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Abstract. Many ecological insights into the function of rivers and watersheds emerge from quantifying

the flux of solutes or suspended materials in rivers. Numerous methods for flux estimation have been

described, and each has its strengths and weaknesses. Currently, the largest practical challenges in flux

estimation are to select among these methods and to implement or apply whichever method is chosen. To

ease this process of method selection and application, we have written an R software package called

loadflex that implements several of the most popular methods for flux estimation, including

regressions, interpolations, and the special case of interpolation known as the period-weighted approach.

Our package also implements a lesser-known and empirically promising approach called the ‘‘composite

method,’’ to which we have added an algorithm for estimating prediction uncertainty. Here we describe the

structure and key features of loadflex, with a special emphasis on the rationale and details of our

composite method implementation. We then demonstrate the use of loadflex by fitting four different

models to nitrate data from the Lamprey River in southeastern New Hampshire, where two large floods in

2006–2007 are hypothesized to have driven a long-term shift in nitrate concentrations and fluxes from the

watershed. The models each give believable estimates, and yet they yield different answers for whether

and how the floods altered nitrate loads. In general, the best modeling approach for each new dataset will

depend on the specific site and solute of interest, and researchers need to make an informed choice among

the many possible models. Our package addresses this need by making it simple to apply and compare

multiple load estimation models, ultimately allowing researchers to estimate riverine concentrations and

fluxes with greater ease and accuracy.

Key words: composite method; concentration; constituent; flux; nutrient; R; software; solute load models; uncertainty;

watershed.
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INTRODUCTION

Quantifying solute and sediment fluxes from

watersheds can yield insights into watershed

processes, in-stream processes, and nutrient

cycles at regional to global scales. Flux estimates

are an essential component of whole-watershed

manipulation experiments (Likens et al. 1970),

measurements of nutrient retention within catch-

ments (Groffman et al. 2004) and within stream
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reaches (Bowes and House 2001), calibration of
global nutrient export models (McCrackin et al.
2014), and assessments of export trends across
time and space (Hruška et al. 2009, Prokushkin et
al. 2011). A wide variety of quantification
methods have been proposed, including simple
period-weighted means, ratio estimators, binning
methods, and both linear and nonlinear statistical
models (Preston et al. 1989, Letcher et al. 1999,
Asselman 2000, Cox et al. 2008, Birgand et al.
2010, Raymond and Saiers 2010, Worrall et al.
2013). Complex methods have been made more
accessible through implementation software
packages including FLUX (Walker 1996), LOAD-
EST (Runkel et al. 2004), and EGRET (Hirsch et
al. 2010, Hirsch and De Cicco 2015). These
approaches often involve some sort of regression
model, for which a primary challenge is to
identify an adequate model formula to represent
the relationship between fluxes (or concentra-
tions) and available predictors such as discharge,
season, or year. While regression models aid our
conceptual understanding of the controls on
watershed solute export, they can generate poor
flux estimates when the few available predictors
fail to capture all causes of variability in flux.
Model inadequacies often take the form of short-
term biases, in which predictions for a certain
period are consistently below or consistently
above the actual values (Hirsch 2014).

One solution for better estimating watershed
fluxes and concentrations, commonly termed the
‘‘composite method,’’ has been recently intro-
duced (Huntington et al. 1994), named and
described (Aulenbach and Hooper 2006), applied
(Peters et al. 2006), extended (Verma et al. 2012),
and explored (Aulenbach et al. 2007, Aulenbach
2013). The composite method combines the
predictions from a regression model with an
empirical ‘‘residuals correction’’ to bring predic-
tions closer to observations during the period of
interest. This two-step process can reduce short-
term biases and thereby lead to more accurate
estimates of total fluxes or mean concentrations
(Aulenbach and Hooper 2006, Verma et al. 2012,
Aulenbach 2013). The resulting estimates can
then be used to evaluate the contribution of a
watershed to total regional or global solute loads,
to more accurately describe the pattern of
concentrations or fluxes over time, or to make
inferences about historical fluxes from sparse

data records. Despite the potential for the
composite method to improve flux and concen-
tration estimates, however, the method has
remained out of reach to many scientists because
existing implementations of the method are
private or implemented with proprietary soft-
ware.

Here we present the first public, open source
implementation of the composite method, com-
plete with diagnostic tools to aid researchers in
applying the composite method to estimate
watershed fluxes. Our package, titled loadflex

and implemented in the R statistical language, is
freely avai lable at https : / /gi thub.com/
mcdowelllab/loadflex. In fact, the loadflex

package implements more than just the compos-
ite method: the package also contains methods
for interpolating among observations (these
methods may also be called integration methods
or period-weighted approaches), methods for
applying linear regressions of arbitrary complex-
ity, and an interface to the suite of models made
available by the USGS as the LOADEST package in
Fortran (Runkel et al. 2004) or, more recently, the
R implementation named rloadest (Lorenz et
al. 2015).

A key strength of loadflex is that it imple-
ments each of these load models with a common
interface, enabling users to quickly fit and
compare several models. This is useful because
the best approach for each new river and dataset
depends on the hydrology of the watershed, the
sources and mobility of the solute of interest, the
data resolution and precision, and the degree of
autocorrelation in the residuals of proposed
models (Letcher et al. 1999, Johnes 2007, Aulen-
bach 2013). Another paper in review for this
special issue of Ecosphere proposes general
guidelines for choosing among the composite
method, a period-weighted approach, and a
regression model (Aulenbach, unpublished manu-
script). A more site-specific approach is to fit
several models to the data and compare them for
goodness of fit, theoretical utility, and realism of
predictions. However, the time and energy
required to learn and implement each new model
can prevent researchers from thoroughly explor-
ing their modeling options. We designed load-

flex to empower researchers to explore more
competing models, to make informed decisions
among more options, and, ultimately, to make
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better flux and concentration predictions.
A second strength of the loadflex package is

that it computes not just central estimates of
solute fluxes but also their uncertainty, which is
essential to interpreting flux estimates (Yanai et
al. 2015). For the composite method, we intro-
duce a new method for estimating the uncertain-
ty in these estimates. Previous studies have
repeatedly fitted composite models to subsets of
the data to argue that the composite method
should have lower uncertainty than a regression
model alone; however, no independent estimates
of uncertainty have been hitherto available
(Aulenbach and Hooper 2006, Verma et al.
2012, Aulenbach 2013). Whereas prediction un-
certainty for regression models can be estimated
by standard functions of the fitted regression
parameters and residuals, such methods are
inappropriate for composite models, for which
the estimates are substantially altered from the
original regression predictions. Even common
non-parametric methods such as a simple jack-
knife or bootstrap are inappropriate because of
the time-dependence of the composite method
correction. One solution, which we have imple-
mented and will describe here, is to combine a
parametric bootstrap with a delete-one jackknife
to estimate the overall standard error of predic-
tion. This solution represents a new addition to
the composite method literature.

Here we introduce and demonstrate our
loadflex package. We describe the implemen-
tation of four general classes of load models and
their associated methods for assessment and
prediction. We emphasize our enhancements to
the composite method, which include additional
options for the residuals correction, compatibility
with models from the USGS rloadest package,
and our new algorithm to estimate uncertainty.
To demonstrate the package, we fitted four
models to 12 years of weekly data from the
Lamprey River in New Hampshire, finding that
the choice of model can substantially affect
conclusions about the effects of floods on nitrate
fluxes in this particular watershed. We then use
two years of high-resolution sensor data to more
rigorously evaluate the four models and their
uncertainty estimates. The loadflex package
makes it possible to apply and evaluate several
common and promising models, to choose the
best model for the data at hand, and to make

predictions with a strong understanding of their
accuracy and uncertainty.

METHODS AND DEMONSTRATION

Overview
loadflex provides a standardized workflow

for fitting and applying a model of solute
concentrations or fluxes, regardless of the specific
model that is used. The user (1) fits a regression
or interpolation model using a function named
for the chosen model; (2) assesses the model and
data using standard techniques in R; (3) if
appropriate, applies the composite method to
the original model with one additional com-
mand; (4) uses the final model to make point
predictions about concentrations or fluxes over
time, and (5) optionally aggregates the point
predictions to longer periods such as months,
seasons, or years. Here we demonstrate these
steps for four different load models in parallel;
essential code is given in Fig. 1, and the complete
code files are available as a supplement.

