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Reducibility of 1-d Schrödinger equation with time

quasiperiodic unbounded perturbations, II

D. Bambusi∗,

April 25, 2018

Abstract

We study the Schrödinger equation on R with a potential behaving as x2l at infinity, l ∈

[1,+∞) and with a small time quasiperiodic perturbation. We prove that, if the perturbation

belongs to a class of unbounded symbols including smooth potentials and magnetic type

terms with controlled growth at infinity, then the system is reducible.

1 Introduction

The present paper is a continuation of [Bam16] in which a reducibility result for the time depen-
dent Schrödinger equation

iψ̇ = (H0 + ǫW (ωt))ψ , x ∈ R (1.1)

H0 = −∂xx + V (x) , (1.2)

with W a suitable unbounded perturbation was proved. The improvement we get here is that
we deal with a more general class of perturbations. For example we prove here reducibility, if
V (x) ≃ |x|2l, l ≥ 1, as x→ ∞, and

W (ωt) = a0(x, ωt)− ia1(x, ωt)∂x , (1.3)

with ai functions of class C∞ fulfilling
∣∣∂kxa0(x, ωt)

∣∣ � 〈x〉β2−k , β2 < l , (1.4)
∣∣∂kxa1(x, ωt)

∣∣ � 〈x〉β3−k ,

{
β3 < l − 1 if 1 < l ≤ 2
β3 < l/2 if 2 < l

; (1.5)

in the case l = 1, a1 must vanish identically. The theory developed in [Bam16] only allowed to
deal with the case of polynomial a0 and a1, but a faster growth at infinity of both a0 and a1 was
allowed.

As usual, boundedness of Sobolev norms and pure point nature of the Floquet spectrum
follow.

We recall that previous results on the reducibility problem for perturbations of the Schrödinger
equation have been obtained in quite a number of papers for the superquadratic case with
bounded or unbounded perturbations (see in particular [DŠ96, DLŠV02, BG01, LY10, EK09]);

∗Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, I-20133 Milano.

Email: dario.bambusi@unimi.it

1

http://arxiv.org/abs/1607.06650v1


in the quadratic case the only available results deal with bounded perturbations [Com87, Wan08,
GT11, GP16]. The result of the present paper allows a growth of the perturbation at infinity
faster then all the previous papers dealing with the one dimensional case (except [Bam16]). On
the other hand, we assume here that W is a symbol with the property that its derivatives of
suffitiently high order decay fast at infinity (essentially as in (1.4),(1.5)); this is not required in
most papers on reducibility. Concerning the higher dimensional case, it is not clear if the present
method can be extended in order to deal with it.

The idea of the proof (following [PT01, BBM14], see also [Mon14, FP15, BM16]) is to use
pseudo-differential calculus in order to conjugate the original system to a system with a smoothing
perturbation and then to apply KAM theory. In the present paper we just prove the smoothing
result, since afterwards one can apply the KAM type theorem of [Bam16] in order to conclude
the proof. From the technical point of view the result is obtained by introducing a new class of
symbols. However, when working with such a class it becomes quite complicated to show that
the function used to generate the smoothing transformation is actually a symbol. The proof of
this property occupy the majority of the paper. We also would like to mention that the class of
symbols we use is a variant of the class introduced by Hellfert and Robert in [HR82b].
Acknowledgments. This paper originated from a series of discussions with quite a lot of people.
In particular I warmly thank P. Baldi, R. Montalto and M. Procesi who explained to me in a
quite detailed way their works. During the preparation of the present work I benefit of many
suggestions and discussions with A. Maspero and D. Robert. In particular D. Robert pointed to
my attention (and often explained me) the papers [HR82b, HR82a]. I also thank B. Grébert for
some relevant discussions on the Harmonic case.

2 Statement of the Main Result

Fix a real number l ≥ 1 and define the weights

λ(x, ξ) :=
(
1 + ξ2 + |x|2l

)1/2l
, 〈x〉 :=

√
1 + x2 (2.1)

Definition 2.1. The space Sm1,m2 is the space of the symbols g ∈ C∞(R) such that ∀k1, k2 ≥ 0
there exists Ck1,k2 with the property that

∣∣∣∂k1

ξ ∂k2
x g(x, ξ)

∣∣∣ ≤ Ck1,k2 [λ(x, ξ)]
m1−k1l 〈x〉m2−k2 . (2.2)

The best constants Ck1,k2 such that (2.2) hold form a family of seminorms for the space Sm1,m2 .

To a symbol g ∈ Sm1,m2 we associate its Weyl quantization, namely the operator gw(x,Dx),
Dx := −i∂x, defined by

Gψ(x) ≡ gw(x,Dx)ψ(x) :=
1

2π

∫

R2

ei(x−y)·ξg

(
x+ y

2
; ξ

)
ψ(y)dydξ . (2.3)

We will denote by a capital letter the Weyl quantized of a symbol denoted with the corresponding
lower case letter. The only exception will be the perturbation W (we mainly think of it as a
potential).

In the following we will denote by Sm1,m2 := C∞(Tn, Sm1,m2) the space of C∞ functions on
Tn with values in Sm1,m2 . The frequencies ω will be assumed to vary in the set

Ω := [1, 2]n ,

or in suitable closed subsets Ω̃.
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We denote by Sm1,m2

N the space of the symbols which are only N times differentiable and
fulfill the inequality (2.2) only for k1 + k2 ≤ N . This is a Banach space with the norm

‖g‖Sm1,m2
N

:=
∑

k1+k2≤N

sup
(x,ξ)∈R2

∣∣∣∂k2
x ∂k1

ξ g(x, ξ)
∣∣∣

[λ(x, ξ)]m1−lk1〈x〉m2−k2
. (2.4)

We remark that for the space Sm1,m2 a family of seminorms is given by the standard norms
of CM (Tn;Sm1,m2

N ) as M and N vary.
In the case l > 1, the potential V defining H0 is assumed to belong to S0,2l to be symmetric,

namely
V (x) = V (−x) , (2.5)

and furthermore to admit an asymptotic expansion of the form

V (x) ∼ |x|2l +
∑

j≥1

V2l−2j(x) (2.6)

with Vk homogeneous of degree k, namely s.t., Vk(ρx) = ρkV (x), ∀ρ > 0.
We also assume that

V ′(x) 6= 0 , ∀x 6= 0 . (2.7)

Remark 2.2. The assumptions (2.5), (2.6) are used in order to simplify the proofs of Lemmas
3.13 and 3.14; they can probably be relaxed. Assumption (2.7) can also be weakened in order to
deal with the case where the set of the critical points of V is bounded.

An example of a non-polynomial potential fulfilling the assumptions is

V (x) = 〈x〉2l .

In the case l = 1 we assume that
V (x) = x2 .

The unperturbed Hamiltonian H0 is the quantization of the classical Hamiltonian system
with Hamiltonian function

h0(x, ξ) := ξ2 + V (x) . (2.8)

Remark 2.3. As a consequence of the assumptions above all the solutions of the Hamiltonian
system h0 are periodic with a period T (E) which depends only on E = h0(x, ξ).

