geometric
Location-Allocation Optimization Problems i

Chanderjit Bajaj

Department of Computer Science,
Cornell University,
Ithaca, NY 14853.

ABSTRACT

Three different classes of multiple points location-allocation
problems in the Euclidean plane are considered under a discrete
optimization criterion which minimizes the maximum cost based on
certain interpoint distances. Each of these classes of geometric
optimization problems is studied with three different distance
metrics (Euclidean, Rectilinear, Infinity) as well as for feasible solu-
tion sets in the plane which are both discrete and infinite. All of
these problems are shown to be polynomial-time reducible to each
other and furthermore D? complete .
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1. Introduction

A minimax location objective is one which minimizes the maximum cost
resulting from a given location solution. Various applications have been raised in
facility location theory [FW74],[KP79], where there exists sufficient justification
in minimizing the effects of the worst situation. A common real world situation
that might be formulated with a minimax objective is one of locating health clin-
ics so that the maximum distance a patient must travel to a clinic is minimized.
Another example concerns the placement of fire stations in a large metropolitan
area such that the maximum distance between any location within the city and
the nearest fire station is minimized.

Under this minimax location objective it is possible to distinguish two basic
approaches that have been taken in the literature on sources location. The first
suggests that a location site may be selected anywhere in the area of interest on
the plane, giving an infinite number of possible location sites. The second
approach considers only a finite number of known sites as feasible and models the
constraints imposed on the possible location of sources, ensuring that undesirable
and impractical locations need not be considered. The various distance metrics
used, Euclidean (l,), Rectilinear (I,) and Infinity 1} , reflect the appropriate
travel restrictions for the emergency vehicles of the problem, e.g. ambulances,
helicopters, fire engines etc..

In this paper we analyze the complexity of certain geometric optimization
problems which arise frequently in the above application areas, amongst others.
We consider three different classes of multiple points location-allocation problems
in the plane under a minimax optimization objective. We are given a set
T={(z;,y;), i=1..n}, the location of n fixed destination points (destinations) in
the plane and need to locate a number of points (sources) to service the destina-
tions in a way which behooves the application on hand.

Three different optimizing objectives are considered as Py, Py and P below.
In the case of locating multiple sources, the allocation of the destinations to the
sources must also be ascertained. A common assumption for these problems [C63]

+ Between two points a=(a,,ay) and b=(b ,by) in the plane the [, distance is
|a,—b, |+ |a -by l ; the 12 distance is [(az—bz )2-}- (ay—by)zl ; and the IOO dis-
tance is max( [a,-b, |, |a,~b, |)
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is that the sources are considered to be uncapacitated; that is there are no capa-
city limitations. As a consequence, each destination can be completely serviced
by a single source though a source can itself service more than one destination.
Furthermore in the optimal solution each destination is allocated to its closest
located source. However this optimal allocation, which is just one of the exceed-
ingly large number of possible allocations?, is not known a priori and needs to be
determined.

Given the set T, as specified before, of n destinations in the plane

(P,) Locate k points (sources) so as to minimize the mazimum of the weighted
distances between the destinations and the sources closest to them.

(P,) Locate k points (sources) so that for a marimum number of destinations the
weighted distances of these destinations from their closest sources does not
exceed a prescribed limit R.

(P3) Locate a minimum number of points (sources) so that the mazimum of the
weighted distances of the destinations and their closest sources does not
exceed a prescribed limit R.

The weighted distances mentioned above come from a weight w; assigned to
each destination j and is some measure of the special cost of serving destination
J in traveling from its closest source . However in the following problems we
assume that all weights are equal (similar to assuming that w; = 1, for Jj=1..n)
and show that even for this restricted case the above problems are quite difficult.

Problems P, P, and P3 allow location of the sources to be anywhere in the
plane.

Let problems @, @, and @5 correspond to problems Py, P, and P3 respec-
tively, with the location of the sources being restricted to a finite discrete set S
of possible locations in the plane and of size polynomial in n.