Site description
The Lamprey River is an 81-km river flowing

through southeastern New Hampshire. Its 548-
km2 watershed empties into the Great Bay estuary,
whose nitrogen impairment has been the subject
of much interest and management in recent years
(Trowbridge et al. 2014). In its entirety, the
watershed is 71.7% forest, 8.6% wetland, and
7.9% agricultural land (NOAA 2006), with 6.2%
impervious surface cover (NH GRANIT 2011) and
a population density of 67 people per square
kilometer as of 2010 (U.S. Census Bureau 2011).
The mean annual temperature is 8.28C and mean
annual precipitation is 1206 mm/yr (National
Climatic Data Center normals for 1981–2010 at
Durham [USW00054795 ] and Epp ing
[USC00272800], NH; http://www.ncdc.noaa.gov/
cdo-web/datatools/normals).

The nitrate concentrations and discharge data
for this study (Fig. 2) were collected at two
neighboring sites along the Lamprey mainstem.
The Packers Falls site (4380600900 N, 7085701100 W;
NAD27) is 7.5 km upstream of the Great Bay, has
a catchment area of 479 km2, and had mean
annual discharge of 8.85 m3/s in 1981–2010. The
Wiswall Dam site is 1.3 km upstream from
Packers Falls, has a catchment area of 477 km2,
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and includes a 5.5 m tall concrete dam that was
built in 1911 and equipped with a fish ladder in
2011 (New Hampshire Department of Environ-
mental Services 2013). The outlet controls of
Wiswall Dam are rarely manipulated except on
the two days per year when the fish ladder is
opened and closed, and the dam thus has a
relatively minor and infrequent influence on the
river flow regime (D. Cedarholm, personal com-
munication).

Nitrate concentrations have been monitored
with weekly and event-based grab samples at
Packers Falls since 10 September 1999 and are
measured by ion chromatography with sup-
pressed conductivity detection on a Dionex
1000 ICS (Sunnyvale, California, USA). At the
Wiswall Dam site, nitrate concentrations have
been monitored with a SUNA nitrate sensor

(Satlantic, Halifax, Canada) at 15-minute resolu-
tion since 7 September 2012. The SUNA mea-
surements have been calibrated with additional
weekly grab samples at the Wiswall Dam site,
with a post-calibration correlation coefficient of
r2 ¼ 0.59 between laboratory measurements and
calibrated SUNA predictions.

Discharge records at Packers Falls extend from
1953 to the present (US Geological Survey, site
1073500, waterdata.usgs.gov). Two exceptional
flooding events occurred in 2006 and 2007, with
flow exceeding 150 m3 s�1 from 14 May to 17
May 2006 and from 16 April to 19 April 2007,
each time meeting the criterion for a 100-year
flood (FEMA 2008). In addition, an unusually
large storm occurred in October 2005. Qualitative
inspection of the data suggests that nitrate
concentrations and fluxes decreased from the

Fig. 1. Essential code to fit four different models, make predictions, evaluate the models, and aggregate to

monthly estimates. Functions from the loadflex package are in red. The full code files used to generate the

figures and results of this manuscript are available as a supplement.
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years preceding these events to the years that
followed. We hypothesized that the storms and
floods could have fundamentally altered flow
paths and/or nitrate processing rates in the
catchment, possibly by flushing nitrate out of
groundwater influenced by septic leach fields or
adding woody debris to stream channels as a
carbon source for denitrification. Here we ask
whether concentrations and fluxes had indeed
changed significantly.

Although the Lamprey has sufficient flow to be
the type of site most often successfully modeled

with regressions on discharge such as those
implemented in LOADEST or rloadest, the best
model we could identify within the rloadest

framework explained only a modest proportion
of the overall variance in concentration (R2¼0.38;
see the rloadest regression model section be-
low). In particular, the Lamprey appears to be an
example of a site for which typical regression
models are inadequate due to multi-week fluc-
tuations in the discharge-concentration relation-
ship (see Composite model below). Due to these
multi-week biases in the regression model

Fig. 2. Nitrate and discharge data from the Lamprey River, New Hampshire, USA. Data in panels A and B are

used to demonstrate model fitting, prediction, aggregation, and simple tests of whether nitrate dynamics were

altered by the three large floods and storms of 2005–2007. Data in panels C and D are used to compute model

performance metrics. Nitrate observations come from grab samples (A) or an in-situ sensor (C). Data points at

one-week intervals were selected from the quasi-continuous sensor data to simulate grab samples (3 andþ in C).

Grab samples and simulated grab samples are used to fit the models; each point is used for interpolation only (3)

or both interpolation and regression calibration (þ), where regression data are a subset of interpolation data to

reduce autocorrelation and the consequent underestimation of uncertainty. Discharge observations (B and D) are

used both for calibration and prediction and come from USGS gaging station 01073500.
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predictions, and due to the availability of weekly
chemical measurements over the last decade, the
Lamprey River is a prime candidate for im-
proved load estimation with the composite
method.

Model construction
Interpolation model.—The first and simplest of

the four models demonstrated here is the
interpolation model. Interpolation models have
been used, in various forms, for many studies of
solute and sediment fluxes (Porterfield 1972,
Grimm 1987, Buso et al. 2000, Vanni et al.
2001). Interpolation models are typically pre-
ferred when regression models are unsatisfactory
(due to a lack of predictor data or a weak
relationship between the available predictor data
and the concentrations or fluxes of the solute),
especially when direct observations are frequent
enough that each pair of successive concentration
observations is likely representative of concen-
trations in the period between them (Webb et al.
1997, Robertson and Roerish 1999).

Here we demonstrate the use of a rectangular
interpolation, where horizontal lines are drawn
through observations in a plot of concentrations
(or fluxes) versus time, and each horizontal line is
connected to the next by a vertical line midway
between successive observations (example pre-
dictions in Fig. 3A). A rectangular interpolation is
mathematically equivalent to a period-weighted
averaging method (Likens et al. 1977), although
the latter method often bypasses the step of
making point predictions and moves immediate-
ly to estimating the aggregated flux or concen-
tration. The function used to create this model,
loadInterp() (Fig. 1B), offers the choice of
several interpolation methods, including rectan-
gular, piecewise linear (method M6 of Moatar
and Meybeck 2005), spline, and smooth spline
interpolations. These methods all have in com-
mon that they connect observations of concen-
tration or flux over time with a single line, where
the values in that line depend only on the specific
interpolation function, the observations of con-
centration or flux, and the date and time.

Custom regression model.—Regression models
are a longstanding alternative to interpolation
models in estimating watershed solute fluxes
(Miller 1951, Johnson et al. 1969, Preston et al.
1989). Whereas interpolation predictions are

based entirely on the date/time and the observed
concentrations or fluxes, regression models can
use a larger set of predictors, such as current and
antecedent discharge, season, and year, to make
predictions for the dates of interest. Regression
models often require less data than interpolation
models because the data need only span the
range of predictors rather than the full time
period of interest (Robertson and Roerish 1999).

In loadflex, a linear regression can be fitted
using the loadLm() command (Fig. 1B and Fig.
3B). Though the regression formula in Fig. 1
contains only a log-discharge term, the formula
may contain any number of user-defined vari-
ables, including discharge squared, seasonal
terms, or time-trend terms. loadflex currently
requires that the left-hand side of the regression
formula (flux or concentration) is logged; this
enforces consistency with a later assumption
during the prediction phase that the predicted
values are lognormally distributed. In future
versions of loadflex we plan to offer a choice
of normal or lognormal distributions for loadLm

models, e.g., for compatibility with the hyper-
bolic model of Johnson et al. (1969). However, we
expect that the user will often prefer the
lognormal assumption, given that the response
variable is logged in many rating curves and
extrapolation (regression) methods (Miller 1951,
Ferguson 1986, Cohn et al. 1989, Johnes 2007).

rloadest regression model.—A powerful fea-
ture of loadflex is the ability to make use of
models produced by the USGS package rload-

est (Lorenz et al. 2015), with a simple wrapper,
loadReg2(), to get the additional loadflex

functionality. Relative to simple linear regres-
sions, rloadest models are less transparent, but
they have several important advantages: they
implement several well-established model for-
mulas including the 7-parameter model of Cohn
et al. (1992), they are fitted by maximum
likelihood methods, and they provide smart
handling of censored data (Runkel et al. 2004,
Cohn 2005).

