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Reducing Audible Spectral Discontinuities
Esther Klabbers and Raymond Veldhuis

Abstract—In this paper, a common problem in diphone synthesis
is discussed,viz., the occurrence of audible discontinuities at di-
phone boundaries. Informal observations show that spectral mis-
match is most likely the cause of this phenomenon. We first set out
to find an objective spectral measure for discontinuity. To this end,
several spectral distance measures are related to the results of a
listening experiment. Then, we studied the feasibility of extending
the diphone database with context-sensitive diphones to reduce the
occurrence of audible discontinuities. The number of additional
diphones is limited by clustering consonant contexts that have a
similar effect on the surrounding vowels on the basis of the best
performing distance measure. A listening experiment has shown
that the addition of these context-sensitive diphones significantly
reduces the amount of audible discontinuities.

Index Terms—Audible discontinuities, context-sensitive di-
phones, spectral distance measures.

I. INTRODUCTION

ONE well-known problem with concatenative synthesis is
the occurrence of audible discontinuities at concatena-

tion points. In our database of one female speaker, this is most
prominent in vowels and semi-vowels. It is due to variability in
the pronunciation of these sounds which is caused by the pho-
netic/prosodic context.

Discontinuities are caused by mismatches in, phase or
spectral envelopes across concatenation points [8]. In Calipso,
IPO’s diphone synthesis system [29], mismatches are
avoided by monotonizing the diphones before storing them in
the database. Phase mismatches are avoided by using a method
calledphase synthesisfor re-synthesis of the nonsense words
[9]. Phase synthesis is based on accurate measurements of the
mixture of periodic and noise information in speech. The input
speech is analyzed pitch-synchronously like in TD-PSOLA,
but the pitch periods are estimated more precisely by means
of “first-harmonic filtering.” This forms the basis of a Discrete
Fourier Transform (DFT), providing exact amplitude and
phases for all harmonics. It uses overlap-and-add over two
pitch periods. The signal is reconstructed by means of an
amplitude and a phase value for each harmonic. Because the
harmonics are added with coherent phases, phase mismatches
are avoided.

Spectral mismatch is still a major problem, though. As an
example, consider Fig. 1, which shows the spectrogram for the
vowel /u/ in the synthesized Dutch worddoek(consisting of the
diphones /du/ /uk/). It reveals a considerable mismatch in
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Fig. 1. Spectrogram for the vowel /u/ in the synthesized Dutch worddoek. A
considerable mismatch inF between the left and right half of the phoneme
is visible. The sudden transition at the concatenation point causes an audible
discontinuity.

between the first and second half of the phoneme. An audible dis-
continuity was clearly present. This, along with other informal
observations, suggests that spectral mismatch is the main cause
for the occurrence of audible discontinuities. Please note that
pitch and phase mismatches have already been eliminated.

In order to solve the problem of spectral mismatch, several
solutions have been proposed. One approach is to use larger
units such as demi-syllables or triphones. However, this does
not solve the problem, as discontinuities continue to occur
albeit less frequently. Moreover, the database size increases
drastically. As [24] point out, in American English assuming a
43-phone alphabet, at least 70 000 of the theoretical maximum
of 79 507 triphones actually occur in the language. Even when
incorporating all these units, smooth joins are not guaranteed
as all triphones can occur in different contexts with strong
coarticulatory effects that can even span word boundaries.

Another approach is to vary the location of the cutting points in
the nonsense words dependent on the context [6]. This calls for a
spectral distance measure that correctly represents the amount of
spectral mismatch. This method is based on the assumption that
the short-term spectral envelopes are not constant over time, re-
sulting for instance in nonflat formant trajectories, and that there-
fore appropriate cutting points can be found. However, Fig. 1,
along with many other observations in our database, shows that
formant trajectories can be fairly flat throughout a vowel when
they are embedded in nonsense words of the type C@CVC@ (C

consonant, V vowel, @ schwa).
A third approach is to perform smoothing by means of wave-

form interpolation, spectral-envelope interpolation or formant
trajectory smoothing. It requires specific signal representations
that allow these types of operations. The disadvantage of for-
mants as a representation is that they are very difficult to es-
timate reliably. Waveform and spectral envelope interpolation
have the disadvantage that smooth transitions are often achieved
at the expense of naturalness [8]. Examples of signal represen-
tations that allow waveform interpolation are multi-band resyn-
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TABLE I
COMPOSITION OFMATERIAL FOR THE PERCEPTUALEXPERIMENT; THE TOTAL

NUMBER OF C VC STIMULI IS 2415 23 C� 5 V � 21 C

thesis overlap-and-add (MBROLA) [8] and harmonic plus noise
modeling (HNM) [28]. Reference [5] present several different
techniques for spectral smoothing, none of which they found
really satisfactory.