The capacitated versions of these geometric location-allocation (with sources
having finite capacities), turn out to be various cases of the more familiar tran-
sportation location problems and under discrete solution space constraints, to be
the plant location and warehouse location problems [FW74].

2. Problems with the Euclidean distance metric

Under the minimax criterion with Fuclidean [, distance metrics each of the
above location-allocation problems reduces in a direct fashion to the location of
equal radius circular disks (circles) on the Euclidean plane, with the centers of the
circles corresponding to the location of the sources. Further all the destinations
covered by the same circle correspond also in a direct fashion to an allocation to
the same source. Having equal weights for the above problems results in equal
sized circles. Considering each of the above problems P’s and @’s for equal

t The total number of possible assignments (allocations) of  destinations to & sources is
S(n,k), the Stirling number of the 2nd kind.
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sized cireles which we call problems PC’s and @QC’s we show that each of these
problems are complete for the complexity class D?. This then gives us an idea of
the inherent computational complexity of the above problems P’s and @’s under
the Fuclidean distance metric.

The class of D? was defined in [PY82] as follows : L is in DP 4ff I is an
intersection of L, and L, such that L is in NP and L, is in Co~NP. D? con-
tains both NP and Co-NP and is contained in Af=P?. Alternatively D?
can be defined as the class of all predicates R (z) that can be expressed as R(z)
= [3y P(z,y)]A[Vz Q(z,z)] for some polynomially balanced and polynomial-
time checkable P and @.

We denote the Euclidean plane by E? and a circle locatable anywhere in E?
means the center of the circle can be any point in the Euclidean plane. Further-
more we define an R -ctrcle to be a circle of radius R.

(PC,)Is R the minimum radius of k equal sized circles locatable anywhere in E?
to cover the n points ?

(PC,)ls m the mazimum number of points that k, R—circles locatable anywhere
in E2% can cover ?

(PC3)is k the minimum number of R-circles locatable anywhere in E? to cover
n points?

For the constrained location problems we assume that there exists a finite
discrete set of points SCE? and the location of the circles is constrained to be
from this set. A circle locatable anywhere in .S means the center of the circle is a
point of this set.

(QC)Is R the minimum radius of k equal sized circles locatable anywhere in S
to cover the n points ?

(QC,y)ls m the mazimum number of points that k, R—circles locatable anywhere
in S can cover ?

(QC3)ls k the minimum number of R—circles locatable anywhere in 5 to cover
the n points?

We first show that the problem PCj; of locating the minimum number of
R —circles in E? to cover all the n demand points is D? complete by reducing
(Sat,UnSat), a known DP complete problem [PY82], to it. We adapt certain con-
structions previously specified in [FPT81]. Next we show that all the above
remaining problems are D? complete by a series of polynomial time reductions.
To show a problem to be complete for this class D? we differ from [PY82] in that
we use polynomial-time positive (disjunctive) reductions [LLS74],[S82] as opposed
to polynomial-time many-one reductions. These positive reductions seem some-
what weaker than many-one reductions, however appear to be considerably
stronger than Turing reductions.

In a simplistic fashion any form of polynomial-time oracle-reducibility (which

includes both positive and Turing reductions), is a Boolean formula of a polyno-
mial number of queries to the oracle. The essential restriction for positive
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reductions is that the Boolean formula is a positive formula. Sufficient to our pur-
pose here, the Boolean formula is positive if it only contains disjunctive (V) and
conjunctive (A) Boolean connectives. Furthermore, in positive reductions, like in
other truth-table reductions [LLS74], one is restricted to a prespecified list f(z)
based on input z, from which alone one can make queries. These restrictions are
severe. First, these restrictions allow only a polynomial number of feasible
queries for polynomial-time positive reductions, while an exponential number of
feasible queries exist for polynomial-time Turing reductions (a tree of polynomial
depth). Second, in positive reductions one is restricted from the use of the nega-
tion (not) Boolean connective which disallows using the ‘No’ answer of the oracle
to say ‘Yes’ to the computation using the oracle.