Models fitted by rloadest are a good option
for many watersheds where some sort of
regression approach is desired, especially be-
cause the weaknesses commonly ascribed to
LOADEST/rloadest models are also present in
other log linear regression models, and in many
cases have been mitigated in the LOADEST/
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rloadest implementations. For example, the
issue of retransformation bias, discussed in a
later section of this manuscript, is automatically
addressed in LOADEST (Runkel et al. 2004).
Another concern is that regression models can
be severely biased when model assumptions are
violated (Hirsch 2014). These biases arise from
non-normality or heteroskedasticity of residuals
(Thomas 1988, Stenback et al. 2011) and/or a lack
of model fit (Toor et al. 2008, Moyer et al. 2012).
When a poor model fit is due to sustained
deviations of predictions from true values for

periods of weeks to months, that regression

model is a good candidate for inclusion in a

composite model (next section). Regardless of

whether a composite correction is applied,

however, model biases can and should be

diagnosed in every application of a regression

model, and both LOADEST and rloadest gener-

ate outputs to facilitate this process (Runkel 2013,

Lorenz et al. 2015).

Rather than competing with this well-estab-

lished and useful software, loadflex works

Fig. 3. Models fitted to NO3
� data from the Lamprey River, New Hampshire, USA, using functions in the

loadflex package (Fig. 1). Panels A–D show concentration observations (brown points) and concentration

predictions (orange lines) for the 2003 water year for (A) an interpolation, (B) a simple linear regression model,

(C) an rloadest regression model, and (D) a composite model. Panels E–G illustrate the steps taken to fit a

composite model, i.e., to move from regression predictions as in C to composite predictions as in D. (E)

Regression predictions and observations from C are first log-transformed to compute residuals (vertical lines). (F)

Residuals from E are then interpolated, in this case by a piecewise linear function (brown time series line). (G)

The composite method predictions (brown line in G) are computed as the sum of the regression predictions

(orange lines in E and G) and the interpolated residuals (brown line in F).
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seamlessly with rloadest. In particular, the
loadReg2 function in loadflex can be wrapped
around the loadReg function from rloadest to
form a load model that is built on LOADEST code
but provides the same simple interface as other
models in the loadflex suite (Fig. 1B). Adding
the loadflex interface makes it possible to
generate point predictions from rloadest mod-
els (e.g., Fig. 3C) separately from the aggregation
of those point predictions to longer time periods,
permitting faster analyses and bringing transpar-
ency to one black-box attribute of standard
rloadest models. Further, the interface makes
rloadest models compatible with the composite
method, bringing an entirely new layer of
functionality to rloadest models without sacri-
ficing any of the careful thought and long
experience that has gone into their design.

Composite model.—The composite method is
most appropriate when regression predictions
are available but show intermediate-term biases,
i.e., predictions that are consistently too low or
consistently too high over periods for which one
or more observations are available and autocor-
related. The method can only be applied to time
periods for which some observations of river
chemistry exist, and the method thus cannot be
used for extrapolation to unobserved periods of
the past or future. Within those constraints, the
composite method excels in making full use of
the available data and in generating accurate
predictions at the temporal resolution of the
predictors (e.g., 15-minute discharge), which
should lead to more accurate predictions at the
monthly to annual scales.

A composite method model begins with a
regression model, which in loadflex may take
either of the forms described above (loadReg2 or
loadLm). In our demonstration we begin with
no3_reg2, the loadReg2 load model fitted in
Fig. 1B and displayed in Fig. 3C. The regression
model is then used to make predictions at a series
of time points for which observations are
available. The predictions and observations are
compared to generate a set of ‘‘residuals’’, which
differ from standard regression residuals in that
they may be computed from data that differ in
whole or part from the original calibration data.
These residuals may be computed as absolute
differences (observation � prediction) or relative
differences (observation/prediction; absolute dif-

ferences shown in Fig. 3E).
The key premise of the composite method is

that an interpolation among these residuals
accurately describes the temporal pattern of
errors in the regression predictions. For example,
Fig. 3E suggests that the regression model
consistently underestimates concentrations in
February and overestimates them in June and
July of 2003, such that it would be appropriate to
make an upward correction in February and a
downward correction in June and July. To
achieve such changes systematically, the com-
posite method corrects the regression predictions
(at the resolution of the predictor dataset, e.g.,
daily or hourly discharge observations) by the
residuals as interpolated to that same resolution
(Fig. 3F). This is done by adding the absolute
residuals to the regression predictions or multi-
plying the predictions by the relative residuals
(Fig. 3G). The resulting corrected predictions
(Fig. 3D) can improve on pure interpolation
predictions because their fine temporal structure
reflects any variation in the regression predic-
tions (e.g., a storm pulse in discharge and
corresponding pulse or dip in concentrations).
They can improve on pure regression predictions
because their longer-term magnitudes are more
accurate (e.g., corrected for any multi-week
anomalies in the relationship between concentra-
tion and the regression predictors, such as a
summer of unusually low concentrations).

The dataset used to fit the regression model
must meet the assumptions of the regression
method, including a lack of autocorrelation
among residuals whenever uncertainty estimates
are required. Consequently, the regression cali-
bration dataset should usually have no finer than
a monthly to weekly resolution (Lorenz et al.
2015). The interpolation phase, in contrast, not
only permits but actually depends on the
autocorrelation of residuals; otherwise, the cor-
rection would only add noise to the regression
predictions (Aulenbach 2013). It is therefore
possible in loadflex to perform the interpola-
tion phase using a second dataset, which may
have higher resolution than the regression
calibration data if additional observations are
available. Separating the regression and interpo-
lation datasets has not been recommended in any
earlier studies, to our knowledge, and has
theoretical benefits in its ability to satisfy both
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the independence of regression data and the
autocorrelation of interpolation data. This sepa-
ration can also make the prediction process more
flexible by permitting the interpolation model to
be fitted to a separate time period of data than
that of the regression model. Lastly, the separa-
tion can make the prediction process more
computationally efficient when the period
spanned by the regression dataset is long but
the period of interest for prediction is short; in
this case, interpolation need only be done for that
shorter period.

Interpolation of composite-method residuals is
implemented in loadflex using an object
created by the loadInterp() function (the same
described earlier) but fitted not to raw concen-
trations or fluxes but to the residuals. Most
interpolation methods available for loadInterp

models are equally applicable to raw observa-
tions or to residuals—in particular, the piecewise
linear method has been the standard since the
early descriptions of the composite method
(Huntington et al. 1994, Aulenbach and Hooper
2006). Additional methods were developed
specifically for use with the composite method
and have specific advantages in that application;
one such method is the triangular interpolation
proposed by Verma et al. (2012). The loadflex

package also offers new interpolation options not
previously employed in the composite method
literature, including a distance-weighted function
that causes the residual correction to approach
zero as the time of the prediction point gets
farther away from the time of the nearest
observation point. In addition, loadflex allows
the interpolation method to be applied to either
absolute or relative residuals (an idea advanced
by Verma et al. 2012), and to those residuals in
log or linear space. Choices between proportional
and absolute, between log and linear, and among
the six implemented interpolation methods yield
23236¼24 pre-defined options for interpolation
of residuals in loadflex. In addition to these pre-
defined interpolation functions, others may be
defined by the user; the only requirement is that
the user-defined function accepts arguments for
the dates and values of the residuals to interpolate
among and a new set of dates for which the
interpolation should be made.

While all of the above options are made
available to the user, we see reason to prefer

the absolute, log-space option and have made
this the default. In non-log space, relative
interpolations have outcompeted absolute inter-
polations in tests to date (Verma et al. 2012).
Absolute methods in log space produce quite
similar predictions to those of relative interpola-
tions, and they have the added advantage of
operating in the same space in which the
regression model was fitted. Based on our results
and those of Verma et al. (2012), we use the
absolute, log-space option as a default. However,
the best interpolation function for a given dataset
will depend on the researcher’s objectives and the
nature of that particular dataset. For simplicity of
interpretation, a linear or rectangular interpola-
tion could be best. For datasets where the
researcher expects a smooth change in the
concentration-discharge relationship during the
time between two calibration observations, a
relative interpolation could be important. For
datasets with slow changes in the C-Q relation-
ship (e.g., from one season to the next), a linear or
smooth spline interpolation could be most
effective, while for datasets with rapid changes
in that relationship (e.g., between stormflow and
baseflow), a distance-weighted interpolation
might be best.