A fourth approach is to include context-sensitive or special-
ized units in the database [24]. This implies that one knows
which contexts can be clustered so as to keep the database size
within bounds. Our investigation is aimed at gaining insight in
this approach. In this paper, we first present a detailed analysis
of the occurrence of audible discontinuities in our diphone data-
base (Section II). The aim of this part of the study was to find
an objective spectral distance measure that best predicts when
discontinuities are audible. Therefore, we related the results of
a perceptual experiment with several distance measures. In Sec-
tion III we study the feasibility of extending the diphone data-
base with context-sensitive diphones to reduce the occurrence
of audible discontinuities. The number of additional diphones
is limited by clustering similar contexts on the basis of the best
performing distance measure. This approach goes toward the
use of triphones, except that it requires a smaller extension of
the database than when true triphones are added.

II. A NALYSIS OF THE PROBLEM

A. Perceptual Experiment

The first step in our analysis was to find out to what ex-
tent audible discontinuities occur in our diphone database. This
was established via a perceptual experiment. IPO’s speech-syn-
thesis system Calipso currently uses diphones as concatena-
tive units from a professional female speaker. They have been
excised from nonsense words. For instance, consonant–vowel
(CV) and vowel–consonant (VC) diphones are excised from
nonsense words of the form C@CVC@. In order to reduce the
data set to manageable proportions, this study was restricted to
five Dutch vowels in this database, i.e., the vowels /a:/, /i/, /A/,
/I/, /u/ (in SAMPA notation). The vowels /a:/, /i/, and /u/ were
chosen because they cover the extremes in the vowel space. The
vowels /A/ and /I/ are chosen because they are the short coun-
terparts for /a:/ and /i/. See [3] for an overview of the Dutch
phoneme inventory. A study by [13] has shown that coarticula-
tion is speaker-specific. Therefore, it should be noted that the
results presented in this paper only reflect the coarticulatory be-
havior of the speaker of our diphone database.

1) Material: The stimuli consisted of concatenated left CV
and right VC diphones, which were excised from the nonsense
words C@C VC @ and C@C VC @. The stimuli consisted
of five vowel conditions in the context of all consonant pairs that
can occur in Cand C position (see Table I). The total number
of stimuli is . So, for instance, the diphones
/du/ and /uk/ that form the stimulus /duk/ were extracted from

TABLE II
PERCENTAGE OFPERCEIVEDDISCONTINUITIES PERVOWEL. THE PERCENTAGES

ARE COMPUTED FROM THESUM OF THE MAJORITY SCORES

the nonsense wordsd@dud@andk@kuk@. The diphones were
created using the phase synthesis technique mentioned in Sec-
tion I. No spectral smoothing was applied at the boundary.

In the stimuli, the consonant portions were cut off to pre-
vent them from influencing the perception of the diphone tran-
sition in the middle of the vowel.1 Fading was used to smooth
the transition from silence to vowel and vice versa. Because all
stimuli were presented in isolation, the stimulus duration had to
be long enough to be able to perceive the transition at the di-
phone boundary. The duration of the vowels was fixed to 130
ms with the diphone boundary located exactly in the middle of
the vowel. The signal power of the second diphone was scaled
to match that of the first diphone.

2) Procedure: Five participants with a background in
psycho-acoustics or phonetics participated in the perceptual
experiment. It was a within-subjects design meaning that each
subject received all stimuli in random order. For each stimulus,
the participants had to judge the transition at the diphone
boundary as either smooth (0) or discontinuous (1). The
experiment was divided into three hourly sessions which were
held on different days, with a short break halfway through each
session. The session order was different for all participants.
The experiment started with a familiarization phase in which
two stimuli were presented for each vowel, one being clearly
smooth and the other being clearly discontinuous. The setup of
this experiment results in very critical observations because 1)
the vowels have been placed out of context and 2) subjects are
forced to make a binary decision. This provides a more critical
test than when using real speech.

3) Results: The participants found the task difficult, but
felt they had been able to make consistent decisions after the
familiarization phase. As a consistency check, we presented two
stimuli, one clearly smooth, the other clearly discontinuous,
ten times at random positions in the total stimulus list. All
participants were 100% consistent in their scoring of these two
stimuli. Between participants there was more variability, as some
participants applied a stricter threshold than others. In order to
reduce the variability between participants, a majority score
was calculated, i.e., a stimulus was marked as discontinuous
when four out of five listeners perceived it as such. Summing
the majority scores obtained in the experiment for each of the
vowels, we get the percentage of perceived discontinuities as
presented in Table II.

1Just before running the experiment we discovered that in a few cases the in-
fluence of the first consonant was still audible in the vowel. Instead of changing
the duration of all vowels and re-excising the stimuli, we decided to discard
these cases, leaving 2284 stimuli to be judged in the perceptual experiment. We
believe that this did not influence the results.
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The results show that the number of audible discontinuities
is particularly high for /u/ and comparatively low for /a:/. Our
results additionally reveal a slightly better score for the long
vowels /a:/ and /i/ than for the short vowels /A/, /I/ and /u/. This
is partly in line with findings by [13]. They investigated speaker
variability in the coarticulation of /a:/, /i/ and /u/. Their results
show that the /u/ has the greatest amount of coarticulation and
the /i/ has the smallest amount, closely followed by /a:/.

