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Abstract

Password security hinges on an in-depth understanding of the

techniques adopted by attackers. Unfortunately, real-world

adversaries resort to pragmatic guessing strategies such as

dictionary attacks that are inherently difficult to model in

password security studies. In order to be representative of

the actual threat, dictionary attacks must be thoughtfully con-

figured and tuned. However, this process requires a domain-

knowledge and expertise that cannot be easily replicated. The

consequence of inaccurately calibrating dictionary attacks is

the unreliability of password security analyses, impaired by a

severe measurement bias.

In the present work, we introduce a new generation of

dictionary attacks that is consistently more resilient to inad-

equate configurations. Requiring no supervision or domain-

knowledge, this technique automatically approximates the

advanced guessing strategies adopted by real-world attackers.

To achieve this: (1) We use deep neural networks to model the

proficiency of adversaries in building attack configurations.

(2) Then, we introduce dynamic guessing strategies within

dictionary attacks. These mimic experts’ ability to adapt their

guessing strategies on the fly by incorporating knowledge on

their targets.

Our techniques enable more robust and sound password

strength estimates within dictionary attacks, eventually reduc-

ing overestimation in modeling real-world threats in password

security.

1 Introduction

Passwords have proven to be irreplaceable. They are still

preferred over safer options and appear essential in fallback

mechanisms. However, users tend to select their passwords

as easy-to-remember strings, which results in very skewed

distributions that an attacker can easily model. This makes

passwords and authentication systems that implement them

inherently susceptible to guessing attacks. In this scenario,

the security of the authentication protocol cannot be stated

via a security parameter (e.g., the key size). The only way to

establish the soundness of a system is to model adversarial

behaviors and cast accurate adversary models. To this end,

simulating password guessing attacks has become a pivotal

task.

In this direction, more than three decades of active research

provided us with powerful password models [28, 31, 32, 44].

However, very little progress has been made to systemati-

cally model real-world attackers and their guessing strate-

gies [26, 41]. As a matter of fact, password crackers rarely

harness fully-automated approaches developed in academia.

They rely on more pragmatic guessing techniques that present

stronger inductive biases. In offline attacks, experts use high-

throughput, and extremely flexible techniques such as dic-

tionary attacks with mangling rules [29]. This class of

attacks produces candidate passwords by expanding a dic-

tionary/wordlist through a set of scripted string transforma-

tions (a rules-set) which aim at mimicking users’ composition

habits such as leeting (e.g., “pa$$w0rd") or concatenating

digits (e.g., “password123") [17].

Unlike fully-automated approaches, dictionary attacks are

heavily sensitive to their initial configuration. To be effective,

these must rely on highly tuned setups—pairs of dictionaries

and mangling rules-sets that have been carefully optimized

and thoroughly calibrated. To cast such configurations, real-

world attackers rely on a manual process that is based on spe-

cific expertise that can only be achieved and refined over years

of practical experience [3]. Furthermore, attackers customize

their configurations for the current target by dynamically ad-

justing the dictionary and rules-set leveraging information

gathered before or during the attack.

Unfortunately, lacking the same domain-knowledge

of experts, most researchers and security practitioners

performing dictionary attacks in their security analysis

rely on off-the-shelf setups and static guessing strategies

that only remotely approximate the actual effectiveness of

real-world attacks. Indeed, as demonstrated in [41], these

commonly used default configurations bring to a profound

overestimation of password strength that fails to correctly
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approximate adversarial capabilities. Unavoidably, this

introduces a strong bias in the produced strength estimates

that fundamentally sways the conclusion of security analysis.

In the present paper, we move towards reducing this in-

herent measurement bias by devising a new generation of

dictionary attacks that automates the advanced guessing strate-

gies adopted by attackers; we cast an adversary model that is

consistently more resilient to inaccurate configurations, and

that better describes real-world attackers’ capabilities. To that

purpose, we introduce general procedures that systematically

mimic different adversarial behaviors:

First, by relying on deep learning techniques, we devise the

Adaptive Mangling Rules attack. This artificially simulates

the optimal configurations harnessed by expert adversaries

by explicitly handling the conditional nature of mangling

rules. Here, during the attack, each word from the dictionary

is associated with a dedicated and possibly unique rules-set

created at runtime via a deep neural network. Using this

technique, we confirmed that standard attacks, based on off-

the-shelf dictionaries and rules-sets, are sub-optimal and can

be easily compressed up to an order of magnitude in the

number of guesses. Furthermore, we are the first to explicitly

model the strong relationship that binds mangling rules and

dictionary words, demonstrating its connection with optimal

configurations in dictionary attacks.

