
Softw Syst Model
DOI 10.1007/s10270-007-0061-0

REGULAR PAPER

Reducing accidental complexity in domain models

Colin Atkinson · Thomas Kühne

Received: 22 December 2006 / Revised: 19 April 2007 / Accepted: 3 May 2007
© Springer-Verlag 2007

Abstract A fundamental principle in engineering, inclu-
ding software engineering, is to minimize the amount of
accidental complexity which is introduced into engineering
solutions due to mismatches between a problem and the
technology used to represent the problem. As model-driven
development moves to the center stage of software engi-
neering, it is particularly important that this principle be
applied to the technologies used to create and manipulate
models, especially models that are intended to be free of so-
lution decisions. At present, however, there is a significant
mismatch between the “two level” modeling paradigm used
to construct mainstream domain models and the conceptual
information such models are required to represent—a mis-
match that makes such models more complex than they need
be. In this paper, we identify the precise nature of the mis-
match, discuss a number of more or less satisfactory worka-
rounds, and show how it can be avoided.

Keywords Domain modeling · Model quality ·
Accidental complexity · Modeling languages ·
Modeling paradigm · Stereotypes · Powertypes ·
Deep instantiation

Communicated by Professor Bernhard Rumpe.

C. Atkinson
University of Mannheim, Mannheim, Germany
e-mail: atkinson@informatik.uni-mannheim.de

T. Kühne (B)
Darmstadt University of Technology,
Darmstadt, Germany
e-mail: kuehne@informatik.tu-darmstadt.de

1 Introduction

Whether performed through traditional software engineering
activities or advanced model-transformation techniques, the
development of a new software system usually involves the
construction of a solution-independent description of the pro-
blem to be solved. Such models are referred to as “domain
models” [18] or “analysis models” [8]. As these names imply,
the goal is to make such models as free as possible from
considerations related to specific solutions or solution tech-
nologies so as to not embody any premature decisions that
may hamper later development.

One important purpose of domain models is to serve as
a description of the problem that is understandable to the
widest possible range of stakeholders. In order to determine
whether an agreement about the system requirements has
been achieved and whether the system domain has been accu-
rately captured, it is highly desirable that even people without
a computer science background be able to at least partially
understand a domain model.

Note that in the context of this paper, a domain model is
assumed to represent a conceptualization of the entities of
some problem domain. Our “universe of discourse” is the-
refore not a set of physical entities from the real world but
contains elements that were created in a conceptualization,
e.g., by domain analysts. Measuring the adequacy of domain
models with respect to a conceptualization, as opposed to the
real world is useful in order to avoid philosophical arguments
of whether universals [22] should be assumed to exist in the
real world and what constitutes an appropriate model of an
excerpt of the real world.

The most common choice for creating such domain
models is the modeling language standard, the UML [27].
Like many of its predecessors and competitors, the UML
is based on the ubiquitous object-oriented paradigm. As a

123

C. Atkinson, T. Kühne

result, creating a domain model with the UML usually
includes the creation of one or more class diagrams that cap-
ture the important domain concepts and their relationships.
Often one also adds one or more object diagrams showing
instances of the domain concepts to illustrate various configu-
rations. In the implementation phase, the elements of the class
diagram(s) can then be more or less straightforwardly map-
ped to classes of an object-oriented programming language
via an intermediate design phase.

Creating domain models using the same underlying
paradigm as the ultimate implementation technologies is
advantageous in terms of a seamless transition from pro-
blem to solution. However, it may stand in tension with
the goal of completely separating the problem description
from the solution technologies. If the solution paradigm tar-
nishes or complicates the representation of concepts within
domain models, the disadvantages of having domain mo-
dels polluted with solution restrictions may outweigh the
advantages of a completely seamless development process.
The overriding goal of domain modeling must, by defini-
tion, be to represent the problem space concepts in as faith-
ful and untarnished a way as possible. Anything that stands
in the way of this goal leads to suboptimal domain models
with immediate effects on their primary purposes of being
stable against the change of solution technologies and being
communication vehicles between experts and non-experts
alike.

The main objective of this article is to make the case
that the object-oriented paradigm currently underpinning the
UML and other standards does not fulfill this goal, and as a
consequence adds unnecessary (i.e., accidental) complexity
to domain models. The object paradigm per se is not the
problem but a rather unnecessary, historically motivated
restriction to modeling at two levels only. The UML sup-
ports the above mentioned two levels very well, e.g., in the
form of object diagrams (instance level) and class diagrams
(type level), but provides only meager support for further
levels. Consequently, if one needs to create a model of a
domain involving more than two levels using a two-level
language like the UML, one is forced to use artificial work-
around mechanisms or modeling patterns that allow the
properties of multi-level scenarios to be mimicked using
only two levels. Typical examples addressing this need
include static variables, tagged values, stereotypes, power-
types, reflection, and a number of variations of the “Item
Description” pattern [7]. The problem with such workarounds
is that they complicate and obscure the meaning of a
domain model. Each workaround comes with its own set of
idiosyncrasies, often making it difficult for uninitiated rea-
ders of the model to understand which aspects of the model
are meant to be accurate reflections of the problem domain
and which are just accidental properties of the particular
workaround.

We argue that the use of such “workaround” techniques
is suboptimal and increases the accidental complexity of do-
main models. We use the term “accidental complexity” in the
sense of [6] and assume that if one model conveys the same in-
formation as another model, but in a more concise way using
less modeling elements and concepts, it is less complex. We
therefore argue that models of domains that inherently re-
quire more than two modeling levels should use a modeling
approach and infrastructure that explicitly and cleanly sup-
ports more than two domain modeling levels. The paper
makes two basic contributions. The first is to properly cha-
racterize the nature of the problem that occurs when trying to
model domains with more than two logical metalevels using
languages that support only two. The second is to compare
the strengths and weaknesses of potential solutions addres-
sing this problem.

Note that although we discuss the above mentioned issues
in relation to the UML, the fundamental problem and sug-
gested solution are not unique to the UML. On the contrary,
through the provision of powertypes and its extension
mechanism the UML provides better support than most
modeling languages for capturing problems that inherently
contain more than two modeling levels. The basic problem
and solution discussed in this article are therefore of re-
levance to all modeling languages based on the two-level,
object-oriented paradigm.

In the next section we introduce a small example and
then, in Sect. 3, demonstrate a number of typical worka-
round practices used to represent multi-level domain models
using only two-levels. In Sect. 4, we proceed to discuss at-
tempts to provide enhanced support for more than two levels
in the modeling language. Section 5 then shows how the
same domain information can be captured more concisely
and precisely using a multi-level modeling paradigm and
finally extends the discussion to models where multi-level
modeling is more than just a sequence of two-level mode-
ling pairs, i.e., where one level influences the elements in
more than just the immediate level below it in the modeling
hierarchy.

2 Example domain model

As a sample model we adopt the computer hardware
product hierarchy described by Engels et al. [9]. This is a
good example because Engels et al. clearly present a small
and easy to understand example that accurately captures the
state-of-the-art in modeling today. In particular, it contains a
typical technique which is commonly used to express a multi-
level domain classification in terms of the two-level UML
modeling approach. The domain types and their relationships
are shown in the class diagram of Fig. 1 and a possible

123

Reducing accidental complexity in domain models

Fig. 1 Domain types (from [9]
with name changes)

ProductType

name : String

ComputerModel

processor : String

MonitorModel

size : String

Product

Computer Monitor

isOfType

Bundle

0..∗

1..∗
contains

Order

1

1..∗
contains

OrderItem

Customer
submits

name : String

1∗

1∗ orders

a description an item

Description

type information instance information

Item
described by

type values instance values

1 ∗

Fig. 2 Item description pattern

configuration of domain instances is shown in the object
diagram of Fig. 3.1

The class diagram revolves around two hierarchies which
are commonly found in static models of enterprise informa-
tion systems—one modeling the products sold by the
enterprise (physical objects, such as specific monitors and
computers) and the other modeling the descriptions for these
products (specifications of the physical objects, such as brand
and model attributes). This is an example of the “Item
Description” pattern [7] in which instances of the description
types (e.g., instances of “ComputerModel” and “MonitorMo-
del”) are specifications of instances of the product types (e.g.
instances of “Computer” and “Monitor”). Figure 2 shows the
general structure of the “Item Description” pattern which is
also known as the “Type Object” pattern [15].

The general idea is to let objects play the role of classes in
order to explicitly represent class-level information, such as
flight routes as opposed to actual flights [18]. In this way one
can factor out information common to all objects to a single
place, change it dynamically and keep this information even
if no objects exist at a particular point in time. In our example,
the (indirect) instances of class “ProductType” play the role
of types for the (indirect) instances of class “Product” (see
Fig. 3).

Several variations of this workaround pattern exist,
testifying to the need to represent both instances and types

1 We have used the exact models of [9] with the exception of some
slight renaming of a few concepts.

of a domain. Together with the “Property Pattern” the “Type
Object Pattern” [15] supports the creation of an “Adaptive
Object-Model” and “User Defined Product” frameworks
[31], i.e., the runtime creation of types with a dynamic spe-
cification of their “attributes”. In such scenarios, the “Type
Object” pattern is applied twice in a “type square” [31] to
make type properties as dynamically flexible as types. The
“Dynamic Object Model” architecture describes how “Type
Object” may be combined with other patterns [29]. The
“Dynamic Template Pattern” [20] addresses inheritance
between represented types.

The literature describes a number of real usages [31] and
example applications [15] of “Item Description” like solu-
tions. Larman identifies a common need in “sales, product,
and service domains” and manufacturing [18]. Frank also
presents motivation, requirements, and consequences of a
number of corresponding implementation strategies in the
context of e-commerce applications [10].

Figure 3 shows a snapshot of a configuration of our
example at the instance level. The instances of “Monitor-
Model” and “ComputerModel” define the characteristics of
particular models of monitor and computer respectively. The
instances of type “Monitor” and “Computer” represent pro-
ducts, each with a link to their respective description which
indicates what kind of product it is and what shared infor-
mation it is associated with. The “isOfType” links between
“Monitor”/“Computer” instances and “MonitorModel”/
“ComputerModel” instances thus conceptually represent a
form of “instance of” relationship, even though all the objects
involved are at the instance level in an object diagram.

3 Two-level modeling

The diagrams in Fig. 1 and 3 apply the UML in a widely
accepted way, based on the underlying “two level” object-
oriented modeling paradigm. In this section, we evaluate
the strengths and weaknesses of this approach. In Sects. 3
and 4 we then discuss how the identified shortcomings can be
addressed.

123

C. Atkinson, T. Kühne

Fig. 3 Domain instances (from
[9] with name changes)

b1 : Bundle

ct1 : ComputerModel

name = "PC standard"
processor = "3.1 GHz"

m3 : Monitor

c1 : Computer

mt1 : MonitorModel

name = "Flat 19"
size = 19 m1 : Monitor

mt2 : MonitorModel

name = "CRT 21"
size = 21

m2 : Monitor

isOfType

isOfType

isOfType

isOfType

ct2 : ComputerModel

name = "PC de luxe"
processor = "4.5 GHz"

c2 : Computer
isOfType

o1 : Order

i1 : OrderItem

i2 : OrderItem

cu1 : Customer

name = “R. Jackson"

submits

orders

orders

3.1 Representing domain types as objects

The UML, being based on a fundamental distinction between
classes and objects, supports a “built-in” notion of classifica-
tion with two notations—one textual and one graphical—for
expressing that an object is described by a class. In the textual
form the object’s type is specified after its name (see Fig. 3),
and in the graphical form it is shown via a dependency rela-
tionship, stereotyped with “«instance of»”, pointing from the
instance to the type. In the following we will use the graphi-
cal form but will omit the stereotype since we use no other
kinds of dependency relationships.

The “Item Description”/“Type Object” patterns represent
an instance/type relationship using links between objects (see
the “isOfType” links in Fig. 3) rather than using the “built-in”
way of representing classification. These “isOfType” links
are classified by the corresponding association between “Pro-
duct” and “ProductType” (see Fig. 1). The purpose of this
approach is to model the instance/type relationships at the
object level. When considered together, therefore, the class
diagram and object diagram in Figs. 1 and 3 embody three
distinct kinds of “instance of” relationships:

1. the UML’s “built-in” “instance of” relationships between
elements in the object diagram and elements in the class
diagram (e.g., “m1” is an instance of “Monitor”).

2. the “isOfType” associations in the class diagram between
Product classes and ProductType classes (e.g., “Monitor”
“isOfType” “MonitorModel”).

3. the “isOfType” links between instances of Product and
instances of ProductType (e.g., “m1” “isOfType” “mt1”).

Whenever a “built-in” concept (here, the UML’s instantiation
concept) is passed over in favor of some user defined repla-
cement (here, the modeling of “instance of” relationships as

associations and links), there is the possibility of undesired
additional complexity creeping in. To clarify the effects of
this approach, we combine the diagrams of Figs. 1 and 3 into
a single diagram (see Fig. 4), so that all of the relationships
that conceptually exist between the various model elements
are explicitly represented. We also show the correspondence
of the modeling elements to the domain entities they model.
To save space we omit four classes from Fig. 1, focusing
exclusively on products and product types. The omission of
these classes does not affect the validity of the analysis.

Figure 4 highlights two aspects of the “two level”
modeling paradigm which are not explicit in Figs. 1 and 3.
First, it depicts all UML “instance of” relationships (as
dashed arrows) in addition to the modeled “isOfType” rela-
tionships (the links and the association of that name).
Second, it highlights the fact that the object diagram contains
“model” information that represents domain instances and
types of the domain conceptualization. In Fig. 4, these do-
main entities are shown as black dots below the big horizon-
tal dashed line. We therefore view the corresponding model
types as representations of domain types. This is why we
also use the same “instance of” notation between domain
entities (the dashed lines between the black dots). These re-
lationships show which domain entities are considered to
be types of other domain entities and thus represent ontolo-
gical “instance of” relationships [3]. These are technically
also known as relationships that do not cross language defini-
tion boundaries, i.e., are intra-level instance-of relationships,
e.g., “snapshot” relationships within level M1 of the OMG’s
four-layer architecture [16].

When the class and object diagrams are presented
together as in Fig. 4, one striking consequence of using the
“Item Description” pattern becomes evident: the resulting
model features a considerable level of redundancy. First,
there are model elements that do not represent any domain
elements. The fact that the instances of “Product” and its

123

Reducing accidental complexity in domain models

ProductType

name : String

ProductType

name : String

ComputerModel

processor : String

MonitorModel

size : String

ct1 : ComputerModel

name = "PC standard"
processor = "3.1 Ghz"

c1 : Computer

ct2 : ComputerModel

name = "PC deluxe"
processor = "4.5 Ghz"

c2 : Computer

mt1 : MonitorModel

name = "Flat 19"
size = 19

m1 : Monitor

mt2 : MonitorModel

name = "CRT 21"
size = 21

m2 : Monitor

Product

Computer Monitor

isOfType

Models

Domain

isOfType

isOfType

isOfType

domain
instances

domain
types

model
instances

model
types

isOfType

Fig. 4 Types as objects

subclasses have two classification relationships instead of
just one indicates that “Product” and its subclasses are not
representations of true domain entities but only serve to “set
up” the “Item Description” pattern. For example, “m1” has
type “Monitor” plus a modeled type “mt1”. In terms of mo-
deling the domain, only type “mt1” is of relevance. Type
“Product” and its subclasses can hence be considered to be
abundant model attributes [19], if the model is interpreted as
a domain model, rather than a design for an object-oriented
implementation. Second, the model not only contains more
“instance of” relationships than the domain, it uses three
different ways to represent them (UML instantiation, asso-
ciations, and links). This can be considered to conceptually
correspond to construct redundancy [30]. The model is there-
fore considerably more complex than its subject in the sense
that it includes more elements and employs more concepts
(in terms of different kinds of instance of relationships).

Such a situation is often an indicator of a mismatch
between the structure of the problem and the technology
used to represent it. To avoid this, the goal in software
engineering—indeed in all engineering disciplines—is to
find problem representation technologies that minimize the
non-inherent complexity embedded in engineering systems,
also called the accidental complexity [6].

In the context of this paper, we define the accidental com-
plexity of a domain model as the amount of information in
a model that is not induced by the corresponding domain
conceptualization but, for instance, only exists to realize
some workaround technique, the latter being used because

an isomorphic relationship between domain concepts and
modeling language concepts is not possible. The degree of
accidental complexity thus correlates in an absolute manner
with the number of elements and relationships in a model, and
can be determined by comparing the latter with the number
of domain elements and relationships to be represented.

In a relative sense, one domain model will consequently
have a higher degree of accidental complexity than another
if it features more modeling elements, provided both contain
the same amount of information about the domain. Note,
however, that comparing the number of elements of two
models provides only an indirect measure of their respective
accidental complexity. The latter depends on how directly
and faithfully a domain model can capture the conceptualiza-
tion it represents, in other words, on the relationship between
a domain model and its subject, not on the domain model it-
self. This is the reason why purely counting model elements
or the application of some other standard metric to a domain
model may yield some coincidental correlation but will not
directly measure domain model complexity.

3.2 Representing domain types as classes

Strategies similar to the “Item Description” pattern as
employed in Figure 1 are often used in situations where new
types need to be introduced dynamically. For example, one
may want to create “MonitorModel” instances at runtime
(e.g., “PlasmaPanel”) to allow the creation of new monitor
instances (e.g., “m3”) of such new monitor types. This level

123

C. Atkinson, T. Kühne

ComputerDeluxe

name = "PC deluxe"
processor = "4.5 Ghz"

c1 : ComputerStandard

name = "PC standard"
processor = "3.1 Ghz" c2 : ComputerDeluxe

name = "CRT 21"
size = 21

m1 : MonitorFlat

name = "Flat 19"
size = 19

m2 : MonitorCRT

Product

Computer Monitor

ComputerStandard MonitorCRT MonitorFlat

domain
instances

domain
types

model
instances

model
types

Models

Domain

Fig. 5 Types as classes

of dynamic flexibility, however, is not needed in all cases.
Sometimes it is sufficient to be able to specify in one place
the values that are shared between all instances of a particu-
lar type. Whenever this is the case, as might reasonably be
the case in our example, then a simpler modeling solution
that does not employ “Item Description” or similar patterns
is possible.

Figure 5 shows such a simpler approach, which lifts the
modeling elements that represent domain types (e.g., “mt1”)
to the type level (i.e., into the class diagram), where they
more naturally belong according to UML’s class/object mo-
deling conventions and built-in classification mechanisms.
By modeling the elements representing different product
types (such as “MonitorCRT” and “MonitorFlat”) as classes
we can again use UML instantiation between product types
and instances (e.g., between “MonitorFlat” and “m2”) and
the whole model becomes significantly simpler.

Figure 5 introduces “Product”, “Computer”, and “Moni-
tor” as superclasses for the respective product types. This
compensates for the removal of “ComputerModel” and
“MonitorModel” from the object diagram (see Fig. 4). The
product types are thus no longer distinguished by being ins-
tances of “ComputerModel” or “MonitorModel” but by being
subtypes of “Computer” or “Monitor”.

Figure 5 certainly shows a simpler model than that of
Fig. 4 in the sense that it contains fewer modeling elements
and expresses all conceptually existing “instance of” rela-
tionships in a uniform way using UML’s built-in classifica-
tion relationship. According to the definition of complexity

in the previous section, one may therefore consider the model
of Fig. 5 to have less accidental complexity. However, it is
only reasonable to compare the complexity of models when
judging them against the same requirements. If there is no
requirement that new product type instances be dynamically
creatable, then Fig. 5 can be viewed as an equally accurate but
more concise version of Fig. 4. This being so, it would then
be reasonable to view the model of Fig. 5 as having lower
accidental complexity. If, however, there is a requirement for
the dynamic generation of product types then this interpre-
tation would not be appropriate since the model shown in
Fig. 5 does not provide the same capabilities as the model
shown in Fig. 4.

The model of Fig. 5, if interpreted as a design model for
a software system, describes a system without the capability
of creating types at runtime, because of an underlying as-
sumption that the type level (top left compartment of Fig. 5)
is static, i.e., not extensible at runtime. The model of Fig. 4,
again interpreted as a design model for software develop-
ment, supports the dynamic creation of new domain types
by representing these types explicitly as objects. There is no
hard and fast rule that states that the type level is static, but
this is the usual convention of modelers. With the require-
ment for dynamic instantiation of types, Fig. 4 must hence
be regarded as a more accurate model of the scenario than
Fig. 5, and it would thus be inappropriate to regard its extra
complexity as “accidental”. On the contrary, the model of
Fig. 5 should not, in this case, be regarded as an accurate
model.

123

Reducing accidental complexity in domain models

It is indeed a shortcoming of the models as shown in Figs. 1
and 3 that we cannot know whether dynamic type creation
should be supported or not. Without further documentation
we cannot know which of the workaround properties are
intended or accidental. This not only concerns dynamic type
creation but also whether or not type properties (such as
“size” for monitor models) are constant and/or can be
accessed by their respective instances.

In Fig. 5, we have chosen to represent the values asso-
ciated with product types in Fig. 1 as “static attributes”,
since this is the most concise way of defining changeable
properties that are accessible by, but the same for, all ins-
tances of a class. An alternative, when using the UML, might
have been to assign “default values” to regular class
attributes. However, while this would have ensured that all
instances obtained the corresponding value at their time of
creation, it would allow each instance (such as “m1”) to
change the value individually. Defining the attributes to be
constant would remove the latter problem but would also
globally remove the ability to change the value at run-time.
UML’s tagged values offer a third way of associating pro-
perties with classes, being appropriate when properties are
neither dynamically changeable nor accessible to instances
of the class.

4 Three-level modeling

In Fig. 5, we were able to reduce the accidental complexity
of the domain model by raising product types to the traditio-
nal class level and capturing the relationships between pro-
ducts and product types by using UML’s built-in instance-of
relationship rather than modeling some of them with asso-
ciations/links. However, this could only be interpreted as a
simplification of the model under the assumption that there
was no requirement for dynamic generation of new product
types.

The obvious question is whether it is possible to retain
the simplicity gained in Fig. 5 by moving the product types
to the traditional class level while simultaneously supporting
the ability to create new product types dynamically. If we
assume the type level is just as dynamic as the object level,
we need some control over what types are created and what
features they have. In other words, we need (domain-) meta-
types controlling the features of (domain-) types. In fact, the
introduction of metatypes will not only enable dynamic type
creation but also reveal why the original design of Figure 1
displayed accidental complexity.

4.1 The level mismatch problem

The problem of solutions using strategies similar to the “Item
Description” pattern is that they are attempting to capture

Model
Types

Model
Instances

Models

Domain

Domain
Metatypes

Domain
Types

Domain
Instancesrepresent

Fig. 6 Mapping domain levels to modeling levels

a domain scenario inherently involving three classification
levels using mechanisms that were designed to support a two
level (class/object) paradigm. Figure 6 illustrates the mis-
match between the number of levels schematically. It shows
that the domain scenario of our example actually features
three ontological levels—domain instances, their types, and
the types of the types, i.e., metatypes—while the correspon-
ding models actually only contain two levels (as defined by
the fundamental class/object dichotomy of the UML). This
means that somewhere one modeling level must be used to
represent two domain levels. Figure 6 shows how the original
design of Fig. 1 represents both domain types and instances
at the modeling instance level, while domain metatypes are
represented at the modeling type level.

We can therefore observe that whenever there is a need
to represent a domain with more than two inherent clas-
sification levels with a two level paradigm, some artificial
“trick”/“workaround” has to be used to squeeze the three or
more levels into two levels. The application of the “trick”
invariably introduces some accidental complexity and typi-
cally makes it impossible to distinguish between the inten-
ded modeled properties and those that are not required but
“trick”-induced.

In the following we look at two UML mechanisms—
compared and linked to each other in [13]—to support more
than two modeling levels and evaluate their suitability for
capturing our example domain scenario.

4.2 Representing domain metatypes as powertypes

Powertypes as introduced by Odell [24]—and later incorpo-
rated into the UML—appear to be appropriate for addres-
sing the representation of domain metatypes, which we need
to control the dynamic type level. Just like a metatype, a
powertype has instances that are types and may be further
instantiated. The powertype mechanism is conceptually iden-
tical to the “materialization” mechanism [28], which has been
independently developed in the database community [12].
Both approaches establish a relationship between a type (e.g.,
“MonitorModel”) and a supertype (e.g., “Monitor”), where
the latter’s subtypes are regarded as instances of the former. In
the following we focus on powertypes and in particular their

123

C. Atkinson, T. Kühne

c1 : ComputerStandard

name = "PC standard"
processor = "3.1 Ghz"

c2 : ComputerDeluxe

name = "CRT 21"
size = 21

m1 : MonitorFlat

name = "Flat 19"
size = 19

m2 : MonitorCRT

ComputerStandard

MonitorCRT MonitorFlat

Models

Domain

ProductType

name : String

ProductType

name : String

Monitor

: ComputerModel

: MonitorModel

«powertype»
ComputerModel

processor : String

«powertype»
ComputerMonitorModel

size : String

ComputerDeluxe

name = "PC deluxe"
processor = "4.5 Ghz"

domain
instances

domain
types

domain
metatypes

model
instances

model
types

Fig. 7 Metatypes as powertypes

integration with the UML. However, the main arguments
also apply to other incarnations of the approach, including
the “materialization” mechanism.

Although the model in Fig. 7 superficially fulfills the goal
of defining (meta-)types for the subclasses of “Computer”
and the subclasses of “Monitor”, closer examination reveals
some problems. The first problem of powertypes as adop-
ted in UML 2 is the use of an additional mechanism to
describe the “instance of” relationship. This not only en-
tails construct redundancy [30], but in this case is a less
than satisfactory substitute for the standard class/object re-
lationship for the following reason: Since the relationships
between “Computer” & “ComputerModel” and “Monitor” &
“MonitorModel”, which are intended to express classifica-
tion, are modeled in the form of (powertype-) associations
rather than in the form of the standard class/object rela-
tionship, the attributes of metatypes (ProductType and its
subtypes) cannot specify properties in their corresponding
instances (e.g., “MonitorCRT” or “ComputerDeluxe”) accor-
ding to regular UML semantics. Although the UML specifi-
cation claims that powertypes may introduce class properties
(as known from [24]), it is unspecified how this is suppo-
sed to be supported by concrete UML semantics. Officially,

therefore, one cannot assume that UML powertype attributes
are able to control type-level properties of their instances.
This may make UML powertypes appear useless, but in sec-
tion 5 we will actually see how they can be of real value.

The second problem of powertypes as supported by UML
2 again relates to the use of associations to denote the
“instance of” relationship between a powertype and the
superclass of its instances. Despite the further occurrence
of powertypes names as generalization discriminators (see
Fig. 7) this achieves too little from a semiotic perspective
to signify the fundamental difference between a powertype
and its instances. As a result, both notationwise and semanti-
cally (because of problem one), powertypes, as interpreted by
UML 2, appear to be closer to supporting a two-level rather
than a three level approach.

The second problem associated with the design of Fig. 7
stems from the mandatory use of superclasses “Computer”
and “Monitor”. If the latter exist in the conceptualization
of the domain since they are thought to be useful, then their
presence is unproblematic. If, however, the conceptualization
does not contain them, their introduction in order to support
the powertype mechanism clearly amounts to adding acci-
dental complexity.

123

Reducing accidental complexity in domain models

c1 : ComputerStandard

c2 : ComputerDeluxe

m1 : MonitorFlat

m2 : MonitorCRT

«ComputerModel»
ComputerStandard

«MonitorModel»
MonitorCRT

«MonitorModel»
MonitorFlat

Models

Domain

«stereotype»
MonitorModel

«stereotype»
ComputerModel

«metaclass»
Class

«MonitorModel»
name = "CRT 21"
size = 21

«MonitorModel»
name = "CRT 21"
size = 21

name : String
size : Integer

name : String
processor : String

«ComputerModel»
name = " PC deluxe "
processor = "4.5 Ghz"

«ComputerModel»
name = " PC deluxe "
processor = "4.5 Ghz"

«ComputerModel»
name = " PC standard"
processor = “3.1 Ghz"

«ComputerModel»
name = " PC standard"
processor = “3.1 Ghz"

«MonitorModel»
name = “Flat 19"
size = 19

«MonitorModel»
name = “Flat 19"
size = 19

«ComputerModel»
ComputerDeluxe

domain
instances

domain
types

domain
metatypes

model
instances

model
types

model
metatypes

Fig. 8 Metatypes as stereotypes

4.3 Representing domain metatypes as stereotypes

Strictly speaking, the intention of stereotypes is to support
language extension. Therefore, instead of providing support
for representing ontological domain metatypes, technically
they extend the abstract syntax of the language by introdu-
cing new linguistic (meta-)types [3]. Nevertheless, stereo-
types may be (and in practice are) used as a “poor man’s”
way to support domain metatypes. Figure 8 shows how ste-
reotypes can be used to “brand” regular classes with metatype
names and to equip them with “tagged values”.

Although the effect of stereotypes—when used as in
Fig. 8—may be conceptually regarded as adding a third user
level, they do little to reduce the accidental complexity of
domain models. There are two reasons why. First, they
involve the use of a new concept for classifying modeling
elements with subtle differences from the standard one, in-
troducing yet another way of representing the instance-of
relationship (since a stereotype can be considered to classify
the stereotyped element [5]). Again, this is a form of construct
redundancy [30]. Second, their most direct way of associating
properties with classes, the so called tagged value mecha-
nism, is quite limited. As discussed at the end of Sect. 3.2,
tagged values only support immutable class properties that
cannot be accessed by instances of the respective classes.
Of course, stereotypes may also be combined with OCL
statements, which could be used to enforce other ways of
supporting class properties, but that would only address the

accuracy of the model, not positively influence its level of
accidental complexity.

5 True multi-level modeling

The patterns and mechanisms discussed in the previous two
sections represent the state of practice today. However, they
tend to increase the accidental complexity of domain mo-
dels by (a) adding “verbosity” due to an increased number
of modeling elements and concepts needed to represent a
domain, and (b) by obscuring the domain information in a
model, making it a less accurate representation of the do-
main and/or unfit for specifying what properties are actually
required from a solution.

The root of the problem is the use of various “artificial”
ways of representing the “instance of” relationships within
a model, and the dilution of the fundamental class/instance
level boundary which this entails. This is in turn a symptom
of the lack of support—within the core modeling concepts
of languages like the UML—for representing multiple
classification levels within a domain. There are of course
knowledge representation languages (e.g., Telos [23]) and
supporting systems (e.g., ConceptBase [14]), that do not
suffer from such a two-level limitation, but these are not
used in practice in the context of software engineering
because they are not known and/or not optimized for such
applications.

123

C. Atkinson, T. Kühne

c1 : ComputerStandard

c2 : ComputerDeluxe

m1 : MonitorFlat

m2 : MonitorCRT

name = "PC standard"
processor = "3.1 Ghz"

name = "CRT 21"
size = 21

name = "Flat 19"
size = 19

ComputerStandard

MonitorCRT

MonitorFlat

Models

Domain

ProductType

name : String

ProductType

name : String

ComputerModel

processor : String

MonitorModel

size : String

ComputerDeluxe

name = "PC deluxe"
processor = "4.5 Ghz"

domain
instances

domain
types

domain
metatypes

model
instances

model
types

model
metatypes

Fig. 9 Uniform multi-level support

In the following we show how uniformly supporting more
than two modeling levels within a modeling language allows
the accidental complexity of domain models to be minimized.

5.1 Uniform multi-level support

In order to truly move beyond the traditional “two level”
paradigm, it is necessary to provide modeling concepts that
can be applied in a uniform way across all levels in a multi-
level classification hierarchy. To do this, it is necessary to
have a modeling construct that supports the representation of
the dual “type and object”-property of some domain concept.
In [1], we refer to such constructs as clabjects (class and
object) and represent them using a combination of notational
conventions from UML classes and objects. Like classes,
clabjects have a name and a set of attributes, listed in an
underlying compartment. Like objects, clabjects can have a
set of slots, listed above the attributes.

Figure 9 illustrates the example we have been studying,
modeled in terms of clabjects. We now no longer need to
resort to the UML concept of static class attributes since
class properties are naturally supported by clabjects, simply
as class-level slots. Note that because the instances of the
original example specified in Fig. 3 (see the rightmost column
of objects) do not have any slots, the clabjects in the middle
column of Fig. 9 do not need to have any type facet, i.e., they
do not specify any attributes.

By representing all domain concepts with clabjects and
using a single notion of “instance of” relationship, the model
of Fig. 8 features less accidental complexity than the solu-
tions presented in Sects. 3 and 4. Since clabjects naturally
support any number of model classification levels, the latter
can be directly aligned with the domain classification levels.
Figure 10 highlights the corresponding direct mapping bet-
ween ontological domain levels and modeling levels.

The principle of “direct mapping” as defined by [21] to
characterize software modularity requires that the solution
structure reflect the problem structure as closely as possible
and leads to solutions that are easier to understand and are
modifiable in a more localized manner. This principle, hence,
nicely matches the notion of accidental complexity in that one
must maximize the former to minimize the latter.

The models of Figs. 7 and 8 approach this “direct map-
ping” quality but do not fully achieve it due to the half-hearted

represent

Model
Types

Model
Instances

Domain
Types

Domain
Instances

Model
Metatypes

Domain
Metatypes

Models

Domain

Fig. 10 Direct mapping of domain levels to modeling levels

123

Reducing accidental complexity in domain models

integration of powertypes with their insufficient separation
from types and the ad-hoc notion of stereotypes which are
really defined at the user type level respectively. Only the
effect of introducing stereotype definitions, i.e., a virtual
extension of the UML metamodel, can be displayed as shown
in Fig. 8.

Now that we have identified a clean way of supporting
multiple domain levels, we can move on to discuss support
for “deep characterization”, i.e., the phenomenon occurring
whenever elements in one level need to influence the charac-
teristics of elements beyond those in the level immediately
below.

5.2 Deep characterization with powertypes

The modeling approach used in Fig. 9 captures all the
information conveyed in the original model of Figure 4 in
a more direct and concise way. We therefore believe it al-
ready represents a significant step forward over the current
practice in domain modeling. However, there is one additio-
nal issue which needs to be addressed in order to allow all
aspects of domain scenarios involving multiple classification
levels to be fully and naturally modeled. This is the issue of
deep characterization [17].

Deep characterization exists when a type in a scenario
with multiple classification levels wishes to influence (i.e.,
make statements about) entities beyond its immediate ins-
tances. Technically, deep characterization means that a type
can influence its instances’ type facets (e.g., the attributes of
types, controlling the shape of further instances) as well as
their object facets (i.e., properties with values).

In order to demonstrate deep characterization we extended
our example with “price” and “picture quality” (“picQlty”)
attributes for classes “Computer” and “Monitor” classes res-
pectively. This assumes that particular monitor instances are
distinguished by the individual picture quality they offer,
because they may have individual geometry and/or “dead
pixel” problems. In analogy, particular computer instances
may be assigned individual prices because of their condi-
tion/appearance. This is a case of deep characterization since
we want to associate with “ComputerModel” and “Monitor-
Model” the fact that any of its instances has to define at-
tributes “price” and “picQlty” respectively. In other words,
that all instances of “ComputerModel” instances will have
a “price” property and all instances of “Monitor” instances
will have a “picQlty” property.

Without explicit language support to address this require-
ment, the best way to model deep characterization today is
to use the powertype mechanism as discussed in Sect. 4.3.
Figure 11 shows how the powertype mechanism can be used
to represent deep characterization. If a superclass (e.g.,
“Computer”) is said to have a powertype (here “Computer-
Model”) then an instance of the powertype (e.g.,
“ComputerStandard”) is not well-formed unless it inherits
from the superclass (“Computer”). In our example, every sub-
class of “Computer” and “Monitor” must also be an instance
of powertypes “ComputerModel” and “MonitorModel” res-
pectively. Hence, all subclasses will have a “processor” or
“size” slot and a “price” or “picQlty” attribute. Powertypes
therefore control the type facet of powertype instances by
means of inheritance. In combination, powertypes and su-
pertypes fully define the powertype instances regarding their
instance facets and type facets respectively.

Fig. 11 Deep characterization
with powertypes

ComputerDeluxe

ProductType

name : String

«powertype»
ComputerModel

processor : String

«powertype»
MonitorModel

size : String

ComputerStandard

name = "PC standard"
processor = "3.1 Ghz"

c1 : ComputerStandard

price = 799

name = "PC deluxe"
processor = "4.5 Ghz"

c2 : ComputerDeluxe

price = 1399

MonitorFlat

name = "flat 19"
size = 19

m1 : MonitorFlat

picQlty = 2

MonitorCRT

name = "CRT 21"
size = 21

model
types

model
instances

model
metatypes

m2 : MonitorCRT

picQlty = 1

«powertype» «powertype»

Computer Monitor

price : Double picQlty : Integer

123

C. Atkinson, T. Kühne

Note that we have given powertypes the benefit of a clea-
rer presentation by using an outdated UML 1.1 notation (a
dependency relationship stereotyped with “«powertype»”)
[25] and placing them at an ontological user metatype level.
A UML 2 conformant model (such as the one in Figure 7)
has to use associations between powertypes and supertypes
and effectively places both at the same user level [27].

5.3 Deep Characterization with Deep Instantiation

The powertype mechanism supports deep characterization
but at the potential cost of introducing supertypes whose only
purpose might be to provide a type facet for their subclasses.
As already argued at the end of Sect. 5.2, these supertypes
may exist in the domain conceptualization for a good reason
in any case but, if not, they add accidental complexity to the
domain model since they are only being introduced because
of the idiosyncrasies of a particular solution to deep characte-
rization. Moreover, the effective application of the powertype
mechanism requires modelers to understand the rules of this
mechanism, which go beyond basic instantiation rules.

To represent deep characterization with guaranteed
minimal accidental complexity, we need a mechanism that
supports it in as direct and concise a way as possible. We
have presented such a mechanism in earlier work [2] and re-
fer to it as deep instantiation. Deep instantiation essentially
embodies two ideas—one is the unification of (meta-) attri-
butes and slots into a single, more general concept, which we
refer to as “field”; the other is the idea of assigning an addi-
tional property to clabjects and fields known as “potency”,
which defines how deep the instantiation chain produced by
that clabject or field may become. For example, a field of
potency two can produce an instantiation depth of two. The
first time it is instantiated, the potency-two field causes the

creation of a potency-one field of the same name (yielding
a regular attribute). When the latter is instantiated again, it
causes the creation of a potency-zero field (yielding a regular
slot). Entities with potency zero cannot be further instantiated
just like regular objects or slots. Further details about deep
instantiation, including a formal semantics, may be found in
[2,17].

Figure 12 shows how deep instantiation can be used
to represent deep characterization in our example. Clabject
“MonitorModel” has a field “picQlty” of potency two, indica-
ted by the superscript “2” at the field name. When
“MonitorModel” is instantiated to create “MonitorFlat”, all
its fields with a potency higher than zero are copied to “Moni-
torFlat”, with their potencies reduced by one. Thus “picQlty”
becomes a field of potency one (i.e., the desired attribute at
this level) while “size” becomes a field of potency zero (i.e.,
a slot). The further instantiation of “MonitorFlat” to generate
“m1” reduces the potency of “picQlty” to zero and turns it
into a regular slot.

Note that superscripts with the values “1” and “0” may
be omitted where the context makes the choice clear, for
example for slots of potency zero within an object of potency
zero. In our example, we therefore only have to specify the
potency-two elements and, additionally, demonstrate the use
of a potency value of zero for clabjects with non-zero po-
tency fields, by specifying “ProductType” in Fig. 12 to be an
abstract (meta-) class.

The version of the domain model depicted in Fig. 12 is
not only the model with the least accidental complexity of
all the versions we have discussed, it also is more expressive
than the original design (see Fig. 4) because it features deep
characterization. It furthermore only allows computer and
monitor types for computer and monitor instances respecti-
vely. In comparison, the model of Fig. 4 needs to be enhanced

Fig. 12 Deep characterization
with potency

ProductType0

name : String

ComputerModel2

processor : String
price : Double2

MonitorModel2

size : S ring
picQlt Integer

t
y2 :

ComputerStandard

name = "PC standard"
processor = "3.1 Ghz"
price : Double

ComputerDeluxe

name = "PC deluxe"
processor = "4.5 Ghz"
price : Double

MonitorFlat

name = "Flat 19"
size = 19
picQlty : Integer

m1 : MonitorFlat

picQlty = 2

MonitorCRT

name = "CRT 21"
size = 21
picQlty : Integer

m2 : MonitorCRT

picQlty = 1

model
types

model
instances

model
metatypes

potency
values

c1 : ComputerStandard c2 : ComputerDeluxe

price = 799 price = 1399

123

Reducing accidental complexity in domain models

with further constraints, or concepts like association inheri-
tance, to prevent monitor instances being assigned a compu-
ter type by mistake. If deemed useful, concepts “Computer”
and “Monitor” may be added to the model of Fig. 12 but
one is not forced to do so. With a powertype-based solution,
however, one is forced to add them. Either way, the des-
cription of entities such as “Computer” may be concentrated
at a single place (“ComputerModel”) when using deep ins-
tantiation. Powertypes, in comparison, require splitting the
description of instance and type facets to elements “Com-
puterModel” and “Computer” respectively. Gonzalez-Perez
and Henderson-Sellers, on the other hand, argue that the
“splitting”-property of powertypes are a feature, not a bug
[11]. However, if one accepts the principle that adding addi-
tional model elements to a model simply to “set up” the use
of a particular technology (rather than because they naturally
exist in the domain of study) increases the accidental com-
plexity of a model, then powertypes are clearly not as ade-
quate as clabjects and potency for the purpose of modeling
problem domains.

6 Conclusion

In this article, we have shown that current modeling practices
and many of the mechanisms supported by the UML are still
rooted in the original “two level” paradigm which dominated
the early modeling techniques, and is still the primary imple-
mentation model for mainstream object-oriented languages
and databases. When the goal of a model is to describe a
design targeted to such an implementation technology, this
assumption of a basic two-level type/instance dichotomy is
appropriate. In today’s model-driven development termino-
logy, such a model would be regarded as a platform-specific
model, targeted to a “two-level” platform. However, when
the goal of a model is to describe a domain scenario in
a solution-independent way, any assumptions about speci-
fic implementation platforms are inappropriate because they
introduce complexity that is not inherent in the domain—
so-called accidental complexity.

We have defined the accidental complexity of a domain
model as the extent to which it is capable of representing
a domain conceptualization in the most direct way without
adding any artificial, representation induced elements. By
assuming a given conceptualization, whose quality we are
not concerned with, we are thus measuring the representation
quality of a model as opposed to the content quality of a
model. As a result, standard software metrics are not directly
relevant.

We believe the article’s main contribution is in drawing
attention to the “level mismatch” problem and the role that
it plays in increasing the accidental complexity of domain
models. This problem occurs whenever domain scenarios

with three or more inherent classification levels are mode-
led in terms of mechanisms or concepts that are based on
a “two level” modeling paradigm. To accomplish this, it is
necessary to adopt one of several “workaround” techniques
that allow one or more of the domain classification levels to
be “folded” or “squeezed” into one modeling level. This not
only obscures the underlying properties of the domain, it also
leads to indirect mappings that are more difficult to maintain
and check. In particular, such models are ill-suited to docu-
ment the intent of the modeler with respect to the required
solution properties. The reader can never be sure which of
the model properties reflect the modeler’s intent or are due
to the idiosyncrasies of the “workaround”.

We therefore proposed the support of a genuine multi-
level way of modeling domain information which replaces
the existing workarounds for “instance of” relationships ex-
plained in this paper with a single, fundamental notation that
is uniform across all logical levels. Modeling at the level of
metatypes is then no different to modeling at any other (type
or instance) level and does not require any special modeling
concepts, such as stereotypes or powertypes, thereby avoi-
ding unnecessary construct redundancy [30]. The so-called
orthogonal classification architecture [4] could be used as
an underpinning modeling infrastructure, since it explicitly
acknowledges the existence of multiple ontological domain
levels and supports them directly with a uniform notation for
all the levels and with a minimum of modeling concepts.

In Sect. 5, we demonstrated how—with the use of clabjects
and potency—it is possible to create a model of the example
domain with the least amount of accidental complexity, i.e.,
with the most direct mapping to the domain conceptualization
it represents, using a minimal number of modeling elements.
On top of this, the model was more expressive than all the
other models that did not support deep characterization.

Note, however, that our main point is not to promote a
particular technology, such as clabjects and potency, but to
point out that there is a strong demand for some kind of
technology supporting ontological multi-level modeling with
concise support for deep characterization. Traditional “two
level”-based approaches with their associated workaround
mechanisms are simply a suboptimal choice for capturing
the properties of a domain scenario in the most accurate way
and for creating solution-independent models with a minimal
amount of accidental complexity. In short, they are not sui-
table for fulfilling the underlying goal of domain modeling.

Certainly, capable approaches [23] and tools [14] addres-
sing the above mentioned shortcomings exist, but the soft-
ware modeling community has not taken advantage of them
yet. We believe there are three main reasons for this. First
none of the existing multi-level modeling approaches target
software development as such. As a result the tools are not di-
rectly suitable for mainstream software development and—
partly because of that—the software modeling community

123

C. Atkinson, T. Kühne

is not generally aware of them. Second, the MDA research
community has traditionally focused on metamodeling as a
means for language definition rather than as an inherit part
of end-user domain models. Third, the general software mo-
deling community is simply not aware of the fact that “two
level” approaches fundamentally impede the creation of op-
timal domain models.

Even if one intends to map the domain model to a solution
technology that supports less levels than nominally required,
we suggest that it is better to first create a clean model using
as many levels as required and then—in a subsequent step—
to transform this into a form that uses some of the available
workaround practices where needed. The casting of a multi-
level problem scenario into a two-level solution model would
thus be regarded as part of the refinement process, not as
something to be captured in the domain model itself.

References

1. Atkinson, C., Kühne, T.: Meta-level Independent Modeling,
International Workshop “Model Engineering” (in conjunction
with ECOOP’2000), Cannes, France (2000)

2. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling.
In: Proceedings of the 4th International Conference on the Unified
Modeling Language, Toronto, Canada (2001)

3. Atkinson, C., Kühne, T.: Model-Driven Development: A Meta-
modeling Foundation. IEEE Softw. 20(5), 36–41 (2003)

4. Atkinson, C., Kühne, T.: Concepts for Comparing Modeling Tool
Architectures, In: Proceedings of the ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Sys-
tems, MoDELS/UML 2005

5. Atkinson, C., Kühne, T., Henderson-Sellers, B.: Systematic ste-
reotype usage. J. Softw. Syst. Model. 2(3), 153–163 (2003)

6. Brooks, F.P.: No silver bullet: essence and accidents of software
engineering. Comput. Archive 20(4), 10–19 (1987) ISSN:0018-
9162

7. Coad, P.: Object-oriented patterns. Commun. ACM 35(9), 152–
159 (1992)

8. Coleman, D., Arnold, P., Bodo, S. Dollin, C., Gilchrist, H., Hayes,
F., Jeremaes, P.: Object-Oriented Development: The Fusion
Method. Prentice-Hall, englewood Cliffs (1994)

9. Engels, G., Förster, A., Heckel, R., and Thöne, S.: Process
modeling using UML. In: Process-Aware Information Systems.
pp. 85–117 Wiley, Chichester,(2005)

10. Frank, U.: Modeling products for versatile e-commerce
platforms—essential requirements and generic design alterna-
tives. In: Arisawa, H., Kambayashi, Y., Kumar, V., Mayr, H.C.,
Hunt, I. (eds.) Conceptual Modeling for New Information System
Technologies, pp. 444–456. Springer, Heidelberg (2002)

11. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based
metamodelling framework. Softw. Syste. Model. 5(1), (2006)

12. Goldstein, R.C., Storey, V.C.: Materialization. IEEE Trans. Know-
ledge Data Eng. 6(5), 835–842 (1994)

13. Henderson-Sellers, B., Gonzalez-Perez, C.: Connecting power-
types and stereotypes. J. Object Technol. 4(7), (2005)

14. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.,
Eherer, S.: ConceptBase — a deductive object base for metadata
management. J. Intell. Information Syst. Special Issue Adv.
Deductive Object-Oriented Databases 4(2), 167–192 (1995)

15. Johnson, R., Woolf, B.: Type Object, In Pattern Languages of
Program Design 3, pp. 47–66. Addison-Wesley, Reading (1997)

16. Kühne, T.: Matters of (meta-) modeling. J. Softw. Syst. Model.
5(4), (2006)

17. Kühne, T., Steimann, F.: Tiefe Charakterisierung. In Proceedings
of “Modellierung 2004”. LNI Vol. 45, pp. 121–133

18. Larman, C.: Applying UML and patterns: an introduction to
object-oriented analysis and design and the unified process, 2nd
(edn.) Prentice-Hall, Englewood cliffs (2002)

19. Ludewig, J.: Models in software engineering—an introduction. J.
Softw. Syst. Model. 2(1), 5–14 (2005)

20. Lyardet, F.: The dynamic template pattern. In: Proceedings of the
Conference on Pattern Languages of Design (1997)

21. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs (1997) ISBN 0-13-629155-4

22. Mittelstraß, J. (Ed.) Enzyklopädie Philosophie und Wissenschafts-
theorie. Metzler Verlag, (2004) ISBN: 3476020126

23. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos
— a language for representing knowledge about information sys-
tems. In ACM Trans. Informat. Syst. 8(4), 325–362 (1990)

24. Odell, J.: Power Types. J. Object-Oriented Program. (1994)
25. OMG: Unified Modeling Language, v1.1. OMG document ad/97-

08-04, (1997)
26. OMG: MDA Guide Version 1.0.1, OMG document omg/03-06-01

(2003)
27. OMG: Unified Modeling Language, v2.0. OMG document

formal/05-07-04, (2005)
28. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T:. Materiali-

zation: a powerful and ubiquitous abstraction pattern. In: Procee-
dings of the Conference on Very Large Database, pp. 630–641
(1994)

29. Riehle, D., Tilman, M., Johnson, R.: Dynamic object model, In:
Pattern Languages of Program Design 5. Addison-Wesley, Rea-
ding (2005)

30. Wand, Y., Weber, R.: On the ontological expressiveness of
information systems analysis and design grammars. J. Informat.
Syst. 3(3), 217–237 (1993)

31. Yoder, J. W., Johnson, R.: The adaptive object model architectural
style. In: Proceeding of The Working IEEE/IFIP Conference on
Softw. Architecture 2002 (WICSA3 ’02)

Author’s biography

Colin Atkinson heads the
chair of Software Engineering at
the University of Mannheim in
Germany. Prior to that he was
an Associate Professor at the
University of Kaiserslautern and
project leader at the affiliated
Fraunhofer Institute for Expe-
rimental Software Engineering.
From 1991 until 1997 he was an
Assistant Professor of Software
Engineering at the University of
Houston - Clear Lake. His re-
search interests are focused on
the use of model-driven and com-
ponent based approaches in the
development of dependable com-

puting systems. He received a Ph.D. and M.Sc. in computer science from
Imperial College, London, in 1990 and 1985 respectively, and his B.Sc.
in Mathematical Physics from the University of Nottingham in 1983.

123

Reducing accidental complexity in domain models

Thomas Kühne is an
Assistant Professor at the
Darmstadt University of Tech-
nology in Germany. Prior to
that he was an Acting Professor
at the University of Mannheim
(Germany) and a Lecturer at
Staffordshire University (UK).
His interests are centered on
object technology, programming
language design, model-driven
development, component archi-
tectures, and metamodeling. He
received a Ph.D. and M.Sc.
from the Darmstadt University
of Technology, Germany in 1998
and 1992 respectively.

123

	Abstract
	Introduction
	Example domain model
	Two-level modeling
	Representing domain types as objects
	Representing domain types as classes
	Three-level modeling
	The level mismatch problem
	Representing domain metatypes as powertypes
	Representing domain metatypes as stereotypes
	True multi-level modeling
	Uniform multi-level support
	Deep characterization with powertypes
	Deep Characterization with Deep Instantiation
	Conclusion