B. Spectral Distance Measures

The second step in our investigation was to relate the results
from the perceptual experiment with several spectral distance
measures in order to obtain an objective measure for predicting
audible discontinuity. In speech recognition and speech coding,
spectral distance measures have been widely used. In automatic
speech recognition, one of the earliest studies comparing several
distance measures was conducted by [10]. They investigated
measures based on spectral and cepstral coefficients, log area
ratios and the Itakura–Saito distance. They obtained the best
performance with the root-mean-squared (rms) log spectral dis-
tance. [11] and [17] showed that using warped frequency scales
(such as Mel-scale or Bark-scale) improved the performance of
speech recognizers even further. The most commonly used dis-
tance measure in automatic speech recognition is the Euclidean
distance between Mel-frequency cepstral coefficients (MFCC).

In speech synthesis, this Euclidean MFCC distance has also
been adopted in order to select optimal units or segment di-
phones at the optimal cutting point (among others by [6] and
[4]). The question is whether a measure used in speech recogni-
tion is equally suitable for use in speech synthesis, as it serves
a different purpose. In speech recognition, the task is to classify
different instances of one and the same phoneme as belonging to
the same target phoneme, whereas in speech synthesis the task
is to distinguish these instances when their spectra are perceptu-
ally different. Therefore, it should be investigated whether some
distance measures can be found that correspond to human per-
ception in that they are able to distinguish perceptually relevant
differences in spectra [26].

An investigation that ran parallel to ours [20], [31] also aimed
at performing a perceptual evaluation of distance measures in
the context of speech synthesis. In their study, listeners had to
judge the difference between a pair of stimuli on a scale from
zero to five. One stimulus was the reference stimulus produced
by a diphone synthesis system, the other stimulus was altered
in that the first (c.q. second) half of the vowel phoneme was
replaced by a different instance of the vowel preceded (c.q.
followed) by a consonant from the same class as the original.
Five feature representations were studied: FFT-based cepstra,
LPC-based cepstra, line spectral frequencies (LSF), log area
ratios (LAR), and a symmetrized Itakura distance. All but the
FFT-based cepstra were computed from LPC coefficients. The
feature representations were computed in three ways:

1) using the FFT amplitude spectrum;
2) using a perceptual spectrum (PLP, [12]);
3) using a Mel-warped spectrum.

Correlations between the average of the listeners’ responses and
the distance measures were computed and then combined into a

Fig. 2. Computation of LPC-coefficients(p = 14) at the diphone boundary
in the CVC-part of the nonsense words, using a 40-ms Hanning window.

population correlation using Fisher’s-transform. Correlations
were not particularly high, reaching from 0.28 for the linear log
area ratio to 0.50 for the linear Itakura distance. PLP and Mel-
scale improved the correlations, but the improvement from PLP
to Mel was not significant. Using a weighted Euclidean distance
improved the linear measures, but only slightly for PLP and Mel.
Delta features gave only a small increase in correlation (0.02).
The best correlation was obtained for Mel cepstra with delta
features (0.66), where it did not make a difference whether these
were computed from FFT or LPC coefficients.

The measures used in this paper are taken from various fields
of research. They were used to determine distances between
spectral envelopes across diphone boundaries. The following
spectral distance measures were used. They will be explained
in more detail below.

1) Euclidean distance between (, ) pairs, or the Eu-
clidean formant distance ( ), which is often used in
phonetics.

2) Symmetrical Kullback–Leibler distance ( ), which
originates from the field of statistics.

3) Partial loudness , which comes from the area of
sound perception.

4) Euclidean distance between Mel-frequency cepstral co-
efficients ( ), which comes from automatic speech
recognition.

5) Likelihood ratio ( ), which is used in speech coding
and automatic speech recognition.

6) The mean-squared log-spectral distance ( ),
which also comes from automatic speech recognition.