It is also important to note that the special case of disjunctive, conjunctive
positive reductions which we use here are by far the strongest of the various
other positive and truth-table reducibilities known [LLS74],{S82]. In turn, any
truth-table reduction is stronger than the Turing reduction.

In [S82], it is proved that, similar to polynomial-time many-one reductions,
polynomial-time positive reductions preserve the class of NP . That is if a
language L, polynomial-time positive reduces (or polynomial-time many-one
reduces) to a language L, then L,e NP=L eNP. A similar fact is true for the
class Co-NP. We feel therefore that these positive reductions are adequate to
separate the class of D? complete languages from the classes of NP and Co-NP,
(assuming NP5#co-NP). A similar argument is given when using polynomial-
time Turing reductions as opposed to polynomial-time many-one reductions, in
separating the class of NPcomplete languages from the class of P, since both
Turing reductions as well as many-one reductions preserve the class of P. It is
also important to note that polynomial-time Turing reductions which do not
preserve the class of NP, are not adequate in separating D? languages from NP
and Co—-NP. Thus, for instance, it is possible to polynomial-time Turing reduce
(Sat,Unsat), a known D? complete problem to (Sat) a known NPcomplete prob-
lem.

On the above classes of problems, P’s and @'’s, the question of irrational
quantities which could result due to square roots of the Euclidean distance metric
[GGJ76] can be eliminated by squaring, since any comparison in these problems
involves at most two Euclidean distances.

Theorem 1: PC3 is D? complete.
Proof : The problem is in D? since it can be rephrased as the conjunction of
a predicate in NP and a predicate in Co-NP: (3(b;,..,b; )inE?)[R -circles with

13
centers at b, ,..,b; cover n points] A (¥(b;,..,b inE?)|R -circles with centers at
b, ,.,b;
JU kA

cover <n points].
To prove the completeness we reduce (Sat, Unsat) to PC3, using
polynomial-time positive (disjunctive) reductions.

Ik -1)

[P

Starting from (F,, F,) and adapting a polynomial time construction in
[FPT81] we construct two separate sets of points S; and S, in the plane such
that for 1=1,2, exactly k;, R—circles are required to cover all the n; points in S;
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if F; is satisfiable. Further if F; is not satisfiable, at least k;+ 1 and at most
k;+ ¢;, R-circles are needed to cover all the n; points of S;, where ¢; is the

number of clauses in the CNF formula F;.

Now construct ¢, additional copies of the set of points S5;. We now have
(co+ 1) copies of sets of points S| and a single set of points S,. It is important to
note why (co+ 1) copies of S; are required. Let n = (co+ 1)n;+ ny. It is not
hard to see that k, the minimum number of circles of radius R needed to cover
all the n points, satisfies (cot 1)k i+ kot 1<k (ot L)k + kot co iff Fy is
satisfiable and F, is not satisfiable. Since this is a disjunction of at most c4 calls
of PCj;, problem PCj is D? complete under a polynomial-time positive (disjunc-
tive) reduction from (Sat, Unsat). a

Theorem 2: PC, is D? complete .

Proof : The problem is in D? since it can be rephrased as before, as the con-
junction of a predicate in NP and a predicate in Co-NP:
(E(bil,..,b;k)inEz)[R~cz'rcles with centers at b;,.,b, cover m points] A
(V(b,,..,b; }yinE?)[R ~circles with centers at b, ...b. cover <m points].

Jv Yk FRUEAS
To prove the completeness we again reduce (Sat, Unsat) to PCj, using
polynomial-time positive (disjunctive) reductions in a way very similar to above.