Then, we introduce dynamic guessing strategies within

dictionary attacks [32]. Real-world adversaries perform

their guessing attacks incorporating prior knowledge on

the targets and dynamically adjusting their guesses during

the attack. In doing so, professionals seek to optimize their

configurations and maximize the number of compromised

passwords. Unfortunately, automatic guessing techniques fail

to model this adversarial behavior. Instead, we demonstrate

that dynamic guessing strategies can be enabled in dictionary

attacks and substantially improve the guessing attack’s effec-

tiveness even without prior optimization. More prominently,

our technique makes dictionary attacks consistently more

resilient to misconfigurations by promoting the completeness

of the dictionary at runtime.

Finally, we combine these general methodologies and intro-

duce the Adaptive Dynamic Mangling rules attack (AdaMs).

The AdaMs attack consistently reduces the overestimation in-

duced by sub-optimal configurations in dictionary attacks, en-

abling more reliable and sound password strength estimates.

Organization: Section 2 gives an overview of the funda-

mental concepts needed for the comprehension of our con-

tributions. In Section 3, we introduce Adaptive Mangling

Rules aside the intuitions and tools on which those are based.

Section 4 discusses dynamic mangling rules attacks. Finally,

Section 5 aggregates the previous methodologies, introduc-

ing the AdaMs attack. The motivation and evaluation of the

proposed techniques are presented in their respective sections.

Section 6 concludes the paper, although supplementary infor-

mation is provided in the Appendices.

2 Background and preliminaries

We start by covering password guessing attacks and their foun-

dations in Section 2.1. In Section 2.2, we focus on dictionary

attacks that are the basis of our contributions. Next, Section

2.3 briefly discusses relevant related works. Finally, we define

the threat model in Section 2.4.

2.1 Password Guessing

Human-chosen passwords do not distribute uniformly in the

exponentially large key-space. Users tend to choose easy-to-

remember passwords that aggregate in relatively few dense

clusters. Real-world passwords, therefore, tend to cluster in

very bounded distributions that can be modeled by an attacker,

making authentication-systems intrinsically susceptible to

guessing attacks. In a guessing attack, the attacker aims at

recovering plaintext credentials by attempting several candi-

date passwords (guesses) till success or budget exhaustion;

this happens by either searching for collisions of password

hashes (offline attack) or attempting remote logins (online

attack). In this process, the attacker relies on a so-called pass-

word model that defines which, and in which order, guesses

should be tried to maximize the effectiveness of the attack

(see Section 2.4).

Generally speaking, a password model can be understood as

a suitable estimation of the password distribution that enables

an educated exploration of the key-space. Existing password

models construct over a heterogeneous set of assumptions and

rely on either intuitive or rigorous security definitions. From

the most practical point of view, those can be divided into

two macro-classes: parametric and nonparametric password

models.

Parametric approaches build on top of probabilistic reason-

ing; they assume that real-world password distributions are

sufficiently smooth to be accurately described from suitable

parametric probabilistic models. Here, a password mass func-

tion is explicitly [28, 31] or implicitly [32] derived from a

set of observable data (i.e., previously leaked passwords) and

used to assign a probability to each element of the key-space.

During the guessing attack, guesses are produced by travers-

ing the key-space following the decreasing probability order

imposed by the modeled mass function. These approaches

are, in general, relatively slow and unsuitable for practical of-

fline attacks. Although simple models such as Markov Chains

can be employed [19], more advanced and effective models

such as the neural network ones [28,32] are hardly considered

outside the research domain due to their inefficiency.

Nonparametric models such as Probabilistic Context-Free

Grammars (PCFG) and dictionary attacks rely on simpler and
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Rule Result Rule description.

r “niemtel" Reverse string.

T0 “Letmein" Capitalize the first character.

$9 $9 “letmein99" Append “99" to the string.

se3 “l3tm3in" Substitute the character ’e’ with ’3’.

] ] ] $m $a $n “letmman" Remove the last three symbols and

append the string “man".