All spectral distances excepting the Euclidean formant dis-
tance, were calculated from LPC-spectral envelopes. The sam-
pling frequency of the speech was 16 kHz. First, two sets of LPC
coefficients were computed from Han-
ning-windowed signal segments of 40 ms symmetrically posi-
tioned around the diphone boundary [see Fig. 2]. One set is mea-
sured at the right diphone boundary of the CV diphone in the
nonsense word C@CVC @, which also produces the diphone
VC . The other set of LPC coefficients is measured at the left
diphone boundary of the VCdiphone in the nonsense word
C@C VC @, which also produces the diphone CV. A pre-em-
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Fig. 3. Vowel space in terms ofF andF for the five vowels /a:/, /A/, /i/,
/I/, and /u/ in different (symmetric consonantal contexts as indicated by the
subscripts).

phasis filter with a transfer function was
applied. From those LPC coefficients, two power spectra were
computed at sufficiently many equidistant frequency points (in
our case 512), which were arranged in a vector. These two vec-
tors were normalized by dividing them by the sum of the el-
ements. This gives two power-normalized spectral envelopes

of C V and of VC . Equation (1) displays the com-
putation of from the LPC coefficients, where con-
stant, such that . The distance measures will be
discussed in more detail in the following:

(1)

1) Euclidean Formant Distance:In phonetics, it is quite
common to describe coarticulation in terms of changes in
the formants and [13], [24]. In this investigation, the
formants were measured automatically at the diphone boundary
in the vowel using Praat [2]. These were verified and corrected
when necessary. Close inspection of the stimuli reveals that
most formant trajectories are fairly stationary throughout
the vowel, except when the surrounding consonants are the
alveolars /j/, /J/, /c/, /S/ and /Z/.

Fig. 3 displays the and values for the five vowels mea-
sured in our diphone database at the indicated locations. It shows
that the /a:/, /i/ and /I/ have small variations, whereas the /A/ and
/u/ seem to be affected to a greater extent by their surrounding
consonants. For the /u/, differences inare considerable. They
can be as large as 700 Hz. For the /A/, differences inare also
considerable. The /i/ and /I/ are very close to each other in the
vowel space. All formant frequencies were transformed to a Mel-
scale which is more in line with the hearing process than a linear
frequency scale. For the Mel transformation, we used (2) [21]

(2)

The Euclidean formant distance is calculated by

(3)

2) Symmetrical Kullback–Leibler Distance:The Kull-
back–Leibler (KL) distance orrelative entropyis a measure
taken from statistics [18], where it is used to compute the
distance between two probability distributions. Here, it is
calculated from the two power-normalized spectral envelopes

and that were explained earlier. The original asym-
metrical definition of the KL distance is changed into a sym-
metrical version. The main reason is that
then equals , such that the measure does
not depend on the order of the arguments supplied.

The SKL distance has the important property that it empha-
sizes differences in spectral regions with high energy more than
differences in spectral regions with low energy. Thus, spectral
peaks are emphasized more than valleys between the peaks and
low frequencies are emphasized more than high frequencies, due
to the 6 dB/octave declination in spectral energy that results from
the combination of the damping of the high-frequency compo-
nents in the signal (12dB/octave)and the radiation at the mouth
( 6 dB/octave). The definition for is given by

(4)

3) Partial Loudness:The partial loudness comes from the
area of sound perception [23]. In a study by [7], partial loud-
ness was shown to be a reasonably good predictor for audibility
discrimination thresholds. Therefore, it was decided to include
this measure to see how well it would predict audible discon-
tinuity. The partial loudness of a signal is the loudness of the
signal when presented in a background sound. The background
sound generally reduces the loudness of the signal. This effect
is called partial masking. The loudness of a signal in a back-
ground sound is therefore called partial loudness. In this study,
the excitation patterns and at the CV and VC diphone
boundaries were computed. These excitation patterns are de-
composed into excitation patterns representing the background
sound , the total sound and the
absolute difference . The resulting excitation pat-
terns are then fed into Moore’s partial loudness model.

4) Mel-Frequency Cepstral Coefficients:In the field
of speech recognition, Mel-frequency cepstral coefficients
(MFCC) are currently the most commonly used type of signal
representation. They provide a successful and efficient way to
represent the signal for the purpose of recognition. The MFCC
coefficients were computed as described in [25, ch. 4], except
that samples of the LPC power spectrum [see definition for

above] were used instead of the squared magnitudes
of the DFT spectrum. Equation (5) computes the Euclidean
distance between cepstral coefficients.

The cepstral coefficients can be interpreted in the following
way. The coefficient represents the average energy in the
speech frame. It is not included in the distance measure.re-
flects the energy balance between low and high frequencies (or
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spectral tilt), higher values indicating sonorants and low values
suggesting frication. Higher order cepstral coefficients reflect
increasing spectral detail, but no simple relationship exists be-
tween these parameters and formants [14]. In this study, the
order is set to 22

(5)

Delta features are estimations of the time derivatives of the
static features, thus capturing more of the speech dynamics. Be-
cause our stimuli consist of two parts that are both fairly sta-
tionary, the addition of delta features will not make much differ-
ence to the result. In the study presented in [31] and [20] which
used less restricted nonsense words, the added effect of delta
features was also negligible. The correlation between the dis-
tance measure and the perceptual judgements increased by just
0.02. Therefore, it was decided not to include delta features in
our investigation.