Point predictions
Point predictions, i.e., predictions of concen-

tration or flux that each correspond to a row of
predictor data, can be generated from any load
model in a single call to the predictSolute()

function (Fig. 1C). The inputs to this function
include the fitted load model and a dataset of
predictors. The output is a vector or table of
predictions. For convenience, the predictions take
whichever format is specified by the user (flux
rate or concentration), even when the underlying
regression model makes predictions in another
format, and they are reported in linear space
even if the regression model makes raw predic-
tions in log space.

Transformation bias correction.—Linear regres-
sion model equations for load estimation nearly
always have a log transformation on the left-
hand side. Because researchers are generally
interested in the non-logged estimates of concen-
tration or flux rate, the model predictions must
be retransformed by exponentiation; however,
this introduces a bias, usually downward, in the
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predictions (Ferguson 1986, Koch and Smillie
1986). Each exponentiated prediction should
therefore be multiplied by a bias correction factor
to reduce or eliminate this bias (Cohn et al. 1989).
Several parametric solutions are available for
regression models; for example, rloadest uses
an adjusted maximum likelihood estimator
(AMLE) by default (Cohn et al. 1989, Runkel et
al. 2004, Cohn 2005).

Alternatives to bias correction are to use
hyperbolic functions (Johnson et al. 1969), non-
linear models (Asselman 2000) or generalized
linear models (Cox et al. 2008, Wang et al. 2011)
rather than using log-linear models in the first
place. However, the relative simplicity of log-
linear models gives them ongoing value for the
foreseeable future.

In the current version of loadflex, linear
regression models use a simple error correction
based on the theoretical relationship between
lognormal and normal distributions: the final,
retransformed prediction m is computed as

m ¼ exp lþ
rp

2

� �

where l is the log-space prediction from the
model and rp is the standard error of prediction
(SEP) for that point. Our composite method
implementation currently uses a composite of
error corrections as needed: the intermediate,
regression-based predictions are bias-corrected
according to the type of model employed (e.g.,
rloadest models use the AMLE estimator), and
the residual-corrected predictions are either
retransformed with the same method as for
linear regressions if the residuals correction is
done in log space, or left in linear space if the
residuals correction is done in that space.

Uncertainty estimation.—There is uncertainty
associated with each point prediction from any
type of model, and loadflex estimates this
uncertainty along with the prediction if request-
ed. The format of this uncertainty is specified by
the arguments se.fit and se.pred (each TRUE
or FALSE) and interval (‘‘none,’’ ‘‘confidence,’’
or ‘‘prediction’’) in the call to predictSolute().
Most of the work in estimating this uncertainty is
actually completed during the earlier phase of
model fitting, and the methods used are specific
to the type of model being fit.

For interpolation models, uncertainty is esti-

mated in loadflex by delete-one jackknife, a
process closely related to N-fold cross validation
(Hastie et al. 2009). In the jackknife process, the
interpolation model is refit to a series of datasets
that each differ from the original by the omission
of exactly one observation. The difference be-
tween the omitted observation and the prediction
at that point is then squared to estimate one
error, and the average of the errors across all N of
the refit models is interpreted as the mean
squared prediction error for the model. The
standard error of prediction (SEP) is the square
root of this term (Kunsch 1989, Cressie 1993). If
requested, prediction intervals are computed by
the percentile method (Fox 2008), i.e., as the 2.5%
and 97.5% quantiles of a normal distribution with
the mean set to the predicted value and the
standard deviation set to the SEP.

For regression models, the standard error of
prediction is computed as the square root of the
sum of coefficient uncertainty (the variance of the
fit) plus the residual error variance (estimated as
the mean of the squared residuals). Equations for
extracting coefficient uncertainty and prediction
error from standard regression models are well
known (Freund and Wilson 2003). The compara-
ble equations for censored data are slightly more
complicated and are handled well within the
rloadest package (Runkel et al. 2004, Cohn
2005).

In contrast to methods for regression models,
no methods for uncertainty estimation for the
composite method have been historically avail-
able (Aulenbach 2013). Within loadflex, we
have implemented an algorithm for estimating
composite method uncertainty that is itself a
composite of two approaches: we employ a
parametric bootstrap (Efron 1979, Cressie 1993)
where the parameters are the covariances of the
regression model coefficients and the statistic of
interest is the error after the interpolation phase
as estimated by delete-one jackknife (Kunsch
1989, Cressie 1993). First, the coefficients of the
regression model are resampled from their
multivariate normal distribution to get a new
set of plausible coefficients. This parametric
resampling process is comparable to, but more
computationally efficient than, the non-paramet-
ric alternative of refitting the model to resampled
calibration data. (The non-parametric option is
also available for composite models containing
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loadLm regression models.) New predictions are
then made at the interpolation calibration points,
from which the residuals are calculated by
comparison to the original observations. Those
new residuals are then employed in a jackknife
process where during each iteration, all but one
residual is used to create an interpolation, the
interpolated corrections are reapplied to the
regression predictions (from the resampled coef-
ficients) to determine a final prediction, and the
error is computed as the difference between the
original observation and this final prediction.
Each element of the current interpolation dataset
is left out in turn to produce a set of errors. The
entire bootstrap process is repeated many times,
each time going through the parametric coeffi-
cient resampling, the inner jackknife loop of
residuals correction and prediction, and calcula-
tion of the mean squared error for that inner
loop. The mean squared errors from all bootstrap
iterations are then averaged to find the estimated
variance for the full composite model. The square
root of that variance is the SEP. The number of
bootstrap repetitions can be adjusted by the user
to achieve any desired balance between compu-
tation time and convergence. For the particular
application summarized in Fig. 1, we found that
the default of 100 repetitions gave an error
estimate that was within ;1% of the error
estimated with 1000 repetitions.

For practical and theoretical reasons, the space
(log or linear) in which composite method errors
are computed depends on the space in which the
interpolation was done. Interpolations done in
linear space have the potential to yield negative
predictions of flux or concentration at some time
points; consequently, the most sensible space for
computing the mean squared error (MSE) is also
linear. This is consistent with the assumption
implied by the user in choosing to interpolate
residuals in linear space—if the user expects
normally distributed errors about the regression
predictions, then an interpolation in linear space
will make the most sense. In contrast, an
interpolation in log space both (1) produces
entirely positive predictions, making it practical
to compute an MSE in log space, and (2) implies
that the user expects roughly lognormal distri-
butions of errors about the regression predic-
tions. For these reasons, interpolations in log
space are paired with overall uncertainty esti-

mates in log space, and linear with linear. All
predictions generated by predictSolute() are
then retransformed as needed so that they can be
reported in linear space.

The approach we have implemented to esti-
mate composite method uncertainty, combining a
parametric bootstrap with a jackknife, should
provide a reasonable upper bound on the
uncertainty for the composite model for two
reasons. First, the parametric resampling of
regression coefficients allows us to consider
uncertainty in those coefficient estimates without
introducing random noise, which would reduce
the autocorrelation of the regression residuals.
The entire motivation behind the interpolation
phase is to make use of autocorrelation in those
residuals, so it is imperative that the autocorre-
lative structure of the residuals be preserved.
Second, a delete-one jackknife approach is
appropriate for a dataset of evenly spaced
observations to be interpolated. In each iteration,
the deleted observation is maximally distant in
time from the observations being used for
interpolation. In other words, any other point to
be predicted by the composite method model in
the prediction phase will be closer to an
observation than the observations being left out
in the jackknife process, and is therefore likely to
have less error than that predicted by the
jackknife. Consequently, the delete-one process
outlined above is unlikely to underestimate error
in the composite method. At the same time, we
expect that the overestimation will not be
dramatic. We delete just one observation at a
time so that in any given iteration, the point
being left out is being predicted by the regression
model and by all of the neighboring points. A
delete-k approach would sometimes have more
than one adjacent point being left out, introduc-
ing additional and irrelevant error because those
points would be corrected for more distant
residuals than is the case in the actual composite
method prediction algorithm.

Diagnostics of model fit
Any model that is fit should also be evaluated.