Table 1: Example of mangling rules and their effect on the

dictionary-word “letmein". The rules are selected from the

rules-set Best64.

more intuitive constructions, which tend to be closer to human

logic. Generally, those assume passwords as realizations of

templates and generate novel guesses by abstracting and ap-

plying such patterns on ground-truth. These approaches main-

tain a collection of tokens that are either directly given as part

of the model configuration (e.g., the dictionary and rules-set

for dictionary attack.) or extracted from observed passwords

in a setup phase (e.g., terminals/grammar for PCFG). In con-

trast with parametric models, these can produce only a limited

number of guesses, which is a function of the chosen configu-

ration. A detailed discussion on dictionary attacks follows in

the next section.

2.2 Dictionary Attacks

Dictionary attacks can be traced back to the inception of

password security studies [29, 39]. They stem from the obser-

vation that users tend to pick their passwords from a bounded

and predictable pool of candidates; common natural words

and numeric patterns dominate most of this skewed distribu-

tion [38]. An attacker, collecting such strings (i.e., creating

a dictionary/wordlist), can use them as high-quality guesses

during a guessing attack, rapidly covering the key-space’s

densest zone. These dictionaries are typically constructed

by aggregating passwords revealed in previous incidents and

plain-word dictionaries.

Although dictionary attacks can produce only a limited

number of guesses1, these can be extended through man-

gling rules. Mangling rules attacks describe password dis-

tributions by factorizing guesses in two main components:

(1) dictionary-words and (2) string transformations (mangling

rules). These transformations aim at replicating users’ com-

position behaviors. Mangling transformations are modeled

by the attacker and collected in sets (rules-sets). During the

guessing attack, each dictionary word is extended in real-time

through mangling rules, creating novel guesses that augment

the guessing attack’s coverage over the key-space. Hereafter,

we use the terms dictionary attack and mangling rules attack

interchangeably.

1The required disk space inherently bounds the number of guesses issued

from plain dictionary attacks. Guessing attacks can quickly go beyond 1012

guesses, and storing such a quantity of strings is not practical.

Most widely known implementations of mangling rules

are included in the password cracking software Hashcat [15]

and John the Ripper [18] (JtR). Here, mangling rules are

encoded through simple custom programming languages. Ta-

ble 1 reports some instances of mangling rules and their effect.

Hashcat and JtR share almost overlapping mangling rules lan-

guages, although few peculiar instructions are unique to each

tool. However, they consistently differ in the way mangling

rules are applied during the attack. Hashcat follows a word-

major order, where all the rule-set rules are applied to a

single dictionary-word before the next dictionary word is con-

sidered. In contrast, JtR follows a rule-major order, where

a rule is applied to all the dictionary words before moving to

the next rule. In our work, we rely on the approach of Hashcat

as the word-major order is necessary to efficiently implement

the adaptive mangling rules attack that we introduce in Sec-

tion 3.3.

The community behind these software packages developed

numerous mangling rules sets that have been made public.

Such sets have a heterogeneous size and can range between

tens to thousands of entries. Mangling rules can be either

manually crafted by human experts and optimized through

public competitions [8] or produced via simple automatic

procedures [4]. Here, it is important to note that public rules-

sets are often sub-optimal when compared to highly-tuned,

private sets harnessed by experts [26].

Despite their simplicity, mangling rules attacks represent

a substantial threat in offline password guessing. Mangling

rules are swift and inherently parallel; they are naturally suited

for both parallel hardware (i.e., GPUs) and distributed setups,

making them one of the few guessing approaches suitable for

large-scale attacks (e.g., botnets).

Furthermore, real-world attackers update their guessing

strategy dynamically during the attack [41]. Basing on prior

knowledge and the initially matched passwords, they tune

their guesses generation process to describe their target set of

passwords better and eventually recover more of them. To this

end, professionals prefer extremely flexible tools that allow

for fast and complete customization. While the state-of-the-

art probabilistic models fail at that, dictionary attacks make

any form of customization feasible as well as natural.

2.3 Related Works

Although dictionary attacks are ubiquitous in password se-

curity research [9, 12, 14, 23, 28], little effort has been spent

studying them. This section covers the most relevant contri-

butions.

Ur et al. [41] firstly made explicit the large performance

gap between optimized and stock configurations for mangling

rules attacks. In their work, Ur et al. recruited professional

figures in password recovery and compared their performance

against off-the-shelf parametric/nonparametric approaches in

different guessing scenarios. Here, professional attackers have
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Name
Unique

Passwords
Brief Description

LinkedIn [25] 60.599.259 An employment-oriented online service.

youku [48] 47.487.499 Chinese video hosting service.

MyHeritage [30] 36.393.972 Online genealogy platform.

zooks [50] 29.010.979 Online dating service available.