5) Likelihood Ratio: The likelihood ratio orItakura dis-
tance, is a measure of spectral similarity between two LPC
vectors and , which represent the left and right diphones
[15]. It indicates how well the analysis filter of the left diphone
matches that of the right diphone. It is defined in terms of an au-
tocorrelation function. represents the signal autocorrelation
matrix that gave rise to . The likelihood ratio is computed
with (6) taken from [25, ch. 4]

(6)

6) Mean-Squared Log Spectral Distance:The mean-
squared log spectral distance (MS LSD) is derived from the log
spectral distance presented in [25, ch. 4], and is computed by
(7). It is similar to the rms log spectral distance that performed
best in the automatic speech recognition experiments by [22].
By taking the logarithmic differences between and ,
it is expected to better reflect the hearing process

(7)

C. Relating the Results

In order to find out how well the different spectral distance
measures could predict audible discontinuities, it was decided
to use receiver operator characteristic curves [19], coming from
signal detection theory. Because the relation between the spec-
tral distances and the subjects’ scores was not linear, a statistical
correlation could not be performed. The procedure works as fol-
lows. In order to relate the measures to the scores of the listeners,
two probability density functions, and , are esti-
mated from the data, representing the probability of a spectral
distance given that the transition was marked by the lis-
teners as continuous (0) or discontinuous (1), respectively. For
a certain threshold , the probability of afalse alarm, the case
that a transition is wrongly classified as discontinuous, is

Fig. 4. Principle of receiver operating characteristic curves. The top panel
displays two probability density functionsp(Dj0) and p(Dj1), for the
distribution of distances given that the participants have judged a stimulus as
smooth and discontinuous, respectively.

[see (8)] and the probability of ahit, the correct detection of a
discontinuity, is [see (9)]

(8)

(9)

The probability of amiss, the case that a discontinuity goes un-
detected, is and the probability of acorrect rejection,
the case that a transition is rightly classified as being smooth, is

. Since these are directly derivable from the hit and false
alarm probabilities, they are not relevant here.

A plot of pairs for all values of constitutes
a receiver operating characteristic (ROC) curve. See Fig. 4 for a
schematic representation of ROC curves. In this experiment, we
assumed that the participants were correct in their judgements.
The question is then how well a spectral distance measure can
predict the participants’ judgements. ROC curves are always
upward concave. The straight line represents the chance level
meaning that a measure gives no information. The further the
curve extends to the upper left corner, the better the measure
serves as a predictor. This indicates that the two probability den-
sity functions and are moving away from each
other, thus increasing the hit rate and decreasing the false alarm
rate. We do not have to decide on an appropriate threshold in this
study, since the purpose of the analysis is solely to determine the
best performing distance measure relative to the other measures.
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Fig. 5. ROC curves grouped per vowel for the measures SKL, PL, MSLSD, LR, EFD, and MFCC.

D. Results

Fig. 5 displays five ROC curves per distance measure, one for
each vowel. Their inspection leads to a number of interesting
observations. First, it can be observed that the SKL and PL dis-
tances perform equally well for all vowels, whereas the diver-
gence between vowels is greater for the other measures.

Second, it can be seen that the Euclidean Formant Distance
performs well for /u/, poorly for /a:/ and moderately well for
the other vowels. This is understandable as Fig. 4 showed that
/u/ had the largest degree of variation in the second formant. Ex-
tending the distance with and did not enhance the measure
in any way. It was decided not to include formant bandwidths in
the distance measure. As listed in [25] the just-noticeable-dif-
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Fig. 6. ROC curves grouped per measure for the vowels /a:/, /A/, /i/, /I/, and /u/.

ference (jnd) for formant bandwidths is much larger (20–40%)
than for formant frequencies (3–5%). It was therefore not ex-
pected to add much to the performance of the EFD.

Fig. 6 displays six ROC curves per vowel, one for each
distance measure. Here, it can clearly be seen that all spectral
distance measures perform almost equally well for the /u/,
whereas the divergence between them is much larger for the
other vowels.

The Euclidean distance between Mel-frequency cepstral co-
efficients is consistently among the worst predictors of audible
discontinuity. In some cases, it is barely above chance level. This
is a surprising result, because until now it was a commonly used
distance measure for this task. However, its bad performance is
understandable when we consider that this measure is almost
standard as a distance measure in automatic speech recogni-
tion, where its task is to group together different allophones of
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a phoneme instead of distinguishing them when their spectral
characteristics lead to perceptual differences.

Two measures are always positioned in the most upper
left corner, meaning that they always performed best, the
partial loudness (PL) and the symmetrical Kullback–Leibler
(SKL) distance. Apparently, they correlate well with human
perception. The fact that the relatively simple Euclidean
formant distance only performs well for /u/ but not as well
for other vowels, indicates that coarticulation affects the
vowels differently. It could be that coarticulation has a larger
effect on the formants for /u/, whereas in the other vowels it
manifests itself in other ways, e.g., via changes in spectral tilt.
Additionally, the fact that the SKL and PL distancesare good
predictors of audible discontinuity for all vowels, shows that
there is systematic variation in the signal due to coarticulation
that these measures capture. Because the SKL distance is much
easier and faster to compute than the PL distance, it will be
used in the remainder of this study.