Traditional metrics and methods of model
evaluation apply to either type of regression
model currently available through loadflex

(loadLm or loadReg2). For example, users will
usually want to inspect the coefficient estimates
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and p values for model terms and metrics of fit
such as the adjusted R2. These can be accessed
through summaries of the fitted models con-
tained within the loadLm or loadReg2 objects.
Those inner fitted models can be extracted using
the getFittedModel() function, which returns
an object that can be summarized using the
standard print() and summary() functions
(Fig. 1D). Models fitted by the USGS loadReg()

function (i.e., those contained within loadReg2

objects) also supply variance inflation factors,
bias metrics, and a suite of diagnostic plots
(Lorenz et al. 2015). To inspect the regression
model contained within a composite model, the
user can apply getFittedModel() to the
loadLm or loadReg2 object before passing it to
loadComp().

Users will also want to inspect the residuals
from any fitted model to look for patterns in the
mean or variance of those residuals. Residuals
may be extracted from regression models by
standard methods appropriate to lm or loadReg

classes after obtaining the inner model with
getFittedModel(). Alternatively, loadflex

supplies the getResiduals() method, which
can be applied to any type of load model defined
by loadflex and which returns residuals in
many possible formats, including flux or concen-
tration, absolute (predicted � observed) or
relative (predicted/observed), and log or linear
space. Obtaining log-space or relative residuals is
particularly useful when considering whether or
not to apply the composite method to a
regression model, because it is often desirable
to apply the residuals interpolation and correc-
tion using logged or relative residuals. The
residuals obtained by getResiduals() or other
methods may then be plotted versus time, day of
year, observed value, discharge, etc. to look for
heteroskedasticity and any patterns uncaptured
by the current model formulation (Fig. 1D).

A regression model requires the independence
(non-autocorrelation) of residuals to accurately
assess uncertainty, while an interpolation or
composite model requires that the autocorrela-
tion of concentrations or fluxes is strong enough
to reasonably extrapolate forward and backward
from an observation (Aulenbach 2013). load-

flex supplies two convenience functions, re-

sidDurbinWatson() and estimateRho(), to
test whether the autocorrelations of the calibra-

tion and interpolation residuals meet those
assumptions. For example, in the case of the
loadReg2 model named no3_reg2 in Fig. 1, the
Durbin-Watson d statistic is 1.32 and the auto-
correlation q is 0.34 for the calibration residuals,
whereas d ¼ 1.00 and q ¼ 0.50 for the interpola-
tion residuals. These statistics confirm that we
have achieved the desired difference in autocor-
relation between the two datasets.

An especially useful metric for composite
models is the fraction of total flux accounted for
by the residuals correction as opposed to the
underlying regression model predictions. Based
on several related metrics employed by Aulen-
bach and Hooper (2006), here we define a
slightly modified metric, the Correction Fraction
(CF), as follows:

CF ¼

P

i jRijDt
P

i LiDt

where
P

indicates a sum over all predictions, Li
is the ith composite prediction of flux or
concentration, Ri is the ith interpolated residual
in the same format (flux or concentration, non-
log space) as Li, and Di is the time period
represented by the ith prediction. This metric
can be computed in loadflex by a call to the
getCorrectionFraction() function (Fig. 1D).
A high value of CF indicates that the composite
model is relying heavily on the interpolated
residuals rather than on the regression predic-
tions and that the user should consider whether a
better regression model is possible for use within
the composite method. For example, the com-
posite model which employs the no3_reg2

regression model (no3_comp; Fig. 1B), has a
concentration correction fraction of 0.21, whereas
a composite model employing the weaker
no3_lm regression model would have had a flux
correction fraction of 0.32, indicating a heavier
reliance on the interpolation phase to compensate
for inaccuracies in the regression predictions.

Load aggregation
Loads can be aggregated from point predic-

tions to values of mean concentration, mean flux
rate, or total flux at daily, monthly, annual, or
other intervals using the aggregateSolute()

function (Fig. 1E). Fundamentally, aggregation
always involves a sum of the constituent point
estimates; in the case of mean concentration or
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mean flux rate, the sum is followed by division
by the number of observations. At present load-

flex requires that the user has filled in any data
gaps before passing point predictions to the
aggregation function; future work may add more
sophisticated gap-handling methods to the pack-
age.

The uncertainty in an aggregated estimate
builds on the uncertainty in point estimates but
also involves the propagation of error through
the summing process (Cohn 2005, Lehrter and
Cebrian 2010). Classical propagation of error for
a total load (

P

L) dictates that the variance in that
total load is equal to the sum of the variance-
covariance matrix of the point estimates contrib-
uting to the total, as follows:

varð
X

i

LiÞ ¼
X

i;j

R½i; j� ¼
X

i;j

covðLi;LjÞ

where large
P

indicates a sum and small R is the
variance-covariance matrix relating variation in
each point load estimate Li to variation in each
other point estimate Lj, i.e., describing the
correlation of errors among the Li. The contents
of R usually cannot be determined from a
calibration dataset because the resolution of that
dataset is often too coarse to identify the
autocorrelation of errors at scales of hours to
days. Instead, loadflex allows the user to
specify an assumption based on an expert
understanding of the river and the chosen model.
Given a specification of the structure of the
correlation matrix, loadflex automatically cal-
culates the covariance for each pair of errors (i.e.,
the value of each cell in R) as the product of their
correlation and variances.

Several options for specifying R are pre-
defined in loadflex. One option is consistent
with that assumed by the LOADEST and rload-

est approaches: the correlation in errors between
each pair of points can be set at 1 when those
points fall on the same calendar date and 0 when
their dates differ. Another option is a smooth
band of perfect correlation (i.e., 1) within a time
interval of the user’s choosing, with perfect
independence (i.e., 0) outside that time interval.
Still another represents a first-order autocorrela-
tion process such that the correlation between
two points declines smoothly as a function of the
points’ distance in time at a rate determined by
the coefficient q. These assumptions are all

oversimplifications, but they vary in realism,
computation time, and similarity to the assump-
tions used in other load models (e.g., LOADEST),
so the user may prefer one above the others for a
given application.

A first-order autocorrelation coefficient, q, is
required to fully specify one of the above options
and may be valuable in evaluating any of the
options. The value of q must often be chosen
based on the user’s expert judgment. However,
the helper function estimateRho() can also be
used to produce an empirical estimate of q if
passed a supplemental dataset of high-resolution
concentration and discharge observations. This
supplemental dataset should be one for which
the user is confident that prediction errors will
share the same autocorrelation structure as those
from the original estimation dataset. For exam-
ple, one or two years of high-resolution sensor-
based data might have a q value that is
representative of the same site for several
preceding years; in the case of the Lamprey
River sensor data, estimateRho() finds q ¼
0.9996 per 15 minutes or q ¼ 0.9634 per day for
residuals of the no3_reg2 regression model.
Estimating q precisely requires substantially
more high-resolution data than are available at
most sites, and loadflex therefore also allows
the user to arbitrarily specify the value of q for
the purpose of defining an error autocorrelation
matrix.

A separate question in the aggregation process
is which distribution to assume for flux or
concentration estimates and their errors. Point
estimates are usually assumed to follow lognor-
mal distributions, as noted earlier. For aggregate
concentration and flux estimates, however, the
mean and standard error are computed in linear
space, consistent with the central limit theorem
that the sum of a large number of random
variables, no matter their individual distribu-
tions, is itself normally distributed. This assump-
tion is increasingly questionable for increasingly
small time periods, an issue that neither we nor
our predecessors have addressed. In most cases,
however, the aggregate loads of interest—month-
ly or annual, for example—will have ample
observations to justify the application of the
central limit theorem.

Like the mean estimates, the confidence
intervals around aggregate estimates may be

v www.esajournals.org 13 December 2015 v Volume 6(12) v Article 269

SPECIAL FEATURE: UNCERTAINTY ANALYSIS APPLING ET AL.



computed in loadflex using an assumption of
normality; however, the default algorithm fol-
lows LOADEST and Cohn (2005) in computing
those intervals based on a lognormal distribu-
tion. Specifically, the confidence or prediction
interval around a mean estimate l with standard
error r in linear space has a corresponding mean
lL and standard error rL in log space:

r2
L ¼ loge 1þ

r2

l2

0

@

1

A

l2L ¼ logeðlÞ �
r2
L

2
¼ loge

l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ r2
p

0

@

1

A

which indicate the following 95% confidence
interval bounds I:

IL ¼ lL 6 1:96rL

I ¼ expðlL 6 1:96rLÞ:

Using a lognormal distribution in this way has
the advantage of producing confidence bounds
that stay above zero and are thus more realistic
than those produced for a normal distribution.