RockYou [36] 14.344.391 Gaming platform.

animoto [2] 8.420.466 A cloud-based video creation service.

zomato [49] 4.955.821 Indian, food delivery application. About

40% of the password are random tokens

of six alphanumeric characters.

phpBB 184.389 Software website.

Table 2: Password leaks used in the paper sorted by size.

been shown capable of vastly outperform any password model.

This thanks to custom dictionaries, proprietary mangling rules,

and the ability to create tailored rules for the attacked set of

passwords. Finally, the authors show that the performance gap

between professional and non-professional attackers can be

reduced by combining guesses of multiple password models.

More recently, Liu et al. [26] produced a set of tools that

can be used to optimize the configuration of dictionaries at-

tacks. These solutions extend previous approaches [4, 37],

making them faster. Their core contribution is an algorithm

capable of inverting almost all mangling rules; that is, given a

rule r and password to evaluate p, the inversion-rule function

produces as output a regex that matches all the preimages of

r(p) i.e., all the dictionary entries that transformed by r would

produce p. At the cost of an initial pre-computation phase,

following this approach, it is possible to count dictionary-

words/mangling-rules hits (i.e., guessed passwords) on an

attacked set without enumerating all the possible guesses.

Liu et al. used the method to optimize the ordering of man-

gling rules in a rules-set by sorting them in decreasing hits-

count order.2 In doing so, the authors observed that default

rules-sets follow an optimal ordering only rarely.

Basing on the same general approach, they speedup the au-

tomatic generation of mangling rules [4] and augment dictio-

naries by adding missing words in consideration of known at-

tacked sets [37]. Similarly, they derive an approximate guess-

number calculator for rule-major order attacks.

2.4 Threat Model

In our study, we primarily model the case of trawling, offline

attacks. Here, an adversary aims at recovering a set of pass-

words X (also referred to as attacked-set) coming from an

arbitrary password distribution P(x) by performing a guess-

ing attack. To better describe both the current trend in pass-

word storing techniques [20, 34, 35] and real-world attackers’

goals [5], we assume a rational attacker who is bound to

2Primarily, for rule-major order setups (e.g., JtR).

produce a limited number of guesses. More precisely, this at-

tacker aims at maximizing the number of guessed passwords

in X given a predefined budget i.e., a maximal number of

guesses the attacker is willing to perform on X. Hereafter, we

model this strategy under the form of β-success-rate [6, 7]:

sβ(X) =
β

∑
i=1

P(xi). (1)

Experimental setup In our construction, we do not impose

any limitation on the nature of P(x) nor the attacker’s a priori

knowledge. However, in our experiments, we consider a weak

attacker who does not retain any initial knowledge of the tar-

get distribution i.e., who cannot provide an optimal attack

configuration for X before the attack. This last assumption

makes a better description of the use-case of automatic guess-

ing approaches currently used in password security studies.

In the attacks reported in the paper, we always sort the

words in the dictionary according to their frequency. Addi-

tionally, in the reported results for all the dictionary attacks,

we do not count guesses that remain unchanged after the ap-

plication of a mangling rule (r(w) = w). This aims to avoid

biases in measuring the effectiveness of the adaptive approach

presented in Section 3.3. The password leaks that we use

through the paper are listed in Table 2.

3 The Adaptive Mangling Rules attack

This section introduces the first core block of our password

model: the Adaptive Mangling Rules. We start in Section 3.1,

where we make explicit the conditional nature of mangling

rules while discussing its connection with optimal attack

configurations. In Section 3.2, we model the functional re-

lationship connecting mangling rules and dictionary words

via a deep neural network. Finally, leveraging the introduced

tools, we establish the Adaptive Mangling Rules attack in

Section 3.3.

Motivation: Dictionary attacks are highly sensitive to their

configuration; while parametric approaches tend to be more

robust to training sets and hyper-parameters choices, the per-

formance of dictionary attacks crucially depends on the se-

lected dictionary and rules-set [26, 41]. As evidenced by

Ur et al. [41], real-world attackers rely on extremely opti-

mized configurations. Here, dictionaries and mangling rules

are jointly created over time through practical experience [3],

harnessing a domain knowledge and expertise that is mostly

unknown to the academic community [26].