We will denote by Φt
h0

the flow of the Hamiltonian system (2.8).
We denote by λvj the sequence of the eigenvalues of H0. In what follows we will identify L2

with ℓ2 by introducing the basis of the eigenvector of H0.
We use the symbol A(x, ξ) := (1 + h0(x, ξ))

l+1
2l to define, for s ≥ 0, the spaces Hs =

D([Aw(x,−i∂x)]
s) (domain of the s- power of the operator operator Aw(x,−i∂x)) endowed by

the graph norm. For negative s, the space Hs is the dual of H−s.
We will denote by B(Hs1 ;Hs2) the space of bounded linear operators from Hs1 to Hs2 .
In order to state the assumptions on the perturbation we define the average with respect to

the flow of h0:

〈W 〉(x, ξ, ωt) := 1

T (E)

∫ T (E)

0

W (Φτ
h0
(x, ξ), ωt)dτ ; (2.9)
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then, for m ∈ R, we denote
[m] := max {0,m} . (2.10)

Concerning the perturbation, we assume that W ∈ Sβ1,β2 and we define

β̃ :=

{
2β1 + [β2] + [β2 − 1]− 2l + 1 if 〈W 〉 ≡ 0 and l > 1

β1 + [β2] otherwise
. (2.11)

Theorem 2.4. Assume
β̃ < l and β1 + [β2] < 2l− 1 ,

then there exists ǫ∗ > 0 and ∀ |ǫ| < ǫ∗ a closed set Ω(ǫ) ⊂ Ω and, ∀ω ∈ Ω(ǫ) there exists a unitary
(in L2) time quasiperiodic map Uω(ωt) s.t. defining ϕ by Uω(ωt)ϕ = ψ, it satisfies the equation

iϕ̇ = H∞ϕ , (2.12)

with H∞ = diag(λ∞j ), with λ∞j = λ∞j (ω, ǫ) independent of time and

∣∣λ∞j − λvj
∣∣ ≤ Cǫj

β̃

l̃+1 , (2.13)

for some positive C. Furthermore one has

1. lim
ǫ→0

|Ω− Ω(ǫ)| = 0;

2. ∀s, r ≥ 0, ∃ǫs,r > 0 and sr s.t., if |ǫ| < ǫs,r then the map φ 7→ Uω(φ) is of class
Cr(Tn;B(Hs+sr ;Hs)); in particular one has s0 = 0 and s1 = β1 + [β2].

3. ∃b > 0 s.t. ∀|ǫ| < ǫs,1, one has ‖Uω(φ) − 1‖B(Hs+β1+[β2];Hs) ≤ Csǫ
b.

Remark 2.5. If W is the sum of different addenda, then Theorem 2.4 applies also if its as-
sumptions are fulfilled by each of the addenda separately. This is particularly relevant in the case
where the average of some of the addenda vanishes. Thus in this case the value of β̃ can depend
on the addendum one is considering.

Corollary 2.6. If W is given by (1.3), then Theorem 2.4 applies under the conditions (1.4) and
(1.5).

Proof. The condition on β2 is obvious. Consider the addendum −ia1(x, ωt)∂x, which has symbol

a1(x, ωt)ξ + S0,β3−1 ,

and remark that, by Eq. (4.14) below, the average of the main term vanishes and therefore for
this term β̃ is given by the first of (2.11) which is made explicit by (1.5).

Remark 2.7. In the case of the quartic oscillator (l = 2) and perturbation of the form (1.3),
we have the bounds β2 < 2 and β3 < 1. We recall that [LY10] had β2 ≤ 1 and β3 ≤ 0, but the
perturbation was not assumed to be asymbol. In [Bam16] we were able to deal also with some
cases with β2 = 4 and β3 = 2, but only when a0, and a1 are polynomial.

We also remark that the assumption that the functions ai are symbols rules out cases like
ai(x, ωt) = cos(x− ωt).

Remark 2.8. In the case of the Harmonic oscillator we cover the perturbations of the class
considered in [Wan08] (in which the decay at infinity of a0 and its derivatives are exponential)
and in the counterexample of [Del14].

On the contrary the perturbations in [GT11] (which must decay at infinity) and in [GY00]
can belong to a class of symbols in which the decay at infinity does not improve as one extracts
derivatives.
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3 Proof of Theorem 2.4

3.1 Some symbolic calculus

First we remark that Sm1,m2 ⊂ Sm1+[m2],0.
In the proof we will also need the classes of symbols used in [Bam16], thus we recall the

corresponding definitions

Definition 3.1. The space Sm is the space of the symbols g ∈ C∞(R) such that ∀k1, k2 ≥ 0
there exists Ck1,k2 with the property that

∣∣∣∂k1

ξ ∂k2
x g(x, ξ)

∣∣∣ ≤ Ck1,k2 [λ(x, ξ)]
m−k1l−k2 . (3.1)

In order to deal with functions p such that there exist a p̃ with the property that

p(x, ξ) = p̃(h0(x, ξ)) ,

we introduce the following class of symbols.

Definition 3.2. A function p̃ ∈ C∞ will be said to be of class S̃m if one has

∣∣∣∣
∂kp̃

∂Ek
(E)

∣∣∣∣ � 〈Em
2l−k〉 . (3.2)

By abuse of notation, we will say that p ∈ S̃m if there exists p̃ ∈ S̃m s.t. p(x, ξ) = p̃(h0(x, ξ)).
We will also need to use functions from Tn to S̃m. The corresponding class will be denoted

by S̃m.
We now give a reformulation of the results of sect. 4.1 of [Bam16] in the case of the symbols

of the classes Sm1,m2 .
The application of the Calderon Vaillencourt theorem yields the following Lemma.

Lemma 3.3. Let f ∈ Sm1,m2 , then one has

fw(x,Dx) ∈ B(Hs1+s;Hs) , ∀s , ∀s1 ≥ m1 + [m2] . (3.3)

Given a symbol g ∈ Sm1,m2 we will write

g ∼
∑

j≥0

gj , gj ∈ Sm
(j)
1 ,m

(j)
2 , m

(j)
1 + [m

(j)
2 ] ≤ m

(j−1)
1 + [m

(j−1)
2 ] , (3.4)

if ∀κ there exist N and rN ∈ S−κ,0, s.t.

g =

N∑

j=0

gj + rN .

Lemma 3.4. Given a couple of symbols a ∈ Sm1,m2 and b ∈ Sm′

1,m
′

2 , denote by aw(x,Dx) and
bw(x,Dx) the corresponding Weyl operators, then there exists a symbol c, denoted by c = a♯b
such that

(a♯b)w(x,Dx) = aw(x,Dx)b
w(x,Dx) ,

furthermore one has

(a♯b) ∼
∑

j≥0

cj (3.5)
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with

cj =
∑

k1+k2=j

1

k1!k2!

(
1

2

)k1
(
−1

2

)k2

(∂k1

ξ Dk2
x a)(∂

k2

ξ Dk1
x b) ∈ Sm1+m′

1−lj,m2+m′

2−j .

In particular we have

{a; b}q := −i(a♯b− b♯a) = {a; b}+ Sm1+m′

1−3l,m2+m′

2−3 , (3.6)

where
{a; b} := −∂ξa∂xb+ ∂ξb∂xa ∈ Sm1+m′

1−l,m2+m′

2−1 ,

is the Poisson Bracket between a and b, while (3.6) means that {a; b}q = {a; b}+some quantity
belonging to Sm1+m′

1−3l,m2+m′

2−3.