Biogeochemical application
The loadflex interface makes it easy to fit

multiple models to the same data. The logical
next step is to compare the fitted models and
predictions. We demonstrate this process in the
context of 12 years of weekly nitrate measure-
ments and quarter-hourly observations of dis-
charge in the Lamprey River, New Hampshire. A
motivating observation for analyzing these data
was that a large storm in October 2005 and two
exceptionally large floods in May 2006 and April
2007 seem to have altered nitrate concentrations
and fluxes in subsequent years. A lasting shift in
nitrate concentrations would indicate a funda-
mental change in watershed nitrate delivery or
retention processes, whereas a shift in nitrate
fluxes could be important to the nitrate-sensitive
eelgrass beds of the Great Bay Estuary down-
stream (Trowbridge 2012). We can use monthly
fluxes and concentrations to quantitatively eval-
uate (Q1) the short-term effects of each flood on
nitrate loads for the month and (Q2) the longer-
term effects of the three events on nitrate loads in
subsequent years.

To illustrate the full range of models that
may be constructed with loadflex, we fitted

one model from each of four model types (a
loadInterp model named no3_interp, a
loadLm named no3_lm, a loadReg2 named
no3_reg2, and a loadComp named no3_comp),
using fitting arguments and formulas as in Fig.
1. We created greater contrast between the two
regression model examples by using a simple
regression model formula for no3_lm (lnC ¼ a0
þ a1lnQ) and a more complex formula for
no3_reg2 (model(9): ln(CQ) ¼ a0 þ a1lnQ þ
a2lnQ

2 þ a3sin(2pt)þa4cos(2pt) þ a5t þ a6t
2),

where a0–a6 are model coefficients, C is
concentration, Q is discharge, and t is decimal
time. However, our biogeochemical questions
require us to address the possibility of stepwise
shifts in concentration or flux, and neither of
these regression equations contains terms for
such shifts. To give each model a maximal
chance of detecting such shifts while retaining
the contrast among model structures, we fitted
each model three times to three successive
periods: the five water years preceding the
hydrologic perturbations (10/1/2000–9/30/05;
Before), the two water years of large floods
and storms (10/1/05–9/30/07; During), and the
five following water years (10/1/07–9/30/12;
After). We then made predictions for each
period, combined them into a single time series
per model, and aggregated the predictions to
monthly averages. Fitting each model to three
periods permitted a fairer comparison between
the regression models, which are constrained in
their representation of permanent shifts in
concentration or flux, and the interpolation-
based methods, which freely adapt to any
changes over time.

Our first question was whether the two
months of major flooding differed in their mean
concentrations or total fluxes. To evaluate the
hypothesis that these months were not signifi-
cantly different, we applied z-tests (equivalent to
t-tests with normally distributed statistics) to the
estimates and uncertainties of flux and concen-
tration for those two months. We applied a
separate z-test to the output of each load model
to explore how the choice of load model
influences the answer to this biogeochemical
question.

Our second question was whether monthly
mean concentrations or fluxes differed systemat-
ically among the water years that preceded,
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contained, or followed the three large hydrologic
events. To answer this question we fitted a new
simple linear model to the monthly concentration
or flux values. We will call this the ‘‘flood model’’
to distinguish it from the four load models that
produced the monthly estimates. In this flood
model, we accommodated the annual patterns in
concentration and flux by fitting a categorical
term for Month; the fitted values of these Month
coefficients are unimportant to our question and
are not reported here. The other term in the
model equation was a categorical variable indi-
cating whether the monthly estimate falls in the
Before, During, or After period (water years
2001–05, 2006–07, or 2008–12, respectively).
Coefficients fit to this term indicate whether
there are significant differences between periods.
We fitted a total of eight flood models to look for
differences in either concentrations or fluxes as
estimated by each of the four load models.

Model performance assessments
When high-resolution data are available, sev-

eral quantitative metrics are available to aid the
user in evaluating and comparing models. We
demonstrate the use of such metrics by analyzing
the sensor-based data from the Lamprey River,
NH, containing two years of 15-minute resolu-
tion observations of discharge and nitrate. While
recognizing that in situ sensors, like laboratory
instruments, have measurement error, we used
these sensor-based estimates of nitrate concen-
tration as the best available approximation of the
‘‘true’’ concentrations at each 15-minute interval
for the purpose of evaluating the four models
demonstrated in this manuscript (Fig. 1).

To assess the models using these new data, we
first subsampled the full sensor dataset to
simulate a more typical sampling regime of
approximately weekly grab samples. We set the
first ‘‘grab sample’’ in this simulated dataset to
occur on a random day and time in the 1-week
interval beginning on 9/24/12, selected by ran-
dom number generator from a uniform distribu-
tion across that period. We then fixed that day
and time of week as the target sampling time for
every week, but also simulated typical field
challenges by selecting the actual sampling time
for each week as a time normally distributed
around the target sampling time with a standard
deviation of 0.6 days. The result was a series of

104 weekly samples across the sampling period,
with some realistic variation in the precise day
and time of each sample. This weekly dataset
was used to fit the interpolation model and the
interpolation step of the composite model. To
reduce the presence of autocorrelation in the
datasets used to fit the regression models
(including the regression model component of
the composite model), we further subsampled
the simulated dataset to 70% of its original values
by leaving out every third or fourth weekly
observation. Subsampling reduced autocorrela-
tion in the residuals from 0.57 to 0.43 for the
no3_lm model and from 0.35 to 0.14 for the
no3_reg2 model. Autocorrelated residuals have
no direct effect on model fit but cause regression
models to underestimate their uncertainty; con-
sequently, the standard error for the log(di-
scharge) term increased from 0.051 to 0.061 for
the no3_lm model and from 0.060 to 0.074 for the
no3_reg2 model with subsampling.

From the simulated weekly dataset and its 70%
subsample, we next fitted the four models as in Fig.
1B and compared the predictions at 15-minute
resolution and the aggregated predictions at
monthly resolution to the same ‘‘true’’ values as
observed in the complete, 15-minute resolution
dataset of concentration and discharge measure-
ments. The ‘‘true’’ monthly concentration values
were computed by aggregation from the 15-
minuted data using the same function, aggrega-

teSolute(), that we used to generate aggregate
values from model predictions. We produced
‘‘true’’ fluxes at the 15-minute resolution by
computing the product of concentration, discharge,
and a units conversion factor; these were then
aggregated as usual to get the monthly ‘‘true’’
fluxes. Using those true values, for each fitted
model we assessed the accuracy, bias, and precision
of predictions and the accuracy of the uncertainty
interval by computing the following metrics.

The relative root mean squared error (RRMSE)
describes the accuracy of the predictions. RRMSE
was computed from the relative differences
between predictions and observed values as

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i

VP;i � VO;i

VO;i

� �2
v

u

u

t

where N is the total number of 15-minutely or
monthly observations, VP,i is the ith element in
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the vector of predicted values (either flux or
concentration), and VO,i is the ith element in the
vector of observed values.

The bias (B) of the predictions describes any
consistent directional deviation of predictions
from observations. B was computed as the
median difference between each predicted and
observed value.

B ¼ medianðVP;i � VO;iÞ

The average relative interval length (ARIL)
summarizes the uncertainty reported by a model
by normalizing the uncertainty interval sizes by
the observed value at each point, then taking the
average of the normalized sizes (Jin et al. 2010,
Vigiak and Bende-Michl 2013). We computed
ARIL as the average of the relative 95% predic-
tion interval lengths

ARIL ¼
1

N

X

N

1

LP;high;i � LP;low;i

VO;i

where LP,high,i is the upper 95% prediction interval
bound for the ith element and LP,low,i is the lower
bound.

Lastly, the bracketing frequency (BF) measures
the accuracy of the reported uncertainty inter-
vals. We computed BF as the frequency with
which the observed value falls within the
prediction interval at each time point in the set
of predictions:

BF ¼
1

N

X

N

i

1; LP;low;i � VO;i � LP;high;i

0; otherwise
:

�

All four metrics were calculated for each fitted
model, for predictions of both flux and concen-
tration, and at both the 15-minute and the
monthly resolution of prediction. We then
repeated the entire process for a total of 100
iterations. In each iteration, we resampled the 2-
year sensor record to simulate a new weekly
dataset, fitted the models to that dataset (with
further subsampling to obtain the calibration
data for the regression models, as above), and
computed the metrics. We report the means of
the metrics produced from those 100 iterations to
ensure that our metrics are not unduly influenced
by a quirk of any one specific subset of the
available data.

RESULTS

Biogeochemical observations
Whether predicted at 15-minute intervals (Fig.

4) or aggregated to monthly time steps (Fig. 5),
nitrate fluxes show stronger annual periodicity
than do nitrate concentrations. The difference can
be attributed to the dominance of discharge over
concentration in determining patterns in flux:
The observed discharge has an annual period
(Fig. 2), and the no3_lm model predicts nearly
constant concentrations over time and yet pre-
dicts roughly periodic fluxes (Fig. 4, row 2). The
greatest fluxes reliably occur in the winter and
spring, with inter-annual variability in the
precise timing and magnitude of those fluxes.
In contrast, concentration patterns are less
readily characterized and appear to follow
roughly one to two oscillations per year.

As can be seen in the uncertainty intervals in
Figs. 4 and 5, flux predictions tend to be more
precise than concentration predictions. This is
largely because discharge is used as a multiplier
to obtain flux and can be precisely observed.
Monthly predictions have narrower confidence
intervals than point predictions due to the
increase in confidence that is gained by summing
over a large number of predictions whose
autocorrelation is low, or at least assumed to be
so.

We asked whether concentrations in the river
and/or fluxes toward the Great Bay estuary
differed significantly between the two months of
major flooding (circled in Fig. 6). Because the four
load models (no3_interp, no3_lm, no3_reg2,
and no3_comp) each make different predictions
for monthly fluxes and their uncertainties, the
results of the z-tests also differ (Table 1). Results
based on predictions from the regression models,
no3_lm and no3_reg2, indicate no significant
difference in concentration between the two
months, and either a non-significant or weakly
significant difference in flux. In contrast, the
no3_interp and no3_comp models indicate
significantly higher concentrations and fluxes in
the second flood (greater by 0.037–0.040 mg/L
and 77–81 kg/d). The models differ most dramat-
ically in their estimates of absolute monthly
concentrations and fluxes: For example, in May
’06 no3_comp estimates a mean concentration of
0.09 mg/L while no3_lm estimates 0.17 mg/L, and
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in April ’07 no3_comp estimates a mean flux rate
of 244 kg/d while no3_interp estimates 514 kg/d
(Table 1, Fig. 6).

We also looked for differences among the
multi-year periods preceding, containing, and
following the three large floods and storms. As
with the two-month comparison above, the
results depend on the load model used to
generate the monthly mean concentrations or
fluxes (Table 2). The four load models all support
our initial qualitative observation that concentra-
tions were lower after the floods than before
(decline of 0.013–0.021 mg/L, or 10–15%). How-
ever, of the four load models, only the regression
models no3_lm and no3_reg2 indicate that
concentrations in the years containing the floods
and storms increased significantly from corre-
sponding months in the preceding years (in-

crease of 0.008–0.012 mg/L, or 4–9%). The
models that include interpolation, no3_interp

and no3_comp, indicate changes of similar size
but no significance. With respect to flux rates, the
four models agree that fluxes were substantially
higher in the storm and flood years than in the
preceding years, but the magnitude of this
difference ranges almost two-fold from 54 kg/d
(no3_comp) to 102 kg/d (no3_lm). The models
also disagree on whether fluxes shifted after the
storm and flood years, with only the no3_reg2

model indicating a significant change (an in-
crease of 25 kg/d) relative to the years before the
floods.

Model performance assessments

Performance metrics based on the nitrate
sensor data indicate substantial differences

Fig. 4. Point predictions and 95% prediction intervals from each of the four models (labels on right) for

concentration (A–D) and flux rate (E–H).
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among the four models in both accuracy and bias
(Table 3). The accuracy of predictions at 15-
minute intervals is substantially better for the
no3_interp and no3_comp models (RRMSE ¼
0.3 for each) than for the no3_lm and no3_reg2

models (RRMSE ¼ 1.1 and 0.7, respectively). All
four models are more accurate for monthly
estimates (RRMSE of 0.20–0.54) than for 15-
minute estimates (0.3–1.1 as above), illustrating
the utility of aggregation in smoothing over
short-term noise to find the longer-term signal.

The bias is a median error and is therefore
units-specific, such that concentration biases can
readily be compared to one another but should
be expected to be consistently smaller than flux
biases because the range of observed concentra-
tions (0.08–0.557 mg/L) is much smaller than the
range of observed fluxes (1.8–1440 kg/d). Within
each category, the models including interpola-

tion (no3_interp and no3_comp) are less
biased than the regression-only models (no3_lm

and no3_reg2), sometimes by as much as two
orders of magnitude (Table 3).

The average relative interval length (ARIL)
summarizes the size of the uncertainty intervals
reported by each load model. Reported precision
at 15-minute resolution is better for the no3_comp

model (ARIL ¼ 1.9) than for any other model
(ARIL ¼ 2.6–5.3). The no3_comp and no3_reg2

models report more precise monthly predictions
than the no3_lm and no3_interp models (0.59–
0.61, compared to 0.67–1.30).

Bracketing frequency (BF) measures the accu-
racy of each model’s self-reported uncertainty
intervals. A bracketing frequency of 0.95 would
indicate perfect agreement between the reported
uncertainty (as a 95% PI) and the error rate
observed for a particular prediction task. The

Fig. 5. Aggregate monthly predictions with 95% uncertainty intervals from each of the four models (labels on

right) for concentration (A–D) and flux rate (E–H).
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predictions at 15-minute resolution tend to fall
close to this target, with the regression models
no3_lm and no3_reg2 coming closest (BF ¼
0.951 and 0.957) and the interpolation and

composite approaches reporting uncertainties
somewhat larger than necessary (BF ¼ 0.991
and 0.986, respectively). That the interpolation
and composite methods report conservative

Fig. 6. Aggregate monthly predictions for the seven years before, during, and after the large storm of October

2005 (water year 2006) and two large floods of May 2006 and April 2007. The storm and flood months are

indicated with blue vertical lines. The two flood months for which we directly compared fluxes by z-test are

circled in blue. The Before (2001–2006), During (2006–2008), and After (2008–2013) periods for the fixed effects

model are delineated by the x-axis tick marks at the water years 2006 and 2008.

Table 1. Monthly estimates and results of z-tests assessing the difference in monthly mean concentration or flux

between the 100-year floods of May 2006 and April 2007.

Model

NO3
�-N concentration (mg/L) NO3

�-N flux rate (kg/d)

May 2006 April 2007 z stat p value May 2006 April 2007 z stat p value

no3_interp 0.11 0.15 1.67 ,0.05 433 514 3.31 ,0.001
no3_lm 0.17 0.16 �0.10 n.s. 551 524 �0.19 n.s.
no3_reg2 0.12 0.14 0.98 n.s. 192 263 1.71 ,0.05
no3_comp 0.09 0.13 2.72 ,0.01 167 244 3.16 ,0.001

Note: The z statistic and p values are from z-tests employing the mean and standard error of each flood month as estimated
by each of the four load models, with a positive z statistic indicating a higher value in April 2007 than in May 2006.
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(large) uncertainty intervals is, as reasoned in the
Methods section, expected. When applied to

interpolations, the delete-1 jackknife produces
less conservative uncertainty than any delete-k
alternative; nonetheless, it evaluates each model
based on performance at test points that are more

distant in time than any points in the actual set of
predictions. This stringent test yields a 95%
uncertainty interval that may be larger than

required. It is thus notable that the no3_comp

ARIL is often the smallest of the four models:
Even by this potentially conservative measure of
uncertainty, the composite method approach has

reduced the uncertainty in estimates of flux and
concentration relative to the competing models.

At the monthly resolution the interpolation

and composite methods still have bracketing
frequencies close to the 0.95 target (BF ¼ 0.944–
0.978). In contrast, the regression-only models

have substantially lower bracketing frequencies

(0.582–0.676); this difference reflects the rela-

tively high bias and autocorrelation of errors in

the regression model predictions, which leads to

an underestimate of uncertainty for monthly

fluxes. The interpolations in the no3_interp

and no3_comp models reduce the bias and

autocorrelation of errors such that the uncer-

tainty estimates are accurate even after aggre-

gation.

DISCUSSION

The large number of approaches used to

estimate watershed fluxes and concentrations

can be explained by the fact that each method
has a different set of strengths and weaknesses

(Letcher et al. 1999, Johnes 2007). For this reason,

the loadflex package makes four major ap-

Table 2. Results of simple linear regressions on load model outputs, testing for differences in monthly

concentration or flow before, during, and after the major storms and floods of October 2005, May 2006, and

April 2007.

Model

NO3
�-N concentration (mg/L) NO3

�-N flux rate (kg/d)

Before During-Before After-Before R2 Before During-Before After-Before R2

no3_interp 0.14 0.017 (n.s.) �0.021 (,0.01) 0.51 56 94 (,0.0001) 27 (n.s.) 0.41
no3_lm 0.18 0.008 (,0.01) �0.021 (,0.0001) 0.65 66 102 (,0.0001) 31 (n.s.) 0.40
no3_reg2 0.13 0.012 (,0.05) �0.013 (,0.01) 0.53 45 57 (,0.0001) 25 (,0.05) 0.55
no3_comp 0.13 0.013 (n.s.) �0.020 (,0.01) 0.58 40 54 (,0.001) 23 (n.s.) 0.48

Notes: Model equation was Value ; MonthþPhase, where Month is a categorical variable for October through the following
September, and Phase is one of Before October 2005, During October 2005–September 2007, or After September 2007. Statistical
models were fit to load model outputs for months from October 2000 to September 2012. The intercepts in the columns titled
‘‘Before’’ are for September means in the years Before October 2005. The values in the ‘‘During-Before’’ columns are the amount
by which concentration or flux in the During period exceeds that in the Before period, followed by the p-values of those
estimates in parentheses. Similarly, the ‘‘After-Before’’ columns indicate the amount by which the After period exceeds the
Before period. Adjusted R2 values of the statistical models are given for each load model and prediction format.

Table 3. Metrics of performance for each of the four demonstrated load models.

Prediction format Model

RRMSE Bias ARIL BF

15 min Month 15 min Month 15 min Month 15 min Month

Concentration no3_interp 0.3 0.34 �0.00002 0.0003 2.7 0.67 0.991 0.968
no3_lm 1.1 0.47 0.01068 0.0272 2.8 0.77 0.951 0.582
no3_reg2 0.7 0.31 0.01362 0.0103 2.3 0.59 0.957 0.575
no3_comp 0.3 0.20 0.00034 �0.0004 1.9 0.60 0.986 0.973

Flux rate no3_interp 0.3 0.35 �0.01 0.2 5.3 1.30 0.986 0.978
no3_lm 1.1 0.54 4.04 4.1 2.8 0.85 0.951 0.594
no3_reg2 0.7 0.28 4.83 1.7 2.3 0.61 0.957 0.676
no3_comp 0.3 0.20 0.13 �1.8 1.9 0.61 0.986 0.944

Notes:Models are as fit in Fig. 1. Metrics are for predictions of either concentration or flux at 15-minute or monthly resolution.
RRMSE: relative root mean squared error. Bias: median difference between predicted and observed value. ARIL: average of the
relative 95% prediction interval lengths. BF: bracketing frequency, or the frequency with which the observed value falls within
the prediction interval at that point. Each cell contains the average over 100 iterations of resampling the two-year dataset,
refitting the models, and computing the metrics.
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proaches equally accessible by the same interface
to facilitate model fitting and comparison.
Interpolation models are simple to explain to
other researchers and make no requirements
about the discharge-concentration relationship,
but they may fail to capture important concen-
tration changes during storms, and they often
require more data than regression models (Rob-
ertson and Roerish 1999). Linear regression
models are more transparent than LOADEST or
rloadest models, making them a good choice
for initial exploration of the data and the
modeling options. LOADEST/rloadest models
are well documented and frequently applied,
highly appropriate when the data include cen-
sored chemistry observations, and pre-pro-
grammed with several commonly successful
model formulas. However, both simple linear
models and those implemented by LOADEST/
rloadest are susceptible to violations of key
assumptions that can lead to biased predictions
(Hirsch 2014). The composite method is less well
established, more complex than interpolation or
regression models, dependent on data availabil-
ity during the time period of interest, and
resistant to traditional methods of uncertainty
estimation; however, predictions by the compos-
ite method can be less biased and more precise
than predictions by other methods.

In the application of these four models to the
Lamprey River, New Hampshire, USA, we found
several a priori reasons to favor the composite
method over the alternatives. The weekly chem-
istry data were sufficient in resolution, quality,
and time span for use with any of the modeling
approaches. The 7-parameter loadReg2 model,
no3_reg2, explained a non-trivial proportion of
variance in the concentrations (R2 ¼ 0.38),
arguing in favor of a regression-based approach
rather than a simpler interpolation-only model.
However, there were also observable intermedi-
ate-term biases in the regression predictions,
such as the underestimates in February and
overestimates in June and July of the 2003 water
year (Fig. 3C). Lastly, there was a detectable
autocorrelation of the residuals when all obser-
vations were used (autocorrelation: q ¼ 0.48;
Durbin-Watson statistic: d¼1.03), from which we
hypothesized that a composite of regression
predictions and interpolated residuals could
yield good predictions at multiple time scales.

Model tests using two years of high-resolution
chemistry data supported our initial preference
for the composite method as a way to generate
accurate and precise predictions (Table 3). The
no3_interp and no3_comp models yielded
smaller RRMSEs and much smaller biases than
the regression alternatives. Another study in
review for this special issue also found compa-
rable performance of interpolation (period-
weighted) and composite approaches for NO3

�

fluxes in several watersheds; in contrast, com-
posite models typically outperformed interpola-
tion and regression models for SO4

2�, Si, and
DOC (Aulenbach et al. unpublished manuscript).
The inability of composite models to improve on
interpolation for NO3

� suggests that regression
on discharge and/or season provides little useful
information about sub-weekly variation in NO3

�

concentrations. Composite models may nonethe-
less have an advantage over other models with
respect to uncertainty: no3_comp had the lowest
reported uncertainty (ARIL) of all models for 15-
minute predictions and tied with no3_reg2 for
the lowest ARIL for monthly predictions. Unlike
the regression models, composite method uncer-
tainty estimates are also reliable at multiple
resolutions, with bracketing frequencies (BF)
remaining close to the target for both 15-minute
and monthly estimates.

Model evaluation using sensor-based chemis-
try data (as in Table 3) will not be possible for all
rivers or time periods, owing to the recent
development and nontrivial cost of nutrient
sensors. When possible, however, such evalua-
tions can inform the final choice of a modeling
approach and the interpretation of concentration
or flux estimates. Models should be compared by
multiple objective metrics, such as those demon-
strated here, to assess the models’ performance
both in predicting loads and in estimating the
uncertainty around those predictions.

The choice of modeling approach has implica-
tions for model predictions and subsequent
analyses of those predictions. As we showed
through two simple applications, a researcher’s
ability to test for differences or trends in solute
loads depends on the quality and precision of the
concentration or flux estimates. In a z-test
comparing the months of peak flux in the years
just before and just after a year of large storms, a
significant difference in concentration was only
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detected with predictions from two of the four
load models (Table 1). Similarly, a fixed-effects
flood model relating monthly fluxes to their
occurrence before, during, or after two years of
hydrologic disturbances also gave different re-
sults for each set of load model predictions (Table
2). These contrasting results illustrate the sensi-
tivity of load analyses to the choice of a load
estimation model, and they emphasize the
importance of making an informed choice in
matching each new study site and dataset to the
most appropriate load model. Although the
burden of that choice must ultimately fall on
the researcher, loadflex can ease the process by
supplying a uniform interface for fitting and
assessing several of the most common load
models. Future work may incorporate still more
load modeling approaches into the loadflex

package.
A key objective of our project was to lower the

barriers that have prevented past researchers
from choosing the best available model and
quantifying uncertainties in the chosen method.
The loadflex package is free, open-source, and
extensible, and it joins the ranks of many other
ecology-relevant packages now available in the R
statistical language (Kneib and Petzoldt 2007).
Our package provides smooth integration with
the LOADEST/rloadest estimation framework
and implements options for interpolation, linear
regression, and composite models, all of which
are accessible via a simple and uniform interface.
The implementation of uncertainty estimation for
all four model types makes it possible to compare
models and report results with greater rigor. Our
hope is that loadflex will make more methods
readily available to more researchers, facilitating
model comparison and application to achieve the
best possible load estimates across a wide range
of sampling regimes and watersheds.
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