Password security studies often rely on publicly available

dictionaries and rules-sets that are not as effective as advanced

configurations adopted by professionals. Unavoidably, this

leads to a constant overestimation of password strength that

skews studies and reactive analysis conclusions.
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Figure 1: Distribution of hits per rule for 4 different input dictionaries for the same attacked-set i.e., animoto. Within a plot, each

bar depicts the normalized number of hits for one of the 77 mangling rules in best64. We performed the attack with Hashcat.

Hereafter, we show that professional attackers’ domain-

knowledge can be suitably approximated with a Deep Neural

Network. Given that, we devise a new dictionary attack that

autonomously promotes functional interaction between the

dictionary and the rules-set, implicitly simulating the preci-

sion of real-world attackers’ configurations.

We start by presenting the intuition behind our technique.

Formalization and methodology are reported later.

3.1 The conditional nature of mangling rules

As introduced in Section 2.2, dictionary attacks describe

password distributions by factorizing guesses into two main

components—a dictionary word w and a transformation rule r.

Here, the word w acts as a semantic base, whereas r is a syn-

tactic transformation that aims at providing a suitable guess

through the manipulation of w. Generally speaking, such fac-

torized representation can be thought of as an approximation

of the typical users’ composition behavior: starting from a

plain word or phrase, users manipulate it by performing oper-

ations such as leeting, appending characters or concatenation.

At configuration time, such transformations are abstracted

and collected in arbitrary large rules-sets under the form

of mangling rules. Then, during the attack, guesses are re-

produced by exhaustively applying the collected rules to all

the dictionary words. In this generation process, rules are

applied unconditionally on all the words, assuming that

the abstracted syntactic transformations equally interact

with all the dictionary elements.

However, arguably, users do not follow the same simplistic

model in their password composition process. Users first se-

lect words and then mangling transformations conditioned by

those words. That is, mangling transformations are subjective

and depend on the base words on which those are applied.

For instance, users may prefer to append digits at the end of a

name (e.g., “jimmy" to “jimmy91"), repeat short words rather

than long ones (e.g., “why" to “whywhywhy") or capitalize

certain strings over others (e.g., “cookie" to “COOKIE"). A

similar intuition was harnessed in [43], where the semantic of

words was considered in defining context-free grammars for

passwords.

In this direction, we can think of each mangling rule as

a function that is valid on an arbitrary small subset of the

dictionary space, strictly defined by the users’ composition

habits. Thus, applying a mangling rule on words outside this

domain unavoidably brings it to produce guesses that have

only a negligible probability of inducing hits during the guess-

ing attack (i.e., that do not replicate users’ behavior). This

concept is captured in Figure 1, where four panels depict the

hits distribution of the rules-set “best64" for four different

dictionaries. Each dictionary represents a specific subset of

the dictionary space that has been obtained by filtering out

suitable strings from the RockYou leak; namely, these are

passwords composed of: digits (Figure 1a), capital letters

(Figure 1b), passwords of length 5 (Figure 1c), and passwords

of length 10 (Figure 1d). The four histograms show how man-

gling rules selectively and heterogeneously interact with the

underlying dictionaries. Rules that produce many hits for a

specific dictionary inevitably perform very poorly with the

others.

Eventually, the conditional nature of mangling rules has a

critical impact in defining the effectiveness of a dictionary

attack. To reach optimal performance, an attacker has to

resort to a setup that a priori maximizes the conditional

effectiveness of mangling rules. In this direction, we can

see highly optimized configurations used by experts as

pairs of dictionaries and rules-sets that organically support

each other in the guesses generation process.3 On the other

hand, configurations based on arbitrary chosen rule-sets

and dictionaries may not be fully compatible, and, as we

show later in the paper, they generate many low-quality

guesses. Unavoidably, this phenomenon makes adversary

models based on mangling rules inaccurate and induce an

overestimation of password strength [41].

Next, we show how modeling the conditional nature of

mangling rules allows us to cast dictionary attacks that are

inherently more resilient to poor configurations.

3This has also been indirectly observed by Ur et al. in their ablation study

on pro’s guessing strategy, where the most remarkable improvement was

achieved with a proprietary dictionary in tandem with a proprietary rules-set.
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3.2 A Model of Rule/Word Compatibility

We introduce the notion of compatibility that refers to the

functional relation among dictionary words and mangling

rules discussed in the previous section. The compatibility

can be thought of as a continuous value defined between

a mangling rule r and a dictionary-word w that, intuitively,

measures the utility of applying the rule r on w. More formally,

we model compatibility as a function:

π : R×W→ [0,1],

where R and W are the rule-space (i.e., the set of all the

suitable transformations r :W→W) and the dictionary-space

(i.e., the set of all possible dictionary words), respectively.