Starting from (F';, F'y) we construct two separate sets of points S; and Sy in
the plane such that for ¢1=1,2, k;, R-circles are required to cover all the n;
points in S; if F; is satisfiable. Further, if F; is not satisfiable, k;, R —circles can
cover at least n;—c; points and at most n;—1 points of S;, where c; is the number

of clauses in the CNF formula F;.

Now construct ¢, additional copies of the set of points S;. We now have
{¢ o+ 1) copies of sets of points S, and a single set of points S,. It is important to
note why (co+ 1) copies of S, are required. Let k = (co+ 1}k + ko It is not
hard to see that m, the maximum number of points that can be covered by k cir-
cles of radius R, satisfies (cot 1)n 1+ ng-co<m<K(cot 1)n+no-1 iff Fy is
satisfiable and F', is not satisfiable. Since this is a disjunction of at most ¢, calls
of PC,, problem PC, is DP complete under a polynomial-time positive (disjunc-
tive) reduction from (Sat, Unsat). O

Theorem 3: PC is D? complele.

Proof : The problem is in D?, when R is restricted to integers?, since it can
be rephrased as before, as the conjunction of a predicate in NP and a predicate
in Co-NP: (E(b,-l,..,b,-k)inE2)[R~circles with centers at b; ,..,b; cover n points] A

(V(b;.,...b; )inE?)[ (R -1)-circles with centers at b; ..,b. cover <n points].

Jvo Y Jve Uk

To prove it complete we show that PC5 polynomial-time positive reduces to
PC,. We construct a set S of the radii of all possible circles which minimally
cover n points in the plane. Since the minimum enclosing circle for a set of
points is defined by exactly two or three of the points, the total size of S is at

4 Otherwise the problem appears to be DP hard when R is in general, a real number.
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most [g] + (g) which is O(n%). We claim that k is the minimum number of

R —circles that cover all n points iff for some seS, s<R, s is the minimum
radius of k circles to cover all n points and for some se¢S, s>R, s is the
minimum radius of k-1 circles to cover all n points. The proof is straightfor-
ward and follows from the definitions of the two problems PC; and PC;. Again
since we have a conjunction of two sets of disjunctive calls of PC, {at most
O(n?®) calls}, we have a polynomial-time positive reduction from PCj to PC,. O

Theorem 4: QC3 is D complete.

Proof : The problem is in D? since it can be rephrased as the conjunction of
a predicate in NP and a predicate in Co—NP: (3(b;,..,b; )eS)[R—circles with
;, cover n points] A (V(b;,..,b

centers at b; ,..,b )eS)[R—circles with centers at
cover <n points].

bj,sb

To prove it complete we prove that PC5 polynomial-time many-one reduces
to QCs. It suffices to show that for any set T of n destination points in the
plane there exists a finite set S CFE?, such that if a minimum of k, R—circles can
cover T then these R —circles can be chosen to have their centers in S. Further-
more, S must be constructible in time polynomial in n.

717 %5a

fia

We claim one can choose such an S=T | J {intersection points of R —circles
centered at the points of T}. For a proof of this claim let F' be a (minimal) set
of circles of radius R covering T and let circle C'eF. If C' contains only a single
point peT, replace C' by an R —circle centered at pe TCS. Otherwise, if C con-
tains more than one point, move C without uncovering any point of T, until two
points p,qeT, lie on the boundary of the moved circle C'. Clearly the center ¢
of C’ lies at an intersection of the R —circles centered at p and ¢. Thus ceS. {A
similar duality was proved and exploited in [BL83]}.

Finally note that S contains at most O(n?) points and can be constructed in
O(n?) time. 0O
Theorem 5: QC, is D? complete.

Proof : The problem is in D? since it can be rephrased as before, as the con-
junction of a predicate in NP and a predicate in Co-NP:
(3(b;,--,b;, JeS) R -circles with centers at b;,..b, cover m points] A
(V(b;,..,b; )eS)[R —circles with centers at b ..,b. cover <m points]

IV 2107777 1k
To prove it complete we exhibit a polynomial-time reduction from PCj4 to
QC, similar to the proof of Theorem 4. Again construct the set of points S=T
{intersection points of R-circles centered at the points of T}. As before
there is no loss of coverage and it suffices to consider cnly the set of points S as
possible location centers; n remains the maximum number of points covered by
k, R—circles if n is the maximum number of points covered by locating the k,
R -circles anywhere in E2. [J

Theorem 6: QC is D? complete.

Proof : The problem is in DP, when R is restricted to integers, since it can
be rephrased as before, as the conjunction of a predicate in NP and a predicate
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in Co-NP: (3(b; ,..,b; )eS)|R —circles with centers at b;,..,b; cover n points] A
(V(b;.,..,b; )eS)[(R-1)-circles with centers at b, ,..,b. cover <n points].

Jv Vg Jv Yl

To prove it complete we exhibit a polynomial time reduction from PC; to
QC, similar to the proofs of Theorems 4 and 5. Again construct the set of points
S=T |J {intersection points of R-circles centered at the points of T'}. It
suffices to see that there is no loss of coverage in considering only the set S as
possible location centers and R remains to be the minimum radius of the k cir-
cles covering the n points if R is the minimum radius of the k circles locatable
anywhere in E2 to cover the n points. [

3. Problems with the rectilinear and infinity distance metrics

With the rectilinear 1| distance metrics each of the above location-allocation
problems reduces to the location-allocation of equal sized diamonds (squares
rotated by 45 ) with the intersection points of their diagonals corresponding to
the location of the sources. Again assuming equal weights for the destinations
results in our considering each of the previous problems P’s and @’s for equal
sized diamonds which we call the problems PD’s and QD'’s.

These problems PD’s and @D’s are exactly similar to the problems PC'’s
and QC's listed in section 2, with the geometric objects to be located now, being
equal sized diamonds of half-diagonal length R instead of R -circles. Also a dia-
mond locatable anywhere in S or E? means the interseciion point of the diago-
nals of the diamond can be any point in the finite discrete set S or the Euclidean
plane respectively.

For these problems both membership and completeness for the class of D?
carry over in a fashion quite similar to the proofs of Theorems 1 to 6. Each of the
constructions used here as well as the adapted constructions of [FPT8&1], can be
modified in a direct fashion for diamonds (as well as squares). Thus we have the
following result.

Theorem 7: PD|,PD,,PD3 and QD ,QD,, QD3 are all D? complete

An identical set of arguments as above, apply to the infinity |  distance
metric where now each of the above location problems reduces to the location of
equal sized squares of half-edge length R, having sides parallel to the respective
coordinate axes. Again the intersection points of the square’s diagonals
corresponds to the location of the sources. The problems P’s and @’s for equal
sized squares are called the problems PS’s and @S’s and again by adapting the
proofs of Theorems 1 to 6 we have the following result.

Theorem 8: PS,PS,,PS; and Q5,055,055 are all D? complete

4. Conclusion

We have shown that a number of different geometric optimization problems
arising from muitiple points location-allocation in the plane, under a discrete
optimization criterion which minimizes the maximum cost based on certain inter-
point distances, are all computationally equivalent with respect to polynomial-
time positive reductions. Furthermore, all these above problems having an infinite
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feasible solution region (a subset of the Euclidean plane) are polynomial-time
many-one reducible to similar problems where the feasible solution sets are con-
strained to be discrete and of size polynomial in the number of given points.
Furthermore each of these problems lies in the complexity class D? and is also
DP? complete .

We can also claim that all of the above problems are strongly D? complete
analogous to the similar concept for NPcomplete languages, since all the above
constructions hold even when the largest number occurring in any instance of the
problems, that is parameter R and the coordinate points in set T, are restricted
to be of size bounded by a polynomial in n.
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