III. A SOLUTION TO THE PROBLEM

A. Clustering Procedure

We investigate the feasibility of extending the diphone
database with context-sensitive diphones, in order to reduce
the number of audible discontinuities. One way of keeping
the database size within bounds is to cluster contexts that are
spectrally alike according to a distance measure. In this part of
the study, the SKL distance is used for this purpose. Suppose
we divide the diphone sets CV ( ) and VC
( ), for a particular vowel into two sets of
clusters and ,
such that the maximum SKL distance across diphone
boundaries in corresponding clusters and
( ) is below a threshold . The maximum
distance between noncorresponding clusters and
( ) will then not be limited to . We now construct addi-
tional clusters ( ), which contain the diphones
of , but which are recorded with a left-side context con-
sisting of a representative diphone in , e.g., the diphone
closest to the centroid of . Instead of concatenating a
diphone from with one from , a diphone from

will be used, which will reduce the maximum SKL
distance across diphone boundaries, which is hopefully lower
than , although a guarantee cannot be given in advance. This
procedure will increase the number of VC diphones for a
particular vowel by a factor , which is equal to the number
of clusters. The database could also have been extended with
left diphone clusters instead of right, but if both left and right
diphones were added, the selection process would be more
complicated, requiring a Viterbi-like search. For a feasibility
study, this choice is not so relevant.

The number of clusters can under certain assumptions
(when the number of clusters and diphones are large enough)
statistically be related to the quality improvement. If the max-
imum SKL distance between corresponding clusters is, then
the total number of transitions between all corresponding clus-
ters ( ) is less or equal than the total number of di-

Fig. 7. Number of clusters versusP . The lines represent the lower
bound, i.e., the maximum improvement that might be obtained by using
additional diphones. The intersections with the vertical line indicated the
maximum obtainable improvement for each vowel when using three clusters.

phone combinations with maximum KL distance. This is ex-
pressed in the right-hand inequality of (10)

(10)

with being the probability of a distance smaller
than , the number of transitions in clusterand the total
number of transitions. It can furthermore be shown that the total
number of transitions between corresponding clusters is always
larger than , which is expressed in the left-hand in-
equality of (10). In fact, the minimum is attained when all clus-
ters have equal sizes.

This leads to the following inequality for

(11)

This factor can be used as a measure of cost of improvement.
After the extension of the diphone database, the probability of
an audible discontinuity occurring, , can be computed. It
constitutes two independent probabilities, one representing the
probability of a discontinuity occurring in a cluster that is not
detected (given by ), and the other representing
the probability of a detected discontinuity occurring between the
original left diphone and the newly added right diphone, which
is estimated to be maximally , assuming that
the distance between the new cluster and the original one is less
than . Before actual extension of the database, we can compute

by

(12)

Fig. 7 plots the number of clusters against the proba-
bility of a click . This represents an estimate of the max-
imum improvement that can be obtained by adding a certain
number of clusters. The thresholdcan now be chosen ac-
cording to cost or performance constraints. Fig. 7 shows that
when using three clusters, the probability of an audible discon-
tinuity occurring is predicted to maximally decrease from 0.17



KLABBERS AND VELDHUIS: REDUCING AUDIBLE SPECTRAL DISCONTINUITIES 47

Fig. 8. The principle of the construction of additional diphone clusters. The context-sensitive diphone clusters are indicated in grey. They consist of VC diphones
that were recorded with a representative from a noncorresponding left cluster. The representative of each cluster is circled.

to 0.04 for /a:/, from 0.43 to 0.12 for /i/, from 0.52 to 0.13 for
/A/, from 0.55 to 0.17 for /I/ and from 0.74 to 0.29 for /u/.

Fig. 8 illustrates the clustering procedure for the vowel /u/. In
our investigation, the maximum number of clusters is restricted
to three, which contain the same consonantal contexts for left
and right diphones. Adding more than three clusters will not
significantly reduce the probability of an audible discontinuity.
Concatenating /bu/ and /uk/ to makeboek is expected to be
unproblematic, as both consonants come from the same cluster
with a small SKL distance. However, for the wordsdoekand
hoekan audible discontinuity is likely to occur as they come from
noncorresponding clusters. In order to remedy this, additional
right diphones are recorded with a representative from a non-
corresponding left cluster. In recording this means that for the
/uk/ diphone which was originally recorded in the symmetrical
nonsense wordk@kuk@, two additional diphones are recorded
in the asymmetrical nonsense wordsl@luk@ and f@fuk@.
Then, the worddoekcan be created by concatenating the original
left diphone /du/ with the new diphone /uk/ taken froml@luk@
and the wordhoek is created by concatenating the same /du/
diphone with the new right diphone /uk/ coming fromf@fuk@.

The clusters are constructed according to a classification al-
gorithm, derived from the Linde–Buzo–Gray (LBG) algorithm
[30], which is commonly used for codebook generation for the
purpose of vector quantization. The SKL distance is used as
a criterion for the division. A distance matrix (DM) is con-
structed with CV diphones in the rows and VCdiphones in
the columns. The clustering procedure works as follows.

TABLE III
CLUSTER CONFIGURATION FOR/a:/, /i/, AND /u/. THE REPRESENTATIVES IN

EACH CLUSTER ARE THEFIRST CONSONANTS INEACH ROW

1) Three CV diphones are chosen as the initial representa-
tives of the clusters.

2) Distance matrix is reduced to a cluster matrix with
SKL distances between the three representatives and the
VC -diphones. Each VC-diphone is added to the cluster
to which representative it has the lowest KL distance.

3) Initial representative does not necessarily have the lowest
average KL distance to all other diphones in the cluster, so
for each cluster a new representative is chosen that does
adhere to this criterion. Then steps 2) and 3) are repeated
until the cluster configuration converges.

All possible combinations of initial representatives were
tried. The best ones, i.e., the ones that lead to the lowest max-
imal distance in a cluster, are displayed in Table III. Weighting
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Fig. 9. ROC curves for the new database when clustering for the vowels /a:/, /i/, and /u/.

the average SKL distance with the frequency of occurrence
of each diphone as measured in a large text corpus (27 000
sentences) did not have any effect on the configuration. It was
decided to allow the occurrence of just one diphone in a cluster,
to be able to separate an outlier that has a great spectral distance
to all other diphones. For the /a:/, the /S/ ends up in a cluster
on its own. There is no clear pattern related to manner or place
of articulation of the consonants, except for the /u/ where all
alveolars end up in the same cluster. We will come back to this
issue in the discussion. The cluster configuration for /u/ was
already visualized in Fig. 8.

B. Second Perceptual Experiment

In order to measure the improvement that results from the
addition of context-sensitive diphones new recordings were
made with which a new perceptual experiment was performed.
In order to make comparison possible, the new recordings
contained both the old and the new nonsense words.

1) Material: Again, stimuli were created consisting of con-
catenated CV and VC -diphones of the same speaker, except
that now for each CV and VC combination there were two
versions, one with a right diphone from the symmetrical non-
sense word C@C VC @ (database without clustering) and

one with a right diphone from the asymmetrical nonsense word
C @C VC @ (database with clustering). In order to reduce
the total number of stimuli, it was decided to focus on just three
vowels /a:/, /i/, and /u/. The total number of stimuli used in the
experiment is 2254, of which 1449 were constructed according
to the original concatenation method (23 C3 V 21 C ) and
805 diphone combinations were obtained using diphones from
the context-sensitive database (202 for /a:/, 295 for /i/ and 308
for /u/, based on three clusters).

2) Procedure: The perceptual experiment was repeated, this
time using six participants with a background in psycho-acous-
tics or phonetics. They had not taken part in the previous exper-
iment. The participants again had to judge whether the diphone
boundary in the middle of the vowel was either smooth or dis-
continuous. The stimuli were presented in three hourly sessions
which were held on three different days. Each session was split
into two 30-min blocks by a 15-min break. The session order
was different for all participants.

3) Results: Fig. 9 shows the ROC curves for the SKL and
PL distances for the three vowels used in the second experi-
ment. Table IV lists the percentage of perceived discontinuities
for the new database with and without clustering. Again, these
are based on the majority scores. Since we had six participants
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TABLE IV
PERCENTAGE OFPERCEIVEDDISCONTINUITIES PERVOWEL. THE PERCENTAGES

ARE COMPUTED FROM THESUM OF THE MAJORITY SCORES

TABLE V
REPEATEDMEASURESANOVA ON NEW DATABASE WITH AND WITHOUT

CLUSTERING FORSKL DISTANCE AND SUMMED PARTICIPANTS’ SCORES; SIG
INDICATES SIGNIFICANCE (N.S.= NOT SIGNIFICANT, � = SIGNIFICANT)

in this experiment, one randomly chosen subject was left out to
keep the results comparable to the old situation. The results for
the new database without clustering are better than for the orig-
inal database. Even though the same speaker was used as in the
first experiment, there may be differences in recording condi-
tions, speaking style or speaking rate that caused the differences.
Although the clustering is based on the results of the first exper-
iment, the results from the second experiment can be evaluated
because it contains stimuli with and without clustering. Table V
shows that clustering does reduce the number of audible discon-
tinuities.

Its significance is demonstrated by a repeated measures
ANOVA which was performed on the SKL distance and on
the summed participants’ scores. The results are presented in
Table IV. When looking at the results for the KL distance one
can observe that the distance has significantly decreased for
context-sensitive diphones for both /i/ and /u/, but is not signif-
icant for /a:/. However, in the judgement of the participants, the
number of detected discontinuities has significantly decreased
for all three vowels.

When comparing the improvement prediction for the new
database without clustering with the actual improvement ob-
tained by clustering [Fig. 10], one can see that clear improve-
ments are obtained although they are not as good as the maxi-
mally predicted improvement. The deviation from the optimal
line is 0.07 for /u/ and /a:/ and 0.15 for /i/. One possible reason
for this is that the maximum improvement is estimated assuming
that each cluster contains an equal amount of contexts, which is
not the case here.

When again considering the specific example of /duk/, it can
now be seen that adding an additional /uk/ diphone that has been
recorded in the appropriate context makes a noticeable differ-
ence [see Fig. 11]. Instead of an abrupt and large jump in the
as observed in Fig. 1, the descends more gradually.

IV. DISCUSSION

The findings of this investigation lead to a number of inter-
esting observations. First, the differences in results between the
three vowels /a:/, /i/ and /u/ shows that /a:/ is least affected by
coarticulation, whereas /i/ is more and /u/ is most affected by

Fig. 10. Number of clusters versusP , the probability of a discontinuity
arising, for /a:/, /i/, and /u/. The lines represent the lower bound, i.e., the
maximum improvement that might be obtained. The stars indicated the actual
improvement obtained when using three clusters.

it. The alveolars account for most of the coarticulation in /u/.
There, the slow movement of the tongue body causes the frontal
mouth cavity to be small throughout the pronunciation of the
vowel, which leads to a relatively high value. For /a:/ and /i/,
this does not make much difference since the locus of alveolars
is much nearer to their customary value than for /u/. Research
by [27] and [1] has shown that coarticulation has a centralizing
effect. Maybe that is the reason why /u/ is more affected in terms
of and /A/ more in terms of .

Second, the finding that audible discontinuities still occur for
the /a:/ and that clustering does not reduce the amount of au-
dible discontinuities leads to the conclusion that besides coar-
ticulation there is always random variation in the pronunciation
of the stimuli. This was also observed by [24] who found
variations in excess of 50 Hz for a vowel in repetitions of the
exact same phrase as uttered by a highly professional speaker.
Reference [26] reports even larger and variations (up to
250 Hz) in the repeated pronunciation of /I/ insixandmillion by
a professional speaker. This indicates the need to record several
instances of a nonsense word and choose the one that is optimal
for the database.

Third, thebottompanel inFig.11showsthatwhenthediphones
are recorded in asymmetrical nonsense words, the formant tra-
jectories are no longer stable, but change gradually from start to
finish. In thatcase, itmaymakesense tooptimize thecuttingpoint
of thediphoneboundaryasproposedby[6].Becausethenonsense
wordsusedforourdiphonedatabasecontain identicalconsonants
around the vowel, it may cause the formants in the vowel to fall
short of their theoretical targets. In future, it will be better to use
a lessconstrainedsetof words forextractingdiphones.

V. CONCLUSION

This paper reported on the occurrence of audible discontinu-
ities in diphone synthesis caused by spectral mismatch at the
diphone boundaries. A perceptual experiment was conducted
to investigate the extent to which this phenomenon occurs. The
results revealed that there are considerable differences between
the vowels under investigation. The /a:/ showed the least amount
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Fig. 11. Improvement in the concatenation of /du/ and /uk/ using a different
diphone for /uk/. Instead of an abrupt jump inF as is visible in the top panel,
a gradual transition is observable in the bottom panel.

of perceived discontinuities, followed by the /i/. The /A/ and
/I/ showed more perceived discontinuities, but the largest per-
centage of perceived discontinuities was found in the /u/. The
scores obtained in the perceptual experiment were related to
several spectral distance measures to find an objective measure
to predict the occurrence of audible discontinuities. The relation
was performed using ROC curves. The symmetrical Kullback-
Leibler distance was shown to be most adequate for the task.

In the second part of this paper, a feasibility study was pre-
sented. Context-sensitive diphones were added to the database.
In order to reduce the number of additional diphones, the SKL
distance was used to cluster consonantal contexts that have the
same spectral effects on the neighboring vowels. A second per-
ceptual experiment was conducted to evaluate the improvement
obtained with this addition to the database. A significant im-
provement was obtained for /u/ and /i/ both in terms of the ob-
jective SKL distance and the subjective scores. For /a:/ there
was only a subjective improvement, but objectively, in terms of
SKL distance, the improvement was not significant. This is not
a problem, however, as the number of discontinuities in /a:/ was
already low to begin with.

Although the research was performed on a restricted type of
stimuli, we think the procedure of detecting audible discontinu-
ities using the SKL measure is also applicable to other stimuli.
Currently, speech synthesis using on-line selection of variable
length units is very popular. We expect that the SKL measure
can be successfully integrated in this approach to select the best
fitting units.
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