Values of π(w,r) close to 1 indicate that the transformation

induced by r is well-defined on w and would lead to a valuable

guess. Values close to 0, instead, indicate that users would not

apply r over w, i.e., guesses will likely fall outside the dense

zone of the password distribution.

This formalization of the compatibility function also leads

to a straightforward probabilistic interpretation that better sup-

ports the learning process through a neural network. Indeed,

we can think of π as a probability function over the event:

r(w) ∈ X,

where X is an attacked set of passwords. More precisely, we

have that:

∀w∈W, r∈R

(

π(r,w) = P(r(w) ∈ X)
)

.

In other words, P(r(w) ∈ X) is the probability of guessing an

element of X by trying the guess g = r(w) produced by the

application of r over w. Furthermore, such a probability can be

seen as an unnormalized version of the password distribution,

creating a direct link to probabilistic password models [28,31]

as we have that:

∀w∈W, r∈R〈
π(r,w)

Z
= P(r(w))〉

for an intractable partition function Z. This follows from the

observation that:

∀gi,g j ∈ X : P(gi)≥ P(g j)⇔ P(ri(xi) ∈ X)≥ P(r j(x j) ∈ X)
with : gi = ri(xi) and g j = r j(x j),

where X is the key-space. However, this password distribu-

tion is defined over the factorized domain R×W rather than

directly over the key-space. This factorized form offers us

practical advantages over the classic formulation. More in

detail, by choosing and fixing a specific rule-space R (i.e., a

rules-set), we can reshape the compatibility function as:

πR : W→ [0,1]|R|. (2)

This version of the compatibility function takes as input a

dictionary-word and outputs a compatibility value for each

rule in the chosen rule-set with a single inference. This form

is concretely more computational convenient and will be used

to model the neural approximation of the compatibility func-

tion.

Next, we show how the compatibility function can be in-

ferred from raw data using deep learning.

3.2.1 Learning the compatibility function

As stated before, the probabilistic interpretation of the com-

patibility function makes it possible to learn π using a neural

network. Indeed, the probability P(r(w) ∈ X), in any form,

can be described through a binary classification. That is, for

each pair word/rule (w, r), we have to predict one of two pos-

sible outcomes: g ∈ X or g 6∈ X, where g = r(w). In solving

this classification task, we can train a neural network in a

logistic regression and obtain a good approximation of the

probability P(r(w) ∈ X).
In the same way, the reshaped formulation of π (i.e., Eq. 2)

describes a multi-label classification. In multi-label classi-

fication, each input participates simultaneously to multiple

binary classifications; an input is associated with multiple

classes at the same time. More formally, having a fixed num-

ber of possible classes n, each data point is mapped to a binary

vector in {0,1}n. In our case, n= |R| and each bit in the binary

vector corresponds to the outcome of the event r j(w) ∈ X for

a rule r j ∈ R.

To train a model, then, we have to resort to a supervised

learning approach. We have to create a suitable training-set

composed of pairs (input,label) that the neural network can

model during the training. Under our construction, we can

easily produce such suitable labels by performing a mangling

rules attack. In particular, fixed a rules-set R, we collect pairs

(wi,yi), where wi is the input to our model (i.e., a dictionary-

word) and yi is the label vector associated with wi. As expli-

cated before, the label yi asserts the membership of the list of

guesses [r1(wi),r2(wi), . . . ,r|R|(wi)] over a hypothetical target

set of passwords X:

yi = [r1(wi) ∈ X, r2(wi) ∈ X, . . . , r|R|(wi) ∈ X] (3)

To collect labels, we have to concertize X by choosing a

representative set of passwords. Intuitively, such a set should

be as large and diverse as possible as it aims at describing the

entire key-space. Hereafter, we refer to this set as XA. This is

the set of passwords we attack during the process of collecting

labels. Similarly, we have to choose another set of strings W

that represents the dictionary-space. This is used as input to

the neural network during the training process and as the input

dictionary during the simulated guessing attack. Details on

the adopted set are given at the end of the section.

Finally, given XA and W , and chosen a rules-space R, we

construct the set of labels by simulating a guessing attack; that

is, for each entry wi in the dictionary W , we collect the label

vector yi (E.q. 3). In doing so, we used a modified version
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Name Cardinality Brief Description

PasswordPro 3120 Manually produced.

generated 14728 Automatically generated.

generated2 65117 Automatically generated.