Definition 3.5. An operator F will be said to be a pseudo-differential operator of class Om1,m2

if there exists a sequence fj ∈ Sm
(j)
1 ,m

(j)
2 with m

(j)
1 + [m

(j)
2 ] ≤ m

(j−1)
1 + [m

(j−1)
2 ] and, for any κ

there exist N and an operator RN ∈ B(Hs−κ;Hs), ∀s such that

F =
N∑

j≥0

fw
j +RN . (3.7)

In this case we will write f ∼ ∑
j≥0 fj and f will be said to be the symbol of F ; the function

f0 will be said to be the principal symbol of F .

Concerning maps we will use the following definition

Definition 3.6. A map Tn ∋ φ 7→ F (φ) ∈ Om1,m2 , will be said to be smooth of class Om1,m2

if the functions of the sequence fj also depend smoothly on φ, namely fj ∈ Sm
(j)
1 ,m

(j)
2 and the

operator valued map φ 7→ RN (φ) has the property that for any K ≥ 1 there exists aK ≥ 0 s.t.
for any N one has

RN (.) ∈ CK(Tn;B(Hs−κ+aK ;Hs)) , ∀s . (3.8)

Finally we need (Whitney) smooth functions of the frequencies. Following [Bam16] (and
[Ste70]), we will denote by Lipρ(Ω̃;B) the functions of ω ∈ Ω̃ with values in a Banach space B
which have k derivatives of Hölder class ρ− k. Here k is the first integer strictly smaller then ρ
and Ω̃ ⊂ Ω is a closed set.

Definition 3.7. We will say that a function f : Ω̃ → Sm1,m2 is of class Lipm1,m2
ρ (Ω̃) if forall

N1, N2 it is of class Lipρ(Ω̃;C
N1(Tn;Sm1,m2

N2
)). Similarly we will say that f ∈ L̃ip

m

ρ (Ω̃) if forall

N1, N2, one has f ∈ Lipρ(Ω̃;C
N1(Tn; S̃m

N2
)).

3.2 Quantum Lie transform

Given a symbol χ, we consider the corresponding Weyl operator X . If X is selfadjoint, then we
will consider the unitary operator e−iǫX . The following Lemma gives a sufficient condition for
selfadjointness.

Lemma 3.8. Let χ ∈ Sm,0 have the further property that ∂xχ ∈ Sm−1,0. Assume m ≤ l + 1,
then X := χw(x,Dx) is selfadjoint and e−iǫX leaves invariant all the spaces Hs.

6



Proof. We use Proposition A.2 of [MR16]. To ensure the result it is enough to exhibit a positive
selfadjoint operator K such that both the operators XK−1 and [X,K]K−1 are bounded. To this
end we take K to be the Weyl operator of the symbol A := (1 + h0)

l+1
2l ∈ Sl+1. From symbolic

calculus it follows that XK−1 ∈ O0,0 which is thus bounded and, by the additional property
on the x derivative of χ, one has {χ;A} ∈ S2m−l−1,0 so that [X,K]K−1 ∈ Om−l−1,0, which is
bounded under the assumption of the Lemma.

Next we use the operator e−iǫX to transform operators.

Definition 3.9. Let X be a selfadjoint operator; we will say that

(LieǫXF ) := eiǫXFe−iǫX (3.9)

is the quantum Lie transform of F generated by ǫX.

It is easy to see that defining

F0 = F ; Fk := −i[Fk−1;X ] , (3.10)

one has
dk

dǫk
LieǫXF = eiǫXFke

−iǫX . (3.11)

and therefore (formally)

LieǫXF =
∑

k≥0

1

k!
ǫkFk . (3.12)

We will use these formulae in situations where the series are asymptotic.
We will use the same terminology also when X depends on time and/or on ω (which in this

case play the role of parameters).
We are interested in the way Hamiltonian operators change their form in the case where X

also depends on time. The following Lemma is Lemma 3.2 of [Bam16] to which we refer for the
proof.

Lemma 3.10. Let F be selfadjoint operator which can also depend on time, and let X(t) be a
family of selfadjoint operators smoothly dependent on time. Assume that ψ(t) fulfills the equation

iψ̇ = Fψ , (3.13)

then ϕ defined by
ϕ = eiǫX(t)ψ , (3.14)

fulfills the equation
iϕ̇ = Fǫ(t)ϕ (3.15)

with

Fǫ := LieǫXF − YX , (3.16)

YX :=

∫ ǫ

0

(Lie(ǫ−ǫ1)XẊ)dǫ1 . (3.17)
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In the case where both F and X are pseudo-differential operators one can reformulate every-
thing in terms of symbols. Thus, if f and χ are symbols and χ fulfills the assumptions of Lemma
3.8 one can define

f q
0 := f , f q

k :=
{
f q
k−1;χ

}q
, (3.18)

and one can expect the symbol of LieǫXF to be
∑

k≥0 ǫ
kf q

k/k!. A sufficient condition is given
by the following lemma:

Lemma 3.11. Let χ ∈ Sm,0 and let f ∈ Sm1,m2 be symbols, assume m < l, then LieǫXF ∈
Om1,m2 , and furthermore its symbol, denoted by lieǫχf , fulfills

lieǫχf ∼
∑

k≥0

ǫkf q
k

k!
. (3.19)

Proof. First remark that f q
k ∈ Sm1+k(m−l),m2−k. From (3.11) and the formula of the remainder

of the Taylor expansion one has

LieǫXF =

N∑

k=0

Fk

k!
ǫk +

ǫN+1

N !

∫ 1

0

(1 + u)Je−iuǫXFN+1e
iuǫXdu ,

so that, by defining RN to be the integral term of the previous formula, we have RN ∈
B(Hs−κ,Hs) with κ = N(l − m) − m − [−N + m2], which diverges as N → ∞ and thus
shows that the expansion (3.19) is asymptotic in the sense of definition 3.5.

Remark 3.12. Let χ ∈ Sm,0 be such that ∂xχ ∈ Sm−1,0, with m < l, then the operator YX
defined by eq. (3.17) is a pseudo-differential operator of class Om,0 with symbol

yx :=

∫ ǫ

0

(lie(ǫ−ǫ1)χχ̇)dǫ1 = χ̇+ ǫS2m−l−1,0 . (3.20)

3.3 Main lemmas

The algorithm used in order to conjugate the original system to a system with a smoothing
perturbation is the one described in Sect. 4.2 of [Bam16]. In order to make it effective in the
present case we have to prove that the solutions of the homological equations are symbols. In
this sub section we present the homological equations and give the Lemmas solving them; they
will be used in the proof of the smoothing theorem which will be given in the next subsection.
The proof of these lemmas is the main technical result of the paper and will be given in Sect. 4.

From now on we will use the notation

a � b (3.21)

to mean “there exists a constant C independent of all the relevant quantities, such that a ≤ Cb”.

As the example of the period T (E) in the case V (x) = x2l (with l integer) shows, it is useful
to deal with functions which have a singularity at zero. In order to avoid the problems it creates
we will first regularize the functions at zero and solve the homological equations only outside a
neighborhood of zero.

The first homological equation we have to solve is the following one

p+ {h0;χ} = 〈p〉 , (3.22)

8



where 〈p〉 is defined by (2.9) with p in place of W . The problem is to determine χ s.t. (3.22)
holds.

First we have the following Lemma.

Lemma 3.13. Let p ∈ Sm1,m2 be a symbol supported outside a neighborhood of zero (in the

phase space), then 〈p〉 is a symbol of class S̃m1+[m2] and is supported outside a neighborhood of
zero.

Concerning the solution of the homological equation we have the following Lemma.

Lemma 3.14. Let p ∈ Sm1,m2 be a symbol supported outside a neighborhood of zero, then the
homological equation (3.22) has a solution χ which is a symbol of class χ ∈ Sm1+[m2]−l+1,0 with
the further property that ∂xχ ∈ Sm1+[m2]−l,0 and is supported outside a neighborhood of zero.

Remark 3.15. In the above lemmas p can also depend on the angles φ and on the frequencies
ω, but they only play the role of parameters, so in that case the result is still valid substituting
the classes S or Lipρ with the same indexes to the classes S.

In order to iterate the procedure, when l > 1, we will have to solve an equation of the form
of (3.22) with h0 replaced by

h1 := h0 + ǫf(h0) , (3.23)

with f ∈ S̃m and m < l, namely equation

p+ {h1;χ} = 〈p〉 , (3.24)

Lemma 3.16. Let l > 1 and p ∈ Sm1,m2 be a symbol supported outside a neighborhood of
zero, then the homological equation (3.24) has a solution χ which is a symbol of class χ ∈
Sm1+[m2]−l+1,0 and ∂xχ ∈ Sm1+[m2]−l,0.

The third homological equation we have to solve is

− ω · ∂χ
∂φ

= p− p̄ , (3.25)

where p is a symbol and p̄ is defined by

p̄(x, ξ) :=
1

(2π)n

∫

Tn

p(x, ξ, φ)dφ . (3.26)

Such an equation was already studied in [Bam16] and the solution was obtained in Lemma 4.20 of
that paper which is already in the form we need in the present paper. We now give its statement
(for the proof we refer to [Bam16]).

Fix τ > n− 1 and denote

Ω0γ :=
{
ω ∈ Ω : |k · ω| ≥ γ|k|−τ

}
, (3.27)

then it is well known that
|Ω− Ω0γ | � γ . (3.28)

Lemma 3.17. Let p ∈ L̃ip
m

ρ (Ω0γ), be a symbol, then there exists a solution χ ∈ L̃ip
m

ρ (Ω0γ) of

Eq. (3.25). Furthermore p̄ ∈ L̃ip
m

ρ (Ω0γ).

9



Finally, in the case of the Harmonic oscillator l = 1, we will meet the following homological
equation

{h0, χ} − χ̇+ p = 〈p〉 . (3.29)

In order to solve it, define the set

Ω1γ :=

{
ω ∈ Ω :

∣∣∣∣ω · k + k0| ≥
γ

1 + |k|τ
∣∣∣∣ , (k0, k) ∈ Z

n+1 − {0}
}
. (3.30)

Lemma 3.18. Let p ∈ Lipm1,m2
ρ (Ω1γ), then there exists a solution χ ∈ Lip

m1+[m2],0
ρ (Ω1γ) of

(3.29). Furthermore 〈p〉 ∈ L̃ip
m1+[m2]

ρ (Ω1γ).

3.4 The smoothing theorem and end of the proof of Theorem 2.4

Theorem 3.19. Fix γ > 0 small, ρ > 2 and an arbitrary κ > 0. Assume

β1 + [β2] < 2l − 1 and β̃ < l (3.31)

then there exists a (finite) sequence of symbols χ1, ..., χN with χj ∈ Lip
m

(j)
1 ,m

(j)
2

ρ (Ω0γ), m
(j)
1 +

[m
(j)
2 ] ≤ β1 + [β2] ∀j, s.t., defining

Xj := χw
j (x,Dx, ωt) , ω ∈ Ω0γ , (3.32)

such operators are selfadjoint and the transformation

ψ = e−iǫX1(ωt)....e−iǫXN (ωt)ϕ , (3.33)

transforms Hǫ(ωt) (c.f. (1.2)) into a pseudo-differential operator H(reg) with symbol h(reg) given
by

h(reg) = h0 + ǫz + ǫz̃ + ǫr (3.34)

where z ∈ S̃β̃ is a function of h0 independent of time and of ω; z̃ ∈ L̃ip
2β̃−2l+1

ρ (Ω0γ) is an ω
dependent function of h0 independent of time, and r depends on (x, ξ, φ, ω). Furthermore one
has

r ∈ Lip−κ,0
ρ (Ω0γ) . (3.35)

In the case l = 1 the set Ω0γ must be substituted by the set Ω1γ.

Proof of Theorem 3.19 in the case l > 1. Denote

β := β1 + [β2] , m := β − l + 1 .

Let η be a C∞ function such that

η(E) =

{
1 if |E| > 2
0 if |E| < 1

(3.36)

and split

W =W0 +W∞ , W∞(x, ξ) =W (x, ξ)(1 − η(h0(x, ξ))) , W0(x, ξ) =W (x, ξ)η(h0(x, ξ)) ,
(3.37)
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then W∞ ∈ S−κ1,−κ2 for any κ1, κ2, and W0 ∈ Sβ1,β2 is the actual perturbation that has to be
transformed into a regularizing operator.

The proof of the smoothing theorem is based only on the solution of the homological equation
and the computation of symbols of commutators, which (up to operators which are smoothing of
all orders) are operations preserving the property of symbols of being zero in the region E < 1.

So, we forget W∞ and transform h0 + ǫW0 using the operator X1 with symbol χ1 obtained
by solving the homological equation (3.22) with p =W0, so that χ1 ∈ Sm,0, with ∂xχ1 ∈ Sm−1,0

so that by Lemma 3.8 the corresponding Weyl operator is selfadjoint provided m ≤ l + 1 and
Lemma 3.11 applies provided m < l (implied by (3.31)).

Then the symbol of the transformed Hamiltonian is given by

h(1) := h0 + ǫ(〈W0〉 −W0) + ǫSm−l,−3 + ǫ2Sβ+m−l−1,0 + ǫ2Sβ1+m−l,β2−1 (3.38)

+ ǫW0 + ǫ2Sβ1+m−l,β2−1 (3.39)

− ǫχ̇1 + ǫ2S2m−(l+1),0 (3.40)

= h0 + ǫ〈W0〉 − ǫχ̇1 + ǫp1 , (3.41)

with p1 ∈ Sβ+m−l−1,0 + Sβ1+m−l,β2−1.
Consider first the case where 〈W0〉 ≡ 0. In this case we determine χ2 by solving the homo-

logical equation (3.22) with p1 in place of p, A simple analysis shows that

〈p1〉 ∈ S̃2β1+[β2]+[β2−1]−2l+1 ≡ S̃β̃ , χ2 ∈ Sβ̃−l+1,0 .

Since β̃ < l, lieǫχ2 has the property that, if f ∈ Sm1,m2 , then

lieǫχ2f − f ∈
∑

j

Sm
(j)
1 ,m

(j)
2 , m

(j)
1 < m1 and m

(j)
2 < m2 . (3.42)

Thus, the transformed Hamiltonian has the form

h(12) = h0 + ǫ〈p1〉 − ǫχ̇1 + l.o.t (3.43)

where l.o.t. means terms with the property analogue to (3.42). Next we eliminate −χ̇1. To this
end we determine χ3 by solving (3.22) with −χ̇1 in place of p1. Remark that 〈χ̇1〉 ≡ 0 so that
χ3 ∈ Sβ1+[β2]−2l+2,0 transforms h(12) into

h(13) := h0 + ǫ〈p1〉 − ǫχ̇3 + l.o.t .

Then (if needed) we iterate again until we get

h̃(1) = h0 + ǫ〈p1〉+ ǫ
∑

j

Sβ
(j)
1 ,β

(j)
2 ,

with β(j)
1 + [β

(j)
2 ] < β̃, ∀j.

Thus, both in the case 〈W0〉 = 0 and in the case 〈W0〉 6= 0, we are reduced to a Hamiltonian
of the form

h(1
′) := h0 + ǫf(h0, ωt) + ǫp2 , (3.44)

with f(h0, .) ∈ S β̃ and p2 a lower order correction in the above sense.
We now continue, following [Bam16], by eliminating the time dependence from f . Thus take

χ4 to be the solution of Eq. (3.25) with p = f(h0), so that χ4 ∈ L̃ip
β̃

ρ(Ω0γ). Provided

β̃ < l ,
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one gets that the corresponding Weyl operator is selfadjoint and the quantum lie transform it
generates, transforms symbols into symbols and has the property (3.42). Then the symbol of the
transformed Hamiltonian takes the form

h(2) =h0 + ǫf(h0) + ǫp2 + l.o.t.

where all the functions are defined on Ω0γ and

p2 ∈
∑

j

Sβ
(j)
1 ,β

(j)
2 , β

(j)
1 + [β

(j)
2 ] < β̃ − l .

In particular the l.o.t. is the lowest order term with a nontrivial dependence on ω.
Denote now

h1 := h0 + ǫf(h0)

and iterate the construction with h1 in place of h0. At each step of the iteration one gains l,
in the sense that one passes from a perturbation (of a time independent Hamiltonian) which
belongs to some classes Sβ̃1,β̃2 to perturbations belonging to classes Sβ̃′

1,β̃
′

2 with

β̃′
1 + [β̃′

2] ≤ β̃1 + [β̃2]− l .

Thus the result follows.
Proof of Theorem 3.19 in the case l = 1. First remark that β < 1 implies β1 < 1 and β2 < 1. We
make a first step by taking χ1 ∈ Lipβρ to be the solution of Eq. (3.29) with p = W . Remarking
that in this case, for any symbol f , one has

{h0, f}q = {h0, f} ,

it follows that the transformed Hamiltonian is

h(1) = h0 + ǫ〈W 〉+ ǫ2r1 ,

with
r1 ∈ Lip2β−2,0

ρ + Lipβ+β1−1,0
ρ ⊂ Lipβ

(1),0
ρ , β(1) := β + β1 − 1 .

Then we iterate getting
h(2) = h0 + ǫ〈W 〉+ ǫ2〈r1〉+ ǫ3r2 ,

with r2 ∈ Lipβ+β(1)−2,0 +Lipβ
(1)+β(1)−1,0. If β − 2 > β(1) − 1 the dominant term is the first one

and we put β(2) := β(1) − 2 + β, otherwise we define β(2) := 2β(1) − 1. Thus in particular we
have β(2) < β(1). Then we iterate and at each step we get a remainder rN ∈ Lipβ

(N),0, with a
sequence β(N) diverging at −∞. We remark that, after some steps, one will get β−2 > β(N)−1,
and therefore, from such a step one will have simply β(N+1) = β(N) − 2 + β.

Finally we remark that the average of r1 is the first term in the time independent part which
depends on ω.

After the smoothing Theorem 3.19, the Hamiltonian of the system is reduced to the form
(3.34) to which we apply the methods (and the results) of [Bam16]. Precisely using, Lemmas 5.1
and 5.2 and Corollary 5.4 of [Bam16] one has the following Lemma

Lemma 3.20. For any γ > 0 and ρ ≥ 2 there exists a positive ǫ∗ s.t., if |ǫ| < ǫ∗ then there

exists a set Ω
(0)
γ , and a unitary (in L2) operator U1 Whithney smooth in ω ∈ Ω

(0)
γ , fulfilling

∣∣∣Ω− Ω(0)
γ

∣∣∣ � γa (3.45)

U∗
1H

(reg)U1 = A(0) + ǫR0 , (3.46)
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where a is a positive constant (independent of γ, ǫ). The operator A(0) is given by

A(0) := diag(λ
(0)
j ) , (3.47)

with λ
(0)
j = λ

(0)
j (ω) Whitney smooth in ω fulfilling the following inequalities

∣∣∣λ(0)j − λvj

∣∣∣ � j
β̃

l+1 , (3.48)
∣∣∣λ(0)i − λ

(0)
j

∣∣∣ �
∣∣id − jd

∣∣ , (3.49)
∣∣∣∣∣
∆(λ

(0)
i − λ

(0)
j )

∆ω

∣∣∣∣∣ � ǫ|id − jd| . (3.50)

∣∣∣λ(0)i − λ
(0)
j + ω · k

∣∣∣ ≥ γ(1 + |id − jd|)
1 + |k|τ , |i− j|+ |k| 6= 0 , (3.51)

where, as usual, for any Lipschitz function f of ω, we denoted ∆f = f(ω)− f(ω′).
Furthermore, ∀s ∃ǫs, s.t., if |ǫ| < ǫs then

‖U1 − 1‖
Lipρ(Ω

(0)
γ ;B(Hs−δ;Hs))

� ǫ , δ := β̃ − (l + 1) , (3.52)

R0 := U−1
1 RU1 ∈ Lipρ(Ω

(0)
γ ;Cℓ(Tn;B(Hs−κ;Hs))) , ∀ℓ . (3.53)

End of the proof of Theorem 2.4. Now Theorem 2.4 is obtained immediately by applying Theorem
7.3 of [Bam16] to the system (3.46).

4 Proof of the main lemmas

In this section we prove Lemmas 3.13, 3.14, 3.16 and 3.18.
To prove that 〈p〉 and χ are symbols we use some explicit formulae for the solution of second

order equations in order to write in a quite explicit form the integrals over the orbits of h0.
Consider the Hamilton equations of h0, namely

ξ̇ = −∂V
∂x

, ẋ = ξ . (4.1)

It is well known that one can exploit the conservation of energy in order to reduce the system to
quadrature, namely to compute the time as a function of the position:

t(x, x0) =

∫ x

x0

dq√
E − V (q)

. (4.2)

One also has that the period T (E) is given by

T (E) = 4

∫ qM (E)

0

dq√
E − V (q)

, (4.3)

where qM = qM (E) is the positive solution of the equation

E = V (qM ) . (4.4)
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Before giving the proof of the main Lemmas, we need some preliminary results. First, in
order to compute and estimate integrals of the form (4.2), (4.3), we will often use the change of
variables

q(y) = qMy . (4.5)

Furthermore it is useful to define the function

ṽ(E, y) :=

√
1− |y|2l

1− V (q(y))
E

, (4.6)

so that one has
1√

1− V (q(y))
E

=
ṽ(E, y)√
1− |y|2l

. (4.7)

Lemma 4.1. The quantity qM has the form

qM (E) ∼ E1/2lq̄(E) , (4.8)

where the function q̄ admits an asymptotic expansion in powers of µ2 := E−1/l and its first term
is 1.

Proof. Consider equation (4.4), divide by E = µ−2l; using the asymptotic expansion (2.6) it
takes the form

1 ∼
∑

j≥0

µ2lV2l−2j(qM ) =
∑

j≥0

µ2l−2jµ2jV2l−2j(qM ) =
∑

j≥0

µ2jV2l−2j(µqM ) = q̄2l+
∑

j≥1

µ2jV2l−2j(q̄) .

Thus one sees that q̄ admits an asymptotic expansion in powers of µ2.

Lemma 4.2. For all E0 > 0, the function ṽ(E, y) is a C∞([E0,∞)) function of E and one has

∣∣∣∣
∂kṽ

∂Ek
(E, y)

∣∣∣∣ �
1

Ek
, ∀y ∈ [−1, 1] , ∀E ≥ E0 . (4.9)

Proof. Denote ṼE(y) :=
V (q(y))

E and remark that, due to the definition of q(y), one has ṼE(±1) ≡
1, so that ṽ is regular at y = ±1. Furthermore, by Lemma 4.1 (and its proof), one has

ṼE(y) ∼ q̄2l|y|2l +
∑

j≥1

µ2jV2l−2j(q̄y) , (4.10)

(with µ = E−1/2l) which shows that ṼE(y) admits an asymptotic expansion in µ. First we
remark that, by eq. (4.10) and Lemma A.1, the thesis of the Lemma holds true for y outside a
neighborhood of ±1. We discuss now the result for y near 1.

We use the Faa di Bruno formula in order to compute the derivatives of

ṽ ≡
√
1− |y|2l√
1− ṼE(y)

with respect to E. Denote f(x) := (1− x)−1/2. Remark that

f (j)(x) = Cj
(1− x)−j

√
1− x

,
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and compute

∂k

∂Ek
f(ṼE) ≍

k∑

j=1

f (j)(ṼE)
∑

h1+...+hj=k

∂h1

E ṼE ...∂
hj

E ṼE

≍ 1√
1− x

k∑

j=1

∑

h1+...+hj=k

∂h1

E ṼE

1− ṼE
...
∂
hj

E ṼE

1− ṼE
. (4.11)

We study the single fraction at r.h.s.. Compute the Taylor expansion of ṼE(y) at y = 1, it is
given by

ṼE(y) ≃ 1 +
∑

k≥1

1

E
V (k)(E1/2lq̄)(E1/2lq̄)k

(y − 1)k

k!
, (4.12)

from which we get

∂hE ṼE

1− ṼE
≃

∑
k≥1 ∂

h
E

[
1
EV

(k)(E1/2lq̄)(E1/2lq̄)k (y−1)k−1

k!

]

∑
k≥1

1
EV

(k)(E1/2lq̄)(E1/2lq̄)k (y−1)k−1

k!

,

which is regular at y = 1. To get a more usable expression and an estimate of this fraction we
remark that the single term of the sum in the numerator is a multiple of

∂hE [∂
k
y ṼE ]y=1 = [∂ky∂

h
E ṼE ]y=1 ,

and one can compute the r.h.s. exploiting the asymptotic expansion (4.10) of ṼE . So one gets
that ∂yṼE admits an asymptotic expansion in µ2. Thus one can apply Lemma A.1 which shows
that the single term in the sum in the numerator of the fraction is estimated by E−(h+1/l).
Inserting in (4.11) one gets the thesis.

Lemma 4.3. The period T = T (E) is s.t. Tη ∈ S1−l, where η is the cutoff function defined in
(3.36).

Proof. Due to the presence of the cutoff function it is enough to study the behavior of T (E) at
infinity. Making the change of variables (4.5) in the integral (4.3), we get

T =
4qM
E1/2

∫ 1

0

dy√
1− ṼE(y)

=
4q̄

E
1
2−

1
2l

∫ 1

0

ṽ(E, y)√
1− y2l

; (4.13)

exploiting the property (4.9) of the function ṽ one immediately gets the thesis.
We are now ready for proving that the average of a symbol is a symbol.

Proof of Lemma 3.13 Remark that 〈p〉 is a function of E only. To compute it we first make a
change of variables in the phase space, namely we will use the variables (E, x) instead of (x, ξ).
Such a change of variables is well defined in the region ξ > 0 (or ξ < 0) and for −qM < x < qM .
In these variables the flow Φh0 is given by E(t) = E and x(t) given by the inverse of the formula
(4.2). Thus, using the definition of the average and making the change of variables t(q) in the
integrals, we have

〈p〉(E) =
1

T (E)

∫ qE

−qM

p(q,
√
E − V (q))√

E − V (q)
dq +

1

T (E)

∫ qE

−qM

p(q,−
√
E − V (q))√

E − V (q)
dq . (4.14)
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Consider the first term (the second one can be treated in the same way); making the change of
variables (4.5) it takes the form

qM
T (E)E1/2

∫ 1

−1

p

(
q(y), E1/2

√
1− ṼE(y)

)
ṽ(E, y)

√
1− |y|2l

dy . (4.15)

This quantity and its derivatives with respect to E can be easily estimate using Lemma A.3 and
Lemma A.4.

We recall a first representation formula for χ. The next lemma is Lemma 5.3 of [BG93] to
which we refer for the proof (see also Lemma 4.21 of [Bam16]).

Lemma 4.4. The solution of the homological equation (3.22) is given by

χ =
1

T (E)

∫ T (E)

0

t(p− 〈p〉) ◦ Φt
h0
dt . (4.16)

To estimate the function χ we need some more preliminary work.

Lemma 4.5. Let p be a function, denote p̌ := p− 〈p〉 and

tS(x) :=

∫ x

−qM

dq√
E − V (q)

, t−S (x) :=

∫ qM

x

dq√
E − V (q)

≡ tS(−x) , (4.17)

dµ+(q) :=
p̌(q,

√
E − V (q))√

E − V (q)
dq , dµ−(q) :=

p̌(q,−
√
E − V (q))√

E − V (q)
dq (4.18)

(tS is the time taken to go from −qM to x) then, in the coordinates (E, x) for the upper half
plane, the function χ defined by (4.16) is given by

χ(E, x) =
1

T (E)

∫ qM

−qM

(tS(q)dµ
+(q) + t−S (q)dµ

−(q)) +
1

2

∫ qM

−qM

dµ−(q) (4.19)

+

∫ x

−qM

dµ+(q) . (4.20)

Proof. We use again the formula (4.2). In all the integrals E will play the role of a parameter,
so we do not write it in the argument of the functions. We split the interval of integration in
(4.16) into three subintervals. For this purpose we define tM (x) := T

2 − tS(x), and remark that
this is the time at which a solution starting at (x, ξ) reaches (qM , 0). We write

[0, T ] = [0, tM (x)] ∪ [tM , tM +
T

2
] ∪ [tM +

T

2
, T ] ,

and we study separately the integrals over the intervals.
The first integral is given by

∫ tM

0

tp̌(Φt
h0
(x, ξ))dt =

∫ qM

x

t(q, x)p̌(q,
√
E − V (q))√

E − V (q)
dq (4.21)

=

∫ qM

x

tS(q)dµ
+(q)− tS(x)

∫ qM

x

dµ+(q) , (4.22)
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where of course t(q, x) is defined by (4.2). The integral over the second interval is given by

−
∫ −qM

qM

(
T

2
− tS(x) + t−S (q))dµ

−(q) = (4.23)

=
T

2

∫ qM

−qM

dµ−(q)− tS(x)

∫ qM

−qM

dµ−(q) +

∫ qM

−qM

t−S (q)dµ
−(q) . (4.24)

Finally the third integral is given by
∫ x

−qM

[
T

2
+

(
T

2
− tS(x)

)
+ tS(q)

]
dµ+(q) = (4.25)

= T

∫ x

−qM

dµ+(q)− tS(x)

∫ x

−qM

dµ+(q) +

∫ x

−qM

tS(q)dµ
+(q) . (4.26)

Summing up we get
∫ qM

−qM

(tS(q)dµ
+(q) + t−S (q)dµ

−(q)) (4.27)

−tS(x)
∫ qM

−qM

(dµ+(q) + dµ−(q)) (4.28)

+
T

2

∫ qM

−qM

dµ−(q) + T

∫ x

−qM

dµ+(q) , (4.29)

but the integral in (4.28) is exactly the integral of p̌ along an orbit of h0 and thus it vanishes,
thus we get (4.19) and (4.20).

Lemma 4.6. Let g ∈ Sm1,m2 be a symbol, consider the function

G(E, x) :=

∫ x

−qM

g(q,
√
E − V (q))√

E − V (q)
dq , (4.30)

and the function
Ĝ(x, ξ) := G(ξ2 + V (x), x) .

Then η(h0)Ĝ ∈ Sm1+[m2]−l+1,0 and η(h0)∂xĜ ∈ Sm1+[m2]−l,0.

Proof. Due to the presence of the cutoff function, it is enough to study the behavior of Ĝ as
E → ∞. First we estimate the modulus of G (and of Ĝ). To this end it is better to represent
the integral in terms of integral over the flow of h0. Preliminarly remark that

|g(x, ξ)| � λm1(x, ξ)〈x〉m2 � λm1+[m2](x, ξ) � 〈h0(x, ξ)〉m1+[m2] . (4.31)

Using the notation (4.2) one has

|G(E, x)| =
∣∣∣∣∣

∫ tS(x)

0

g(Φt
h0
(−qM , 0))dt

∣∣∣∣∣ �
∫ T/2

0

〈h0(Φt
h0
(−qM , 0))〉m1+[m2]dt

=
T

2
〈E〉

m1+[m2]
2l � λm1+[m2]−l+1 .
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To compute the derivatives of G and of Ĝ it is better to use the formula (4.30), to make the
change of variables (4.5) and to use the function ṽ defined in (4.6), so that one gets

G(E, x) =
q̄

E
1
2−

1
2l

∫ µx
q̄

−1

ṽ(E, y)g(q(y),
√
E − V (q(y)))√

1− |y|2l
dy (4.32)

with µ = E−1/2l. From this formula one can easily compute

∂EG = ∂E

(
q̄

E
1
2−

1
2l

)∫ µx
q̄

−1

ṽ(E, y)g(q(y),
√
E − V (q(y)))√

1− |y|2l
dy (4.33)

+ E
1
2l q̄

g(x,
√
E − V (x))√

E − V (x)
∂E

(
µx

q̄

)
(4.34)

+
q̄

E
1
2−

1
2l

∫ µx
q̄

−1

∂E ṽ(E, y) g(q(y),
√
E − V (q(y)))√

1− |y|2l
dy (4.35)

+
q̄

E
1
2−

1
2l

∫ µx
q̄

−1

ṽ(E, y)∂Eg(q(y),
√
E − V (q(y)))√

1− |y|2l
dy , (4.36)

where, in order to simplify (4.34) we used the definition of ṽ.
Remark now that one has

∂Ĝ

∂x
=
∂G

∂E
V ′ +

∂G

∂x
. (4.37)

We study the contribution of (4.34) to ∂Ĝ/∂x, which is the most singular one. To this end we
compute

∂G

∂x
+ V ′(x) (4.34) =

g(x, ξ)

ξ

[
1 + qMV

′(x)∂E

(
x

qM

)]
, (4.38)

where, when explicitly possible we introduced the variables (x, ξ). We study now the square
bracket in (4.38) in order to show that (4.38) is regular on the line ξ = 0; we denote by

T (E, x) := qMV
′(x)∂E

(
x

qM

)
(4.39)

the second term in the bracket and we simplify it. First remark that the line (x, ξ) = (x, 0), in
terms of the variables (E, x), becomes the curve (V (x), x), which can also be parametrized by E
and in such a parametrization has the form (E, qM (E)). Expanding at ξ = 0, one has

T̂ (x, ξ) := T (ξ2+V (x), x) = T (V (x), x)+∂ET (V (x), x)2ξ+O(ξ2) = T (E, qM )+2∂ET (E, qM )ξ+O(ξ2) .
(4.40)

Now, using (4.39) and the definition of qM , one gets

T (E, qM ) = −V ′(qM )∂E(qM ) = −V ′(qM )
1

V ′(qM )
= −1 .

Inserting in (4.40) and substituting in (4.38) one sees that (4.38) is regular at ξ = 0.
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In conclusion we have

∂xĜ = V ′(x)
E

1
2

qM
∂E

(
qM

E
1
2

)
Ĝ(x, ξ) (4.41)

+ g(x, ξ)

[
1 + T̂ (x, ξ)

ξ

]
(4.42)

+ V ′(x)qM

∫ x

−qM

(∂E ṽ)(E, y(q)) g(q,
√
E − V (q))

ṽ(E, y(q))
√
E − V (q)

dq (4.43)

+ V ′(x)qM

∫ x

−qM

∂Eg(q(y),
√
E − V (q(y)))√

E − V (q(y))
dy . (4.44)

Remark that (4.41) and (4.44) clearly have the same structure as Ĝ, so these terms are suitable
to start an iteration which shows that the original quantity is a symbol. One has still to deal
with the other two terms. We start by (4.42).

The analysis of the square bracket in (4.42) (the only nontrivial part) has to be done by
analyzing separately a neighborhood of ξ = 0. Such a region can be analyzed by exploiting the
expansion (4.40), which allows to show that it is a symbol in such a neighborhood. The other
region is trivial since the function is smooth in that region. Doing the explicit computations one
easily shows that it is a symbol.

We come to (4.43). We wrote it in that form, since exploiting it one can compute its derivative
with respect to x. An explicit computation shows that, mutatis mutandis, such a derivative is
given again by (4.41)-(4.44). The main difference is that (4.42) has to be substituted by

g(x, ξ)∂E ṽ(E, x/qM )

ṽ(E, x/qM )

[
1 + T̂ (x, ξ)

ξ

]
,

which is again a symbol.
To conclude the proof we estimate the different terms of (4.41)-(4.44). The estimate of all

the terms, but (4.42) is obtained by the same argument used to estimate G which gives that all
such terms are bounded by 〈x〉2l−1λm1+[m2]−3l+1.

In order to estimate (4.42) we consider its main term in the expansion in inverse powers of
E:

T (E, x) = V ′(x)

[
−x∂EE

1/2l

E1/2l

]
= −V

′(x)x

2lE
≃ −|x|2l

E
,

so that ∣∣∣∣
1 + T (E, x)

ξ

∣∣∣∣ ≃
∣∣∣∣
E − |x|2l
ξE

∣∣∣∣ =
∣∣∣∣
ξ

E

∣∣∣∣ � λ−l .

It follows that
|(4.42)| � λm−(l−1)−1 .

Proof of Lemma 3.14. First remark that, from Lemma 4.6, ηtS ∈ S−l+1,0 and η∂xtS ∈ S−l,0. It
follows that (4.19)η ∈ S̃m1+[m2]−l+1 and η(4.20) ∈ Sm1+[m2]−l+1,0 with η∂x(4.20) ∈ Sm1+[m2]−l,0,
which gives the thesis.
Proof of Lemma 3.16. The proof is based on the fact that the flow of h1 is essentially a rescaling
of the flow of h0. Precisely, Φt

h1
leaves invariant the level surfaces of h0 and on a level surface

h0 = E one has
Φt

h1
≡ Φ

(1+ǫf ′(E))t
h0

. (4.45)
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So, we apply the formulae for the average and for χ getting the result. We give the explicit proof
of the fact that the solution χ is a symbol. From (4.16) with Φt

h1
in place of Φt

h0
we have

χ =
1

Th1

∫ Th1

0

tp̌ ◦ Φt
h1
dt =

1

(1 + ǫf ′)2Th1

∫ Th1

0

t(1 + ǫf ′)p̌ ◦ Φt
h1
(1 + ǫf ′)dt

=
1

1 + ǫf ′

1

Th0

∫ Th0

0

τ p̌ ◦ Φτ
h0
dτ ,

Now this is just (1 + ǫf ′)−1 times the solution of the homological equation with the original
unperturbed Hamiltonian h0. Since, by the assumption (1+ ǫf ′)−1 is a symbol, which is a lower
order correction of the identity, the thesis follows.

4.1 Solution (3.29)

The homological equation (4.1) will be relevant only when l = 1, where we assume that V (x) = x2

is a Harmonic potential.

Lemma 4.7. (Lemma 6.4 of [Bam97]) The solution of the homological equation (4.1) is given
by

χ(x, ξ, φ) :=
∑

k∈Zn

χk(x, ξ)e
ik·φ ,

where

χ0 =
1

T (E)

∫ T (E)

0

t(p− 〈p〉) ◦ Φt
h0
dt (4.46)

χk(x, ξ) =
1

eiω·kT (E) − 1

∫ T (E)

0

eiω·ktpk(Φ
t
h0
(x, ξ))dt , (4.47)

and pk is defined by

pk(x, ξ) :=
1

(2π)n

∫

Tn

p(x, ξ, φ)e−ikφdφ .

Lemma 4.8. Let p ∈ Sm1,m2 , fix α ∈ R and consider

I(x, ξ) :=

∫ 2π

0

eiαtp
(
Φt(x, ξ)

)
dt . (4.48)

One has I ∈ Sm1+[m2],0 with ∂xp ∈ Sm1+[m2]−1,0.

Proof. First we write the integral using the action angle variables (A, θ) for the Harmonic oscil-
lator. Thus we make the change of variables

x =
√
A sin θ , ξ =

√
A cos θ ;

In these variables the flow is simply θ → θ + t, so we have

I(A, θ) =

∫ 2π

0

eiαtpa(A, θ + t)dt = e−iαθ

∫ 2π

0

eiαtpa(A, t)dt

= e−iαθ

∫ 2π

0

eiαtp(
√
ξ2 + x2 cos t,−

√
ξ2 + x2 sin t)dt ,
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where pa(A, θ) = p(
√
A sin θ,

√
A cos θ).

Now using a technique similar to that used in the proof of Lemmas A.3 and A.4, one can see
that the integral is of class Sm1+[m2].

In order to conclude the proof we have to check the prefactor. The prefactor can be written
as (

ξ − ix

A1/2

)α

,

which is easily seen to be a symbol which is bounded and has the property that its x derivative
is bounded by A−1/2, from which the thesis immediately follows.
Proof of Lemma 3.18. The result follows using the previous Lemmas once one has a lower bound
of the small denominators. This is easily obtained by remarking that, in Ω1γ one has

∣∣eiω·kT − 1
∣∣ =

∣∣∣∣2 sin
(
ω · kT

2

)∣∣∣∣ ≥ 2

∣∣∣∣
ω · kT

2
− k0π

∣∣∣∣

= |ω · k − k0| ≥
γ

1 + |k|τ .

A Some technical lemmas

Lemma A.1. Let f be a function of class Ck, and consider f(1/E1/l). For E → ∞ one has:

∂k

∂Ek

[
f

(
1

E1/l

)]
≍ 1

Ek+ 1
l

k∑

j=1

1

E
j−1
l

f (j)

(
1

E
1
l

)
. (A.1)

By a ≍ b we mean |a| � |b| and |b| � |a|, at least for sufficiently large values of E.

Proof. We use the Faa di Bruno formula which gives

∂kf

∂Ek
≍

k∑

j=1

f (j)(µ)
∑

h1+...+hj=k

∂h1µ

∂Eh1
....

∂hjµ

∂Ehj
,

where we denoted µ = E−1/l. The indexes hi always fulfill hi ≥ 1. On the other hand one has

∂hµ

∂Eh
≍ 1

Eh+1/l
;

substituting in the previous formula one gets the result.

Lemma A.2. Let W (y, x) be a C∞ function fulfilling

∣∣∂kxW (y, x)
∣∣ � 〈x〉m−k , (A.2)

denote

I(M) :=

∫ 1

−1

W (y,My)√
1− |y|2l

dy (A.3)

then one has ∣∣∣∣
∂kI

∂Mk
(M)

∣∣∣∣ � 〈M〉[m]−k . (A.4)
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Proof. The difficulty in estimating the integral is that when y = 0 the quantity My does not
diverge. One has

∂k

∂Mk

∫ 1

−1

W (y,My)√
1− |y|2l

dy =

∫ 1

−1

∂kxW (y,My)yk√
1− |y|2l

dy (A.5)

We fix a small a and split the interval of integration: [−1, 1] = [−1,−a] ∪ (−a, a) ∪ [a, 1]. The
integral over the first and the last intervals are estimated in the same way. Consider the one over
[a, 1]. One has

∣∣∣∣∣

∫ 1

a

∂kxW (y,My)yk√
1− |y|2l

dy

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ 1

a

〈My〉m−kyk√
1− |y|2l

dy

∣∣∣∣∣ � 〈Ma〉m−k .

Over the interval (−a, a) one has
√
1− |y|2l > 1/2 provided a is small enough. Thus one has

∣∣∣∣∣

∫ a

−a

∂kxW (y,My)yk√
1− |y|2l

dy

∣∣∣∣∣ �
∫ a

−a

〈My〉m−k|y|kdy = 2

∫ Ma

0

〈q〉m−k
( q

M

)k dq

M

=
2

Mk+1

∫ Ma

0

〈q〉m−kqkdq �M [m]−k ,

which immediately gives the thesis.

Lemma A.3. Under the same assumption of Lemma A.2, one has I(Eq̄) ∈ S[m].

Proof. First remark that, denoting M = E
1
2l q̄, by Lemma A.1, one has

∂kEM ≍
k∑

j=0

∂k−j
E E

1
2l ∂jE q̄ ≍

E
1
2l

Ek
q̄ +

k∑

j=1

E
1
2l

Ek−j

1

Ej+ 1
l

j∑

i=1

∂iq̄

∂µi

1

E
i−1
l

≍ E1/2l

Ek
.

Now, from the Faa di Bruno formula one has

∂kEI(M) ≍
k∑

j=1

I(j)(M)
∑

h1+...+hj=k

∂h1

MM...∂
hj

MM ≍
k∑

j=1

〈M〉[m]−j
∑

h1+...+hj=k

M

Eh1
...
M

Ehj
=
M [m]

Ek
,

from which the thesis follows.
By working as in the proof of the above lemmas one gets also the following useful result.

Lemma A.4. Let g(y, ξ) be such that

∣∣∂kξ g(x, ξ)
∣∣ � λm−kl ,

consider

I(E) :=

∫ 1

−1

g(y,
√
E − V (q(y)))√
1− |y|2l

dy ,

then one has I ∈ Sm.
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