
Reducing an Operational Supervisory
Control Problem by Decomposition for
Deterministic Pushdown Automata

S. Schneider ∗ A.-K. Schmuck ∗∗ U. Nestmann ∗ J. Raisch ∗∗,∗∗∗

∗Modelle und Theorie Verteilter Systeme, Technische Universität Berlin
∗∗Regelungssysteme, Technische Universität Berlin

∗∗∗Max-Planck-Institut für Dynamik komplexer technischer Systeme

Abstract: The purpose of Supervisory Control Theory (SCT) is to synthesize a controller for
a plant and a specification such that the desired closed-loop behavior is enforced. Effective
solvers have been constructed in the past for the setting of plants and specifications modeled
by Deterministic Finite Automata (DFA). We extend the domain of the specification to
Deterministic Pushdown Automata (DPDA) and verify an effective solver (up to two basic
building blocks which ensure controllability and blockfreeness, effectively solved for this setting
in two companion papers). We verify the enforcement of desired operational criteria, which are,
in contrast to the setting of DFA, partly oblivious to the (un)marked language of the closed
loop. Our general approach trivially covers the setting of DFA and can be reused and adapted
to develop effective solvers for other settings as the realizability of solutions to the supervisory
control problem (SCP) is considered on an abstract level.

Keywords: Supervisory Control Theory, Pushdown Systems, Operational Properties, Fully
Abstract Denotational Semantics, Suprema Characterizations, Fixed Point Computations

The SCP was introduced and solved for plants and spec-
ifications modeled by DFA by Ramadge and Wonham
(1984); Wonham and Ramadge (1987). Subsequently, the
SCP was considered for other settings including certain
Petri nets by, e.g., Giua and DiCesare (1994, 1995). Later,
Griffin (2008, 2007) addressed the SCP for DFA plants and
DPDA specifications with prefix-closed marked languages.
However, one key criterion of the SCP, namely minimal
restrictiveness, is violated by his approach as explained in
Schmuck, Schneider, Raisch, and Nestmann (2014).

Wonham and Ramadge (1987) synthesize the desired con-
troller language C, formally defined by the SCP, for
regular plant and specification languages (P and S, re-
spectively), by operating on their DFA representations,
generating a DFA representation of C. We perceive the
involved languages P , S, and C as trace abstractions of
the finite operational DFA-models. While this standard
trace abstraction is sufficient for DFA and observable Petri
nets we show that it is insufficient for DPDA with their
unobservable λ-steps. This insight enforces the perspective
of synthesizing automata realizations instead of languages.

In Section 1, the models, relevant to this paper, includ-
ing DPDA, are introduced. Afterwards we define trace
abstractions for DPDA and analyze their basic properties
in Section 2. In Section 3 we provide operational criteria of
the desired (least restrictive) controller, and formally de-
fine a reduction of synthesizing a controller satisfying these
constraints to the SCP by introducing an operational SCP
(OSCP) based on trace abstractions introduced before.

The operational computation of the concrete solver for the
DFA setting of Ramadge and Wonham (1984), which is
extensively used in the control of discrete event systems,

does not correspond well to their trace-abstract charac-
terization of the desired closed-loop behavior. To bridge
this gap, (i) in Section 4, we formalize the correspondence
between operational and trace-abstract solutions by suit-
ably characterizing satisfactory controllers and verify their
equivalence to the standard SCP solutions; and (ii) in Sec-
tion 5, we introduce adequate fixed-point algorithms which
(a) determine only satisfactory controllers and (b) are
constructed over operations ensuring controllability and
blockfreeness for the underlying finite state models. These
fixed-point algorithms constitute solvers for the SCP for
DFA plants and DPDA specifications when using the ef-
fective procedures for ensuring controllability and block-
freeness for DPDA, discussed in the two companion pa-
pers Schmuck, Schneider, Raisch, and Nestmann (2014);
Schneider and Nestmann (2014). In summary, we consider
the implications of choosing DPDA as specifications on
SCT (a) by formalizing operational criteria for the desired
controllers, (b) by reducing the synthesis problem to the
standard SCP by means of an OSCP using adequate trace
abstractions which guarantee the desired criteria for con-
troller realizations, (c) by expressing the SCP by supremal
elements of a complete lattice over our trace abstractions,
and (d) by decomposing the suprema-based characteriza-
tion into fixed-point algorithms consisting of basic building
blocks implemented in the companion papers cited above.

While outlining the process of verifying the adequacy of
the trace abstractions of Section 2, we have verified the
automata foundations of Section 1 and the central results
of Section 4 and Section 5 in the interactive theorem prover
Isabelle/HOL (Paulson et al., 2011).

12th IFAC/IEEE Workshop on Discrete Event Systems
Cachan, France. May 14-16, 2014

978-3-902823-61-8/2014 © IFAC 214 10.3182/20140514-3-FR-4046.00057

1. MODELS OF BEHAVIOR

We assume a fixed set of possible events Σ shared by
all models contained in this paper. This set is, as usual,
partitioned into a set of controllable events Σc and a
set of uncontrollable events Σuc. In examples we assume
Σc = {a, b, c, d, e} and Σuc = {u, v}.
We use the following notation throughout the paper.

Notation 1. Let A be a set. Then (i) A∗ denotes the set of
finite words over A, (ii) Aω∗ denotes the set of finite and
infinite words over A, (iii) single symbols are denoted by
greek letters (except for λ, the empty word), (iv) words
are denoted by s, w, (v) · is the (usually omitted) concate-
nation operation on words (and languages), (vi) v is the
prefix relation, (vii) A is the prefix-closure of A, (viii) w
is the suffix relation, and (ix) λx.f(x) is the nameless
function equal to f (e.g., f(x)=x2 implies f=λx.x2). 2

1.1 Labeled Graphs

We use labeled graphs as representations of discrete (op-
erational) behavior, where edges correspond to steps.

Definition 1. (Labelled Graphs). G = (V,E,L, s, t, l) ∈
LGraph iff (i) V is a set of vertices, (ii) E is a set of
edges, (iii) L is a set of labels, (iv) s : E→V maps each
edge to its source-vertex, (v) t : E→V maps each edge to
its target-vertex, and (vi) l : V → 2L maps each vertex to
the set of its labels. 2

Two operational behaviors (given as LGraphs) are equiv-
alent iff they are renamings of each other.

Definition 2. (LGraph-Isomorphisms).
LetG1 = (V1, E1, L, s1, t1, l1) andG2 = (V2, E2, L, s2, t2, l2)
be two LGraphs with identical sets of labels. Then f =
(fV : V1→V2, fE : E1→E2) : G1→G2 containing map-
pings for vertices and edges is an LGraph-isomorphism iff
(i) fV and fE are bijections,
(ii) sources are preserved:
s2 ◦ fE = fV ◦ s1, (iii) tar-
gets are preserved: t2 ◦ fE =
fV ◦ t1, and (iv) labels are
preserved: l1 = l2 ◦ fV .

E1 V1

E2 V2

L

s1

t1

s2

t2

l1

l2

fVfE = =

Furthermore, G1
∼= G2 iff there is an LGraph-isomorphism

f : G1→G2. 2

1.2 Discrete Event Systems

We introduce Discrete Event Systems (DES) as a de-
notational model which is entirely decoupled from the
syntax and semantics of concrete (e.g., automata) realiza-
tions. The DES is given by the sets of (i) all (possible)
observations—the unmarked language Lum and (ii) all
(possible) desired observations—the marked language Lm.

Definition 3. (Discrete Event System).
D = Lum, Lm ∈ DES iff Lm ⊆ Lum = Lum ⊆ Σ∗.
Lum(D) and Lm(D) denote the two components of D. 2

We repeat the well known notions of language-blockfreeness
and language-controllability of DES which are central to
the standard SCT (cf. Ramadge and Wonham (1984)).

Definition 4. (Blockfree and Controllable DES).
Let D1, D2 ∈ DES. Then (i) D1 is language-blockfree 1 iff

1 Every observation is a prefix of a desired observation.

λ, i a au aua auau, f

auu, f

Figure 1. P = ({auau, auu}, {auau, auu}) ∈ DES is represented as
an LGraph: the names of the vertices in the visualization are
the labels of the vertices.

q0M q1 q2

a,2,•2; a,•,••

�,2,2;λ,•,•

b,•,λ

c,2,2

(⊥, (q0,λ,2)) `M ((q0,a,2,•2,q0), (q0,a,•2))
`M ((q0,a,•,••,q0), (q0,aa,••2)) `M ((q0,λ,•,•,q1), (q1,aa,••2))
`M ((q1,b,•,λ,q1), (q1,aab,•2)) `M ((q1,b,•,λ,q1), (q1,aabb,2))
`M ((q1,c,2,2,q2), (q2,aabbc,2))

Figure 2. M ∈ FPDA with Lm(M) = {an+1bn+1c | n ∈ N} and an
exemplary initial derivation in which edges are printed in gray.

Lum(D1) ⊆ Lm(D1) and (ii) D1 is language-controllable 2

w.r.t D2 (denoted by LCont(Lum(D1),Lum(D2),Σuc))iff
(Lum(D1)·Σuc) ∩ Lum(D2) ⊆ Lum(D1). 2

We will use the following complete lattice in Section 4 to
characterize important DES. Suprema and infima of sets
of languages are denoted using ∪ and ∩ in this paper.

Lemma 1. (Complete Lattice of DES).
DES forms a complete lattice using the following opera-
tions where {A,B}∪M ⊆ DES. (i) the least element: ⊥ =
∅, ∅ , (ii) the greatest element: > = Σ∗,Σ∗ , (iii) the in-

clusion: A ≤ B iff Lum(A) ⊆ Lum(B) and Lm(A) ⊆ Lm(B).
(iv) the strict inclusion: A < B iff A ≤ B and A 6= B.
(v) the synchronous (infimal) composition (denoted by
A×B in the rest of the paper): inf(A,B) = Lum(A) ∩
Lum(B),Lm(A) ∩ Lm(B) , (vi) the alternative (supremal)
composition: sup(A,B) = Lum(A) ∪ Lum(B),Lm(A) ∪
Lm(B) , (vii) the maximal DES included in all DES from
M 3 : Inf(M) = ∩Lum(M),∩Lm(M) , and (viii) the least
DES which includes all DES from M : Sup(M) = ∪
Lum(M),∪Lm(M) .

We give the natural operational behavior of a DES.

Definition 5. (Natural Operational Behaviour of DES).
Let D ∈ DES. Then JDKDES

LGraph = (V,E, L, s, t, l) is the
(natural) LGraph-representation of D iff (i) V = Lum(D),
(ii) E = {(w,w·σ) | w·σ ∈ Lum(D)}, (iii) L = {i, f} ∪
Lum(D), (iv) s(w,w′) = w, (v) t(w,w′) = w′, and
(vi) l(w) = {w} ∪ {i | w = λ} ∪ {f | w ∈ Lm(D)}. 2

An example of this encoding is given in Figure 1 where a
DES is visualized as an LGraph.

Obviously, there is an isomorphism between the LGraph-
representations of two DES iff the DES are identical.

Lemma 2. (Sound Encoding). Let D1, D2 ∈ DES.
Then JD1KDES

LGraph
∼= JD2KDES

LGraph iff D1 = D2.

1.3 Finalizing Pushdown Automata (FPDA)

FPDA, introduced here, are DFA enriched with a single
stack-variable which can be used to remember aspects for
later reuse of a generated word. An example of FPDA

2 Whenever D2 has the observation w, D1 does not prevent w, and
w·u is an observation of D2 (for an uncontrollable event u), then w·u
is not prevented by D1.
3 Remark: Lm and Lum are here computing images, i.e., the sets of
the (un)marked languages of DES from M .

WODES 2014
Cachan, France. May 14-16, 2014

215

generating a language unacceptable by any DFA is given
in Figure 2: The FPDA M operates by remembering the
number of generated a as an equally long sequence of •
in its stack—then, for any generated b one • is popped
from the stack. Furthermore, we additionally assume that
the automaton can decide to stop generating symbols by
“generating” the end-of-output marker �. This intuitive
explanation is formalized in the following definition of
FPDA and their operational semantics.

Definition 6. (Finalizing Pushdown Automata (FPDA)).
M = (Q,Σ,Γ, δ, q0,2, F , �) ∈ FPDA iff (i) the states
Q, the output alphabet Σ, the stack alphabet Γ, and the
set of edges δ are finite, (ii) δ : Q × (Σ ∪ {λ, �}) × Γ ×
Γ∗ × Q, (iii) the end-of-output marker � is not contained
in Σ, (iv) the end-of-stack marker 2 is contained in Γ,
(v) the end-of-stack marker is never removed from the
stack ((q, σ,2, s′, q′) implies s′ w 2), (vi) the marking
states F and the initial state q0 are contained in Q. 2

We provide the slightly nonstandard branching semantics
of an FPDA M which utilizes a history variable in the
configurations to greatly simplify the definitions of the
trace abstractions presented in Section 2. Furthermore,
this branching semantics corresponds to the intuition that
the finite state realizations are generators rather than
acceptors of languages.

Definition 7. (Semantics of FPDA). (i) the set of configu-
rations C(M) = Q×Σ∗·{λ, �}×Γ+ where (q, w, s) ∈ C(M)
consists of a state q, a history variable w (storing the
symbols generated), and a stack variable s, (ii) the ini-
tial configuration Cinit(M) is (q0, λ,2), (iii) the set of
marking configurations Cm(M) is defined by {(q, w, s) ∈
C(M) | q ∈ F}, (iv) the annotated configurations Cδ(M) =
((δ ∪ {⊥})× C(M)) additionally contain “pre-edges” from
δ (v) the single-step relation (operating on the anno-
tated configurations) `M : Cδ(M) × Cδ(M) is defined by
(e, (p, w, s·s′′)) `M ((p, w′, s, s′, p′), (p′, w·w′, s′·s′′)) (i.e.,
the state is changed to q′, w′ is added to the history
variable, and the prefix s of the stack-variable s·s′′ is
replaced by s′) where w w � implies w′ = λ (i.e.,
once the end-of-output marker � has been generated,
the history variable cannot be extended), (vi) the set of
derivations D(M) contains all elements from Cδ(M)ω∗

starting in a configuration of the form (⊥, c) where all
adjacent (e1, c1), (e2, c2) ∈ Cδ(M) satisfy (e1, c1) `M
(e2, c2), (vii) the set of initial derivations DI(M) con-
tains all elements of D(M) starting with the initial
configuration (i.e., (⊥, (q0, λ,2))), (viii) the reachable
configurations Creach(M) are defined by {c ∈ C(M) |
∃d ∈ DI(M), n ∈ N . d(n) = (e, c)}, (ix) let out :
(C(M) ∪ Cδ(M))→Σ∗ be defined by out(e, (q, w, s)) =
out(q, w, s) = (if w w � then butlast(w) else w) (i.e., we
drop the possibly contained end-of-output marker � from
the history variable to obtain the output of a configu-
ration), (x) the marked language Lm(M) is defined by
out(Cm(M)∩Creach(M)), and (xi) the unmarked language
Lum(M) is defined by out(Creach(M)).
The concatenation of d1, d2 ∈ D(M) at index n∈N is given
by (d1·nd2) = λi. if i ≤ n then d1(i) else d2(i− n). 2

An example of an FPDA-derivation is given in Figure 2.
The well known sub-classes of FPDA having one ore more
of the properties below are defined in Table 1.

FPDA PDA DPDA NFA DFA

deterministic X X
λ-step-free X X
�-step-free X X X X
stack-free X X

Table 1. Subclasses of FPDA.

Definition 8. (Sub-classes of FPDA). An FPDA is deter-
ministic iff for every reachable configuration all two dis-
tinct steps append distinct elements of Σ ∪ {�} to the
history variable. An FPDA is λ-step-free iff no edge in δ
is of the form (p, λ, s, s′, p′). An FPDA is �-step-free iff no
edge in δ is of the form (p, �, s, s′, p′). An FPDA is stack-
free iff every edge in δ is of the form (p, a,2,2, p′). 2

Remark 1. There is no complete lattice over DFA (DPDA,
FPDA) since regular languages (deterministic context free
languages, context free languages) are not closed under
infinite union 4 and intersection 5 . Therefore, similarly to
Ramadge and Wonham (1984), we state the SCP over the
complete lattice of trace abstractions. In particular, we are
using the complete lattice over DES from Lemma 1. 2

2. ADEQUACY OF DES W.R.T. FPDA

Since we want to express the SCP for FPDA in terms
of an SCP over DES it is essential that DES adequately
describe the operational behavior of FPDA. We provide
three variations of encodings of (i) FPDA into DES and
(ii) FPDA into LGraphs and investigate in each of the
three variations whether the FPDA to DES encoding
preserves the operational behavior, i.e., we compare the
operational behavior of the FPDA and the resulting DES
by translating both into LGraphs using the encodings DES
to LGraph and FPDA to LGraph. In fact, we provide
adequate encodings for DFA and DPDA.

2.1 Adequate Encoding for DFA

The following encoding defines for an FPDA (and its op-
erational semantics) the observable operational behavior,
expressed as an LGraph. In this variation we expect every
step to be fully observable which is only true for DFA and
λ-step free DPDA.

Definition 9. (Natural Operational Behaviour of FPDA).
Let M ∈ FPDA. Then JM KFPDA

LGraph = (E, V, L, s, t, l) is
the (natural) LGraph-representation of M iff (i) V is the
smallest set containing Cinit(M) which is closed under `M ,
(ii) E =`M , (iii) L = {i, f}∪Lum(M), (iv) s(c1, e, c2) = c1,
(v) t(c1, e, c2) = c2, and (vi) l(c) = {out(c)} ∪ {i | c =
Cinit(M)} ∪ {f | c ∈ Cm(M)}. 2

Since each step is observable, two FPDA are equivalent
w.r.t. J·KFPDA

LGraph iff they are renamings of each other.

Proposition 1. (Sound Encoding). Let M1,M2 ∈ FPDA
be accessible. Then JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph iff M1 is
a renaming (states, stack-elements, stack-end-marker, and
end-of-output-marker) of M2.

Observe that the standard/natural encoding J·KFPDA
DES is the

(implicitly used) trace abstraction from FPDA into DES

4 A union of infinitely many singletons is not context free:
∪{{anbn} | n ∈ N, n prime} = {anbn | n ∈ N, n prime}
5 An intersection of infinitely many singletons is not context free:
∩{Σ∗ \ {anbn} | n ∈ N, n prime} = Σ∗ \ {anbn | n ∈ N, n prime}

WODES 2014
Cachan, France. May 14-16, 2014

216

DES LGraph

LGraphFPDA

DESLGraph

LGraph FPDA

J·KDES
LGraph

J·KFPDA
DES

J·KFPDA
LGraph

J·KDES
LGraph

J·KFPDA
DES

J·KFPDA
LGraph

∼=(2)

∼=(1)

Figure 3. For Theorem 1: (1) holds iff (2) holds.

0

M0

12
a,2,2a,2,2

0

M1

12
�,2,2a,2,2

0

M2

1 2
a,2,2 λ,2,2

λ,2,2

0

M3

1
a,2,2

Figure 4. M0, M1, M2, and M3 have the same J·KFPDA
DES image

{λ, a}, {a} which is language-blockfree. Only M3 is opera-
tionally-blockfree.

used by Wonham and Ramadge (1987) as a denotational
description of the operational behavior of DFA.

Definition 10. (Natural Encoding J·KFPDA
DES).

Let M ∈ FPDA.
Then JM KFPDA

DES = Lum(M),Lm(M) ∈ DES. 2

We can conclude that for two FPDA which are DFA or
λ-step free DPDA the observable operational behavior
coincides iff their DES representations have equivalent
observable operational behaviors, i.e., they have identical
(un)marked languages.

Theorem 1. (J·KFPDA
DES is Fully Abstract w.r.t. J·KFPDA

LGraph).
Let M1,M2 ∈ FPDA, deterministic, �-step-free, and λ-
step-free. Then, JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph iff
JJM1KFPDA

DES KDES
LGraph

∼= JJM2KFPDA
DES KDES

LGraph.

Confer to Figure 3 for a visualization of Theorem 1.
However, since none of the assumptions of Theorem 1 can
be dropped, as stated in the following corollary, the en-
codings of FPDA into LGraph and DES are unsatisfactory
(e.g., consider DPDA with λ-steps).

Corollary 1. Let M1 ∈ FPDA which is not determin-
istic, not �-step-free, or not λ-step-free and let M2 ∈
DFA. Then, JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph not if but only if
JJM1KFPDA

DES KDES
LGraph

∼= JJM2KFPDA
DES KDES

LGraph.

For example, consider the FPDA in Figure 4. When
choosing M0, M1, or M2 for M1 and M3 for M2 in
Corollary 1 then JJM1KFPDA

DES KDES
LGraph

∼= JJM2KFPDA
DES KDES

LGraph

is satisfied but not JM1KFPDA
LGraph

∼= JM2KFPDA
LGraph.

2.2 Adequate Encoding for DPDA

Corollary 1 states that DES are no sound denotational
model for FPDA (including DPDA) w.r.t. the full observ-
ability defined via J·KFPDA

LGraph. The problem stems from the
steps which are invisible in the DES (λ-steps, �-steps, and
nondeterministic choices (note that this kind of step is
also not explicitly contained in the operational semantics))
but visible to the behavioral equivalence JM1KFPDA

LGraph
∼=

JM2KFPDA
LGraph. These steps could be made visible by mod-

ification of the FPDA, however, this is not reasonable
for non-determinism and the end-of-output marker (see
Remark 2 in Section 3). In this section we consider FPDA
which are deterministic and �-step-free (i.e., DPDA): as
the λ-steps represent the internal steps of the controller,
properties on its occurrence in executions of the closed
loop may be of great importance.

We distinguish between two kinds of λ-step-sequences:
finite sequences and infinite sequences.

λ, i c

b

a

d

e

a, f ax

b bx

c, f c cx

d, f

e e

λ, i c, f

b

a, f

d

e

ax

bx

cx

d, f

e e

Figure 5. The operation J·KFPDA-λ
LGraph transforms the LGraph returned

by J·KFPDA
LGraph on the left into the LGraph on the right.

IFinite λ-step-sequences do not necessarily need to be
observable for DPDA because DPDA do not have a worst-
case-execution-time in general 6 . Thus, we assume in this
paper that there are no properties to be enforced on these
finite sequences. Observe that in DPDA at most finitely
many λ-steps, which are executed deterministically, oc-
cur between two visible steps. We can therefore replace
maximal finite sequences by a single vertex (with label
f iff some vertex in the finite sequence had the label f) by
J·KFPDA-λ

LGraph as exemplified in Figure 5 (page 4). We omit the
formal construction (which is contained in Schneider and
Schmuck (2013)) due to space restrictions.

IInfinite λ-step-sequences represent livelocks which can
be contracted in the operational semantics into single steps
which makes such steps visible with the symbol �∈ Σuc.

Definition 11. (Encoding J·KFPDA-ω
DES). Let M ∈ DPDA.

Then JM KFPDA-ω
DES = noteLL(Lum(M)),noteLL(Lm(M))

∈ DES where noteLL(A) = {w �| w ∈ A ∧ ∃d ∈
DI(M), N ∈ N . ∀k ≥ N . out(d(k)) = w}. 2

We can conclude that when finite sequences of λ-steps are
not to be observed (by using J·KFPDA-λ

LGraph) and livelocks are
made visible in the DES (by using J·KFPDA-ω

DES), then for
two DPDA the observable operational behavior coincides
iff their DES representations have equivalent observable
operational behaviors.

Theorem 2. (J·KFPDA-ω
DES is Fully Abstract w.r.t. J·KFPDA-λ

LGraph).
Let M1,M2 ∈ DPDA. Then, JM1KFPDA-λ

LGraph
∼= JM2KFPDA-λ

LGraph

iff JJM1KFPDA-ω
DES KDES

LGraph
∼= JJM2KFPDA-ω

DES KDES
LGraph.

Finally, since the encodings preserve the observable behav-
ior (except for the �-appending encoding J·KFPDA-ω

DES), they
preserve in particular the (un)marked languages.

Corollary 2. (Preservation of (un)marked languages).
If F ∈ {J·KDES

LGraph, J·KFPDA
LGraph, J·KFPDA-λ

LGraph , J·KFPDA
DES }

then Lm(X) = Lm(F (X)) and Lum(X) = Lum(F (X)).
Furthermore, for J·KFPDA-ω

DES : Lm(X) = Lm(JXKFPDA-ω
DES) ∩Σ∗

and Lum(X) = Lum(JXKFPDA-ω
DES) ∩ Σ∗.

2.3 Adequate Encodings for FPDA

To determine adequate encodings of all FPDA, the un-
covering of livelocks can be extended to the uncovering
of all formerly invisible steps (then also including non-
determinism, �-steps, and possibly even finite sequences
of λ-steps which were hidden in the previous subsection).
For such an encoding, a similar soundness theorem can
be formulated. However, we will explain in Remark 2 in
Section 3 that this encoding fails to be satisfactory for the
task of properly reducing the synthesis problem by means
of an OSCP as some operational criteria are no longer
enforced on realizations of controllers.
6 Consider {anbmcn | n,m ∈ N} ∪ {anbmdm | n,m ∈ N}: all a and
b have to be recorded by the stack: when reaching a c all records of
b have to be removed in an unbounded number of steps.

WODES 2014
Cachan, France. May 14-16, 2014

217

3. (OPERATIONAL) SUPERVISORY CONTROL
PROBLEM

According to the previous section, livelocks (i.e., infinite
λ-sequences) are observable when using the trace abstrac-
tion J·KFPDA-ω

DES . This allows us to specify an operational
SCP (OSCP) preventing livelocks in FPDA realizations
of constructed controllers. Before introducing the OSCP
we formalize the SCP as introduced by Wonham and Ra-
madge (1987) in our notation using DES as a fundamental
model rather than the marked language alone.

Definition 12. (SCP). Let P, S ∈ DES be a plant and
a specification. Then SCP(P, S) contains the least re-
strictive controllers C ∈ DES w.r.t. (i) Lm(C×P) ⊆
Lm(S), (ii) C×P is language-Σuc-controllable w.r.t. P , and
(iii) C×P is language-blockfree. Least restrictive means
that C ′×P≤C×P for any C ′ ∈ DES satisfying (i)–(iii). 2

Based on the SCP, we introduce the following OSCP.

Definition 13. (Operational SCP (OSCP)). Given a plant
P ∈ DFA and a specification S ∈ DPDA. Then
OSCP(P, S) is the set of all C ∈ DPDA satisfying
JCKFPDA-ω

DES ∈ SCP(JP KFPDA
DES , JSKFPDA

DES). 2

Since the closed-loop construction relies on the synchro-
nization of a controller C ∈ DPDA (broader classes for C
from FPDA are only considered in Remark 2) and a plant
P ∈ DFA (P ∈ DFA throughout this paper), we give such
a construction which returns a DPDA. This construction
is quite similar to the synchronous composition of DPDA
with DFA from, for example, (Hopcroft and Ullman, 1979,
page 135).

Definition 14. (FPDA-DFA-Synchronous Composition).
Let M1 = (Q1,Σ,Γ, δ1, q10 ,2, F

1, �) ∈ FPDA. Let M2 =
(Q2,Σ,Γ′, δ2, q20 ,2

′, F 2, �′) ∈ DFA. Then M1 × M2 =
M = (Q,Σ,Γ, δ, q0,2, F , �) is given by (i) Q=Q1×Q2

(ii) ((q1, q2), w, s, s′, (q′1, q
′
2)) ∈ δ iff (q1, w, s, s

′, q′1) ∈ δ1

and either w ∈ Σ, (q2, w,2
′,2′, q′2)∈δ2 or w ∈ {λ, �}, q2 =

q′2, (iii) q0 = (q10 , q
2
0), and (iv) F = F 1 × F 2. 2

The main criteria for reasonability of the OSCP definition
are the properties of closed loops for controllers which are
solutions to the OSCP. After giving such relevant criteria
in the following definition, we present our first main result.

Definition 15. (Properties of FPDA). Let M1 ∈ FPDA.
Let M2 ∈ FPDA. Then (i) M1 has a livelock iff for some
infinite d ∈ DI(M

1) there is an N ∈ N such that the
unmarked language of d is constant after N (i.e., for all
k ≥ N : out(d(N)) = out(d(k))), (ii) M1 is operational-
blockfree iff for any finite di ∈ DI(M

1) of length n ∈ N
ending in di(n) = (e, c) there is a continuation dc ∈ D(M1)
such that di·ndc is a marking derivation and di and dc
match at the gluing point n (i.e., dc(0) = (⊥, c)), (iii) M1

is operational-satisfying M2 iff for any d1 ∈ DI(M
1) of

length n1 ending in a marking state, there is some d2 ∈
DI(M

2) of length n2 ending in a marking state such that
out(d1(n1)) = out(d2(n2)), and (iv) M1 is operational-
Σuc-controllable w.r.t. M2 iff whenever d1 ∈ DI(M

1) is of
length n1 ∈ N ending in d1(n1) = (e1, c1), d2 ∈ DI(M

2) is
of length n2 ∈ N, out(d1(n1)) = out(d2(n2)), d2(n2) `M2

(e2, c2), out(e2, c2) = out(d2(n2))u, and u ∈ Σuc, then
there is a continuation dc ∈ D(M1) of length n3 ∈ N such
that out((d1·n1dc)(n1 + n3)) = out(d2(n2))u and d1 and
dc match at the gluing point n1 (i.e., dc(0) = (⊥, c1)). 2

Incidentally (mainly due to the determinism), all of the
above properties are satisfied for closed loops generated
from solutions to the OSCP from Definition 13.

Theorem 3. (Further Properties of OSCP controllers).
Given a plant P ∈ DFA and a specification S ∈ DPDA.
Let C ∈ OSCP(P, S). Then (i) C × P is operational-
satisfying S, (ii) C × P is operational-Σuc-controllable
w.r.t. P , (iii) C × P has no livelocks, and (iv) C × P is
operational-blockfree.
Remark 2. (Nonextendability of Theorem 3). Theorem 3
cannot be extended to S ∈ NFA or S ∈ FPDA which are
not �-step-free since language-blockfreeness is insufficient
for operational-blockfreeness in general (see M0 and M1

in Figure 4 page 4). 2

We have integrated enough information into the DES
representations of DPDA and DFA to be able to reuse the
unmodified SCP. The more direct approach, of modifying
the SCP to include conditions enforcing, e.g., livelockfree-
ness, operational blockfreeness, or even more advanced
properties where cost-optimal controllers are to be syn-
thesized, is nontrivial because the validity of the SCP has
to be verified as well. Even with extra conditions, the
set of sound controllers must be closed under arbitrary
union, which is not true if for example livelockfreeness is
to be enforced (for example, if τ ∈ Σc represents a λ-step,
the supremal language of bounded executions of τ allows
livelock executions of τ : ∪{{τn} | n ∈ N} = {τ}∗).
Using Theorem 2 we can conclude that all closed loops
for solutions to the OSCP have equivalent observable
behavior; therefore, the concrete choice of a controller
realization is irrelevant.

Theorem 4. (OSCP Solutions are Equivalent).
Given a plant P ∈ DFA, a specification S ∈ DPDA, and
C1, C2 ∈ OSCP(P, S).
Then JC1 × P KFPDA-λ

LGraph
∼= JC2 × P KFPDA-λ

LGraph .

4. SCP CHARACTERIZATIONS VIA SUPREMA

In this section we formalize the SCP over DES by defining
sound and maximal (i.e., least restrictive) controllers and
compare this formalization to the supremal characteriza-
tion of Ramadge and Wonham (1984). The DES based
representations are used in Section 5 to verify solvers for
the SCP which are also adequate for DPDA specifications.
These solvers deterministically generate the sound and
maximal controllers which are additionally smallest (i.e.,
contain the least set of words).

Definition 16. (Sound, Maximal, and Smallest Solutions).
Given a plant P ∈ DES and a specification S ∈ DES. Let
C ∈ DES. Then (by using Equations (1)–(3) in Table 2 on
page 6) (i) C is a sound controller iff the closed loop P×C
is safe in the sense of (i)–(iii) from Definition 12, formally
C ∈ Ssat(P, S), (ii) C is a maximal controller iff the closed
loop P×C is sound and less restrictive than any other
safe closed loop, formally C ∈ Smax(P, S), and (iii) C is a
smallest maximal controller iff it is a maximal controller
and any strictly smaller maximal controller produces a
more restrictive closed loop, formally C ∈ Smin

max(P, S). 2

We explain the basic differences between these types of
controllers by an example.

Example 1. (Comparison of Solutions). Let P be a lan-
guage-blockfree plant. Let S = Σ∗,Σ∗ be a specification.

WODES 2014
Cachan, France. May 14-16, 2014

218

C ∈ Ssat(P, S) iff ¶ Lm(P×C) ⊆ Lm(S) · LCont(Lum(P×C),Lum(P),Σuc) ¸ Lum(P×C) ⊆ Lm(P×C) (1)

C ∈ Smax(P, S) iff ¶C ∈ Ssat(P, S) ·∀C′ ∈ Ssat(P, S) . P×C′ ≤ P×C (2)

C ∈ Smin
max(P, S) iff ¶C ∈ Smax(P, S) ·∀C′ ∈ Smax(P, S) . C′ < C → P×C′ < P×C (3)

Φmm(Am, Sm) , ¶Am ⊆ Sm · LCont(Am,Lum(P),Σuc) (4)

Φum(Aum, Sm) , ¶Aum ⊆ Sm · LCont(Aum,Lum(P),Σuc) ¸Aum = Aum ¹Aum ⊆ Aum ∩ Sm (5)

C ∈ Lmm(P, S) iff ¶ Lm(P×C) = ∪{A | Φmm(A,Lm(S))} · Lum(P×C) = Lm(P×C) (6)

C ∈ Lum(P, S) iff ¶ Lum(P×C) = ∪{A | Φum(A,Lm(S))} · Lm(P×C) = Lm(S) ∩ Lum(P×C) (7)

Lsimm(P, S) , Lmm(P, P×S) (8)

Lsium(P, S) , Lum(P, P×S) (9)

C ∈ Lsimm(P, S) iff ¶ Lm(C) = ∪{A | Φmm(A,Lm(P×S))} · Lum(C) = Lm(P×C) (10)

C ∈ Lsium(P, S) iff ¶ Lum(C) = ∪{A | Φum(A,Lm(P×S))} · Lm(C) = Lm(S) ∩ Lum(P×C) (11)

C ∈ Dmm(P, S) iff P×C = Sup({ A,A | Φmm(A,Lm(S))}) (12)

C ∈ Dum(P, S) iff P×C = Sup({ A,Lm(S) ∩A | Φum(A,Lm(S))}) (13)

Dsi
mm(P, S) , Dmm(P, P×S) (14)

Dsi
um(P, S) , Dum(P, P×S) (15)

Table 2. Sound, maximal, and smallest maximal controllers: Equations (1)–(3); language based supremal closed
loops: Equations (6)–(9); DES based supremal closed loops: Equations (12)–(15). Sets of controllers obtained by

suprema over languages (DES) are denoted here by L(D) with markers.

The controller C1 = ∅, ∅ is sound but not maximal. The
controller C2 = S is maximal. The controller C3 = P
is smallest maximal. While C1 is not desirable (and just
defined for presentation purposes), there is no difference
between C2 and C3 w.r.t. the overall goal of the SCT to
determine a controller enforcing the desired observable op-
erational behavior on the closed loop. For implementation
on a physical device, C2 is for P 6= S more compact and
requires therefore less space. Nevertheless, the solvers, we
are aware of, produce the controller C3. The problem of
determining the size-optimal automata realization of some
sound and maximal controller is left for the future. 2

Similarly to Theorem 4 we can state that the plant P is
consistently restricted by all controllers C ∈ Smax(P, S).

Theorem 5. (Consistent Restriction). Given a plant P ∈
DES and a specification S ∈ DES. Let C,C ′ ∈ Smax(P, S).
Then P×C = P×C ′.

4.1 Language-Based Characterization by Suprema

Ramadge and Wonham (1984) have, based on the supre-
mum over languages in Equation (6), introduced the de-
sired marked language of the desired closed loop and
by assuming language-blockfreeness also the unmarked
language of the desired closed loop. In Equation (6) we
have given the marked-maximal solution Lmm in our no-
tation which is based on the supremum over the marked
languages of controller candidates. While Equation (6)
has the advantage to be compact and obviously sound
(being directly related to, for example, Definition 16) we
propose the alternative characterization in Equation (7)
which is based on a supremum over the unmarked language
of the desired closed loop. Primary differences are the
translation from marked to unmarked languages using the
prefix-closure operator and the different enforcement of
blockfreeness. Both characterizations of the desired closed
loop are equivalent and produce the desired closed-loop
behavior. The alternative characterization is advantageous
because, e.g., the effective solver in the DFA-setting (pre-
sented by Wonham and Ramadge (1987, Lemma 5.1))
removes unmarked words with controllability and block-

ing problems. The supremal characterization Lum(P, S)
thereby describes the operation of the fixed-point algo-
rithms more precisely.

Theorem 6. Lmm(P, S) = Lum(P, S) ⊆ Smax(P, S)

Effective solvers usually produce deterministically a unique
result which is the smallest maximal sound controller.
This is achieved by simplifying the input by restricting
the specification to the behavior of the plant: this is done
in Equations (8) and (9) where the simple input marked
maximal and simple input unmarked maximal solutions
Lsi
mm and Lsi

um are defined. Incidentally, the controllers
described with this restriction are all contained in Smin

max.

Theorem 7. Lsi
mm(P, S) = Lsi

um(P, S) ⊆ Smin
max(P, S)

Furthermore, the controllers in Lsi
mm and Lsi

um produce
identical closed loops as the controllers in Lmm and Lum.

A commonality of the four characterizations in Equa-
tions (6)–(9) is that they are based on characterizations of
the closed loop and not on the controller. In Equations (10)
and (11) we explain that the actual result as obtained by
Lsi
mm and Lsi

um is the controller and the closed loop which
basically follows from the adherence of the closed loop to
the specification due to its intersection with the plant.

4.2 DES-Based Characterization by Suprema

Furthermore, the characterizations in Equations (6)–(9) do
not properly reflect the execution of iterative solvers which
modify both, the marked and the unmarked language
(using operations from Figure 6). In our formal approach
we handle the modifications to both languages explicitly,
in contrast to Ramadge and Wonham (1984) who focus on
the modifications to the marked language exclusively, by
including the statements on the unmarked (in the case of
Lmm) and marked language (in the case of Lum) into the
supremum statement using the lattice of DES.

Proposition 2. Dmm(P, S) = Dum(P, S) = Lmm(P, S)

The results on the set-based characterization can easily
be transferred to the DES-based characterization. In the
next section we decompose a supremum into a greatest
fixed point of a composed operation.

WODES 2014
Cachan, France. May 14-16, 2014

219

5. SCP CHARACTERIZATIONS VIA GREATEST
FIXED-POINTS

Usually, the desired controller is calculated by iterative
application of a function F : DES→DES. Let F denote
the set of all these iterators (F = DESDES). Good
iterators have the property that they do not skip beyond
greatest fixed points which is achieved by including the last
property (v) in the next definition. If F ∈ G(Finp, Ffp, Fout)
in the following definition, then (i) Finp specifies the set of
DES to which F should only be applied to, (ii) Ffp specifies
the set of DES (from Finp) for which F returns its input,
and (iii) Fout specifies the set of DES which are returned
by F (when executed on a DES from Finp).

Definition 17. (Good Iterator). F ∈ F is a good iterator
on Finp, Ffp, Fout ⊆ DES (written F ∈ G(Finp, Ffp, Fout))
iff whenever X,Y ∈ Finp then (i) F (X) ≤ X, (ii) X ∈ Ffp

iff F (X) = X, (iii) F (X) ∈ Fout, (iv) if X ≤ Y then
F (X) ≤ F (Y), and (v) if F (X) < X, Y < X, F (Y) = Y ,
then Y ≤ F (X). 2

Good iterators are closed under unconditional ◦ and con-
ditional 3 composition, used to obtain fixed point algo-
rithms computing the desired solutions in Section 5.1.

Lemma 3. (Composition of Good Iterators using ◦).
Let F ∈ G(Finp, Ffp, Fout). Let G ∈ G(Ginp, Gfp, Gout).
If Fout ⊆ Ginp, then G ◦ F ∈ G(Finp, Ffp ∩Gfp, Gout).
Definition 18. (Conditional Composition). Let F,G ∈ F
then G3 F = λx. if F (x) = x then x else G(F (x)). 2

Lemma 4. (Composition of Good Iterators using 3).
Let F ∈ G(Finp, Ffp, Fout). Let G ∈ G(Ginp, Gfp, Gout). If
Fout ⊆ Ginp and Finp ⊆ Gfp, then G3 F ∈ G(Finp, λX. if
F (X) = X then X ∈ Ffp ∩Finp else X ∈ Ffp ∩Gfp, (Finp ∩
Ffp ∩ Fout) ∪Gout).

Good iterators do not skip beyond greatest fixed points.

Corollary 3. (Good Iterators do not Skip a GFP).
Let F ∈ G(DES, Ffp,DES) and Y ∈ DES.
Then gfp(λX.F (X×Y))= gfp(λX.F (X×F (Y))).

The actual synthesis computation is then given by the
following algorithm U .

Definition 19. (Universal Computation).
Let F ∈ F and D ∈ DES.
Then U(F,D)=(if D = F (D) then D else U(F, F (D))). 2

Then, greatest fixed points are calculated (assuming ter-
mination) as follows.

Theorem 8. (U computes the GFP).
Let F ∈ G(DES, Ffp,DES). If U(F,>) terminates, then
U(F,>) = Sup(Ffp) = gfp(F).

We conclude that it is sufficient for concrete applications
(e.g., DFA and DPDA) to verify the goodness of the used
iterator to prove that the generated controller solves the
SCP. Furthermore, the composition lemmas above give
a proof-strategy by composition of a good iterator from
multiple good iterators: this is exemplified in the next sub-
section where we introduce concrete iterators. As demon-
strated in Section 5.1, it is occasionally advantageous to
execute the universal algorithm on some value different
from the > element.

Theorem 9. (Initialized U computes the GFP).
Let F ∈ G(DES, Ffp, Fout). If U(F, S) terminates, then
U(F, S)= Sup({X |X ∈ Ffp, X ≤ S})= gfp(λX.F (X×S)).

opcw(w,U) = ∀u ∈ U . w·u ∈ Lum(P)→ w·u ∈ Lum(C)
opc(A,U) = ∀w′ ∈ A . opcw(w′, U,Lum(P),Lum(C))

where A = ∪{A | A = A ∧A ⊆ Lum(D)}
Fbf(D) = Lm(D),Lm(D)
Fc1(D) = A,Lm(D) ∩A
where A = {w ∈ Lum(D) | opc({w},Σ∗uc)}
Fc2(D) = A,Lm(D) ∩A
where A = {w ∈ Lum(D) | opc({w},Σuc)}
Fc3(D) = A,B

where B = {w ∈ Lm(D) | opc({w},Σuc)}
and A = {w ∈ Lum(D) |

(
∧opc({w} \ {w},Σuc)
∧(¬ opcw(w,Σuc)→ w /∈ B)

)
}

Fspec(D) = D×S

Figure 6. The good iterators Fbf , Fc1, Fc2, Fc3, and Fspec where
the plant P and the specification S are omitted parameters.

5.1 Examples of Good Iterators

The iterators to be discussed are given in Table 6.

IBlockfreeness: The iterator Fbf generates the least re-
strictive DES that is blockfree and contained in the input.
An implementation of this iterator is presented by Won-
ham and Ramadge (1987, Lemma 5.1) for DFA and in the
companion paper by Schneider and Nestmann (2014) for
DPDA. Let Φbf(D) = Lum(D) ⊆ Lm(D).

Lemma 5. Fbf ∈ G(DES,DES∩Φbf ,DES∩Φbf).

I?-Controllability: The iterator Fc1 generates the least
restrictive DES that is controllable and contained in the
input. Let Φcont(D) = LCont(Lum(D),Lum(P),Σuc).

Lemma 6. Given a plant P ∈ DES over the uncontrollable
symbols Σuc. Fc1 ∈ G(DES,DES∩Φcont,DES∩Φcont).

I1-Controllability: The difference between ?-controllability
and the 1-controllability is that Fc1 removes controllability
problems for every finite sequence of uncontrollable sym-
bols whereas Fc2 only removes single-step controllability
problems. Thereby, Fc2 may produce “new” controllability
problems which are not removed in the single application
of Fc2. Therefore, iterative application of Fc2 always pro-
duces Fc1: gfp(λX.Fc2(X×Y)) = Fc1(Y). An implementa-
tion of this iterator is presented by Wonham and Ramadge
(1987, Lemma 5.1) for DFA.

Lemma 7. Given a plant P ∈ DES over the uncontrollable
symbols Σuc. Fc2 ∈ G(DES,DES∩Φcont,DES).

IM -Controllability: Fc3 requires a blockfree input to en-
sure the welldefinedness of the resulting DES. For Fc3, an
unmarked word (which is not also a marked word) with
a controllability problem (but where all strict prefixes are
controllable) is not removed, if it cannot be extended to the
created marked language. Therefore, Fc3 is equivalent to
Fc2 up to blockfreeness: Fbf◦Fc3 = Fbf◦Fc2. An implemen-
tation of this iterator is presented in the companion paper
by Schmuck, Schneider, Raisch, and Nestmann (2014) for
DPDA.

Example 2. (Differences between Fc1, Fc2 and Fc3).

Let D= {aua},{aua} and P as given in Figure 1. Then

Fc1(D) = {λ}, ∅ , Fc2(D) = {a}, ∅ , and Fc3(D) =

{au}, ∅ . For Fc3: the word au is not removed because
all its strict prefixes are controllable and even though it
is not controllable it can also not be extended into the
created marked language ∅. 2

WODES 2014
Cachan, France. May 14-16, 2014

220

Lemma 8. Given a plant P ∈ DES over the uncontrollable
symbols Σuc. Fc3 ∈ G(DES∩Φbf ,DES∩Φcont,DES).

ISatisfaction of the Specification: Finally, the iterator
Fspec generates the least restrictive DES that is contained
in the input and the specification. Let Φspec(D) = D ≤ S.

Lemma 9. Given a specification S ∈ DES. Then Fspec ∈
G(DES,DES∩Φspec,DES∩Φspec)

Using the above properties on the individual good itera-
tors, we can compose three good iterators.

Theorem 10. (Computation of Dsi
mm).

Given a plant P ∈ DES and a specification S ∈ DES.
Let Fc ∈ {Fc1,Fc2,Fc3}. Let F = Fc ◦ Fbf ◦ Fspec. Then

F ∈ G(DES, { A,A | Φmm(A,Lm(S))},DES). Finally, if
U(F,>) terminates, then U(F,>) = Dsi

mm(P, S).

That is, we have verified an approach, up to termination
and fixed-point-detection, which synthesizes a least restric-
tive controller. However, (i) while the operation Fspec is
neutral from the second iteration onwards, this cannot be
formally captured in the context of the complete lattice
and therefore an implementation which follows the univer-
sal computation strictly has to re-execute Fspec in every
iteration and (ii) as Fc3 requires a blockfree input, we are
forced to operate with the input assumption of blockfree
DES. While there is a decision procedure (Sénizergues,
1997) to determine whether our implementation of Fbf

modifies its input, we are using the 3-composition in The-
orem 11 to avoid the execution of such a computationally
expensive equivalence test. We obtain the following result,
which is also adequate for the DFA setting.

Theorem 11. (DPDA-Computation of Dsi
mm).

Given a plant P ∈ DES and a specification S ∈
DES. Let I = Fbf(Fspec(P)) where the restricted spec-
ification P×S is used. Let F = Fbf 3 Fc3. Then
F ∈ G(DES∩Φbf ,DES∩Φbf ∩ Φcont,DES∩Φbf). Finally,
if U(F, I) terminates, then U(F, I) = Dsi

mm(P, S).

The last theorem states that the universal algorithm,
started with the initial argument I and iteratively execut-
ing the implementations of Fbf and Fc3 presented in the
two companion papers, determines (up to termination) the
smallest maximal controller defined by the suprema-based
characterization Dsi

mm(P, S).

6. CONCLUSION

We have introduced a methodology for the extension of
the SCP to domains broader than DFA. The technical
problems resulting in such extensions are exemplified by
considering DPDA-specifications which allow for λ-steps
which are unobservable (when part of finite sequences) or
observable (when part of infinite sequences). By means of
nondeterminism and finalization (using an end-of-output
marker �) we have shown that the operational criteria
(specifically operational blockfreeness) are more suitable
than the trace-abstract criteria as they are strictly more
demanding and adequate w.r.t. the task of characterization
of the desired observable operational behavior (see Re-
mark 2). While we have investigated how the operational
criteria are satisfied by using certain encodings of the
involved finite automata models, future research may also
allow for the direct extension of the SCP by additional
trace-abstract criteria. This work may also be extended

by (i) adding further operational criteria as for example
worst-case-execution times and (ii) by establishing initial
results on size-optimal realizations of constructed con-
trollers. Finally, we intend to prove the results on the
encodings in Sections 2 and 3 in the interactive theorem
prover Isabelle/HOL (Paulson et al., 2011) as it is already
done for automata models from Section 1 and the results
of Sections 4 and 5.

REFERENCES

Giua, A. and DiCesare, F. (1994). Blocking and con-
trollability of petri nets in supervisory control. IEEE
Transactions on Automatic Control, 39(4), 818–823. doi:
10.1109/9.286260.

Giua, A. and DiCesare, F. (1995). Decidability and closure
properties of weak petri net languages in supervisory
control. IEEE Transactions on Automatic Control,
40(5), 906–910. doi:10.1109/9.384227.

Griffin, C. (2008). A note on the properties of the supremal
controllable sublanguage in pushdown systems. IEEE
Transactions on Automatic Control, 53(3), 826 –829.

Griffin, C. (2007). Decidability and optimality in push-
down control systems: A new approach to discrete event
control. Ph.D. thesis, The Pensylvania State University.

Hopcroft, J.E. and Ullman, J.D. (1979). Introduc-
tion to Automata Theory, languages and computation.
Addison-Wesley Publishing company.

Paulson, L., Nipkow, T., and Wenzel, M. (2011). Is-
abelle/HOL. URL http://isabelle.in.tum.de.

Ramadge, P. and Wonham, W. (1984). Supervisory control
of a class of discrete event processes. In A. Bensoussan
and J. Lions (eds.), Analysis and Optimization of Sys-
tems, volume 63 of Lecture Notes in Control and Infor-
mation Sciences, 475–498. Springer Berlin Heidelberg.

Schmuck, A.-K., Schneider, S., Raisch, J., and Nestmann,
U. (2014). Extending supervisory controller synthesis
to deterministic pushdown automata—enforcing con-
trollability least restrictively. Proceedings of the 12th
IFAC - IEEE International Workshop on Discrete Event
Systems.

Schneider, S. and Nestmann, U. (2014). Enforcing op-
erational properties including blockfreeness for deter-
ministic pushdown automata. http://arxiv.org/abs/
1403.5081.

Schneider, S. and Schmuck, A.-K. (2013). Supervisory con-
troller synthesis for deterministic pushdown automata
specifications. Technical report, Technical University of
Berlin, URL http://www.tu-berlin.de/?25631.

Sénizergues, G. (1997). The equivalence problem for
deterministic pushdown automata is decidable. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela
(eds.), ICALP, volume 1256 of Lecture Notes in Com-
puter Science, 671–681. Springer.

Wonham, W.M. and Ramadge, P.J. (1987). On the supre-
mal controllable sublanguage of a given language. In
SIAM Journal on Control and Optimization, volume 25,
637–659.

WODES 2014
Cachan, France. May 14-16, 2014

221