Table 3: Used Hashcat’s mangling rules sets.

of Hashcat described in Appendix E. Alternatively, the tech-

nique proposed in [26] can be used to speed up the collection

of the labels.

Unlike the actual guessing attack, in the process, we do not

remove passwords from XA when those are guessed correctly;

that is, the same password can be guessed multiple times by

different combinations of rules and words. This is necessary

to correctly model the functional compatibility. In the same

way, we do not consider the identity mangling rule (i.e., ’:’)

in the construction of the training set. When it occurs, we

remove it from the rules set. To the same end, we do not

consider hits caused by conditional identity transformations

i.e., r(w) = w.

Training set configuration The creation of a training set

entails the proper selection of the sets XA and W as well as

the rules-set R. Arguably, the most critical choice is the set

XA, as this is the ground-truth on which we base the approxi-

mation of the compatibility function. In our study, we select

XA to be the password leak discovered by 4iQ in the Dark

Web [1]. We completely anonymized all entries by removing

users’ information and obtained a set of ∼ 4 ·108 of unique

passwords. We use this set as XA within our models.

Similarly, we want W to be a good description of the

dictionary-space. However, in this case, we are supported

by the generalization capability of the neural network that can

automatically obtain a more general description of the input

space. In our experiments, we use the LinkedIn leak as W .

Finally, we train three neural networks that learn the com-

patibility function for three different rules-sets; namely Pass-

wordPro, generated and generated2. Those sets are provided

with the Hashcat software and widely studied in previous

works [26, 28, 32]. Table 3 lists them along with some addi-

tional information.

Eventually, the labels we collect in the guessing process are

extremely sparse. In our experiments, more than 95% of the

guesses are a miss, causing our training-set to be extremely

unbalanced towards the negative class.

Model definition and training We construct our model

over a residual structure [16] primarily composed of mono-

dimensional convolution layers. Here, input strings are first

embedded at character-level via an embedding matrix; then,

a series of residual blocks are sequentially applied to extract

a global representation for dictionary words. Finally, such

representations are mapped into the label-space by means of

a single, linear layer that performs the classification task. To

note that, although the model applies over sequential data, the

use of a convolutional network instead of a recurrent one is

essential to reduce inference latency. This will be critical in

the context of our application (see Section 3.3).

This architecture is trained in a multi-label classification;

each output of the final dense layer is squashed in the interval

[0,1] via the sigmoid function, and binary cross entropy is

applied to each probability separately. The network’s loss is

then obtained by summing up all the cross-entropies of the

|R| classes/rules.

As mentioned in the previous section, our training-set is

extremely unbalanced toward the negative class; that is, the

vast majority of the ground-truth labels assigned to a training

instance are negative (i.e., the application of a rule on the

word does not bring to a hit). Additionally, a similar dispro-

portion appears in the distribution per rule. Typically, we have

many rules that count only a few positive examples, whereas

others have orders of magnitude more hits. In our framework,

we alleviate the negative effects of those disproportions by

inductive bias. In particular, we achieve it by considering a

focal regulation in our loss function [24].

Originally developed for object detection tasks in which

there is a strong imbalance between foreground and back-

ground classes, we adopt focal regulation to account for sparse

and underrepresented labels when learning the compatibility

function. This focal loss is mainly characterized by a mod-

ulating factor γ that dynamically reduces the importance of

well-classified instances in the computation of the loss func-

tion, allowing the model to focus on hard examples (e.g., un-

derrepresented rules). More formally, the form of regularized

binary cross entropy that we adopt is defined as:

FL(p j,y j) =

{

−(1−α)(1− p j)
γ log(p j) if y j = 1

αp
γ
j log(1− p j) if y j = 0

,

where p j is the probability assigned by the model to the j’th

class, and y j is the ground-truth label (i.e., 1/hit and 0/miss).

The parameter α in the equation allows us to declare an a pri-

ori importance factor to the negative class. We use that to

down-weighting the correct predictions of the negative class

in the loss function that would be dominant otherwise. In

our setup, we dynamically select α based on the distribu-

tion of the hits observed in the training set. In particular,

we choose α= p̄
(1−p̄) , where p̄ is the ratio of positive labels

(i.e., hits/guesses) in the dataset. Differently, we fix γ=2 as

we found this value to perform well via empirical evaluation.

Summing up, our loss function is defined as:

L f = Ex,y

|R|

∑
j=1

FL(sigmoid( f (x) j),y j)

where f are the logits of the neural network. We train the

model using Adam stochastic gradient descent [22] until an
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early-stopping-criteria based on the AUC computed on a vali-

dation set is reached.

Maintaining the same general architecture, we train dif-

ferent networks with different sizes. In our experiments, we

noticed that large networks provide a better approximation

of the compatibility function, although small networks can

be used to reduce the computational cost with a limited loss

in utility. This suggests that modeling compatibility between

rules and words is complex and that simpler models with less

capacity (e.g., not based on deep neural networks) should

perform poorly. In the paper, we report the results only for

our biggest networks.

We implemented our framework on TensorFlow; the mod-

els have been trained on a NVIDIA DGX-2 machine. A com-

plete description of the architectures employed is given in

Appendix B.

Ultimately, we obtain three different neural networks: one

for each rule-set reported in Table 3. The suitability of these

neural approximations will be proven later in the paper.

Additional approaches To improve the performance of our

method, we further investigated domain-specific construc-

tions for multi-label classification. In particular, we tested

label embedding techniques together we deep architectures.

Those are approaches that aim at modeling, implicitly, the

correlation among labels. However, although unconditional

dependence is evident in the modeled domain, we found no

concrete advantage in considering it during the training. In

the same direction, we investigated more sophisticated em-

bedding techniques, where labels and dictionary-words were

jointly mapped to the same latent space [47], yet achieving

similar or worse performance.

Additionally, we tested implementations based on trans-

former networks [42], obtaining no substantial improvement.

We attribute such a result to the lack of dominant long-term

relationships among characters composing dictionary-words.

In such a domain, we believe convolutional filters to be fully

capable of capturing characters’ interactions. Furthermore,

convolutional layers are significantly more efficient than the

multi-head attention mechanism used by transformer net-

works.

3.3 Adaptive Mangling Rules

As motivated in Section 3.2, each word in the dictionary inter-

acts just with a limited number of mangling transformations

that are conditionally defined by users’ composition habits.

While modern rules-sets can contain more than ten thousand

entries, each dictionary-word w will interact only with a small

subset of compatible rules, say Rw. As stated before, opti-

mized configurations compose over pairs of dictionaries and

rule-sets that have been created to mutually support each

other. This is achieved by implicitly maximizing the aver-

age cardinality of the compatible set of rules Rw for each

dictionary-word w in the dictionary.

In doing so, advanced attackers rely on domain knowledge

and intuition to create optimized configurations. But, thanks

to the explicit form of the compatibility function, it is pos-

sible to simulate their expertise. The intuition is that, given

a dictionary-word w, we can infer the compatible rules-set

Rw (i.e., the set of rules that interact well with w) according

to the compatibility scores assigned by the neural approxi-

mation of π. More formally, given π for the rules-set R and a

dictionary-word w, we can determine the compatible rules-set

for w by thresholding the compatibility values assigned by

the neural network to the rules in R:

Rw ≈ Rβ
w = {r | r ∈ R∧π(w,r)> (1−β)}, (4)

where β ∈ (0,1] is a threshold parameter whose effect will be

discussed later.

At this point, we simulate high-quality configuration at-

tacks by ensuring dictionary-words does not interact with

rules outside its compatible rules-set R
β
w. Algorithm 1 imple-

ments this strategy by following a word-major order in the

generation of guesses. Every dictionary-word is limited to

interact with the subset of compatible rules R
β
w that is decided

by the neural net. Intuitively, this is equivalent to assigning

and applying a dedicated (and possibly unique) rules-set

to each word in the dictionary. Note that, the selection of

the compatible rules-set is performed at runtime, during the

attack, and does not require any pre-computation. We call this

novel guessing strategy Adaptive Mangling Rules, since the

rule-set is continuously adapted during the attack to better

assist the selected dictionary.

The efficacy of adaptive mangling rules over the standard

attack is shown in Figure 2, where multiple examples are

reported. The adaptive mangling rules reduce the number of

produced guesses while maintaining the hits count mostly

unchanged. In our experiments, the adaptive approach in-

duces compatible rules-sets that, on average, are an order of

magnitude smaller than the complete rules-set. Typically, for

β=0.5, only ∼ 10%/15% of the rules are conditionally ap-

plied to the dictionary-words. Considering the percentage of

guessed passwords for adaptive and non-adaptive attacks, this

means that approximately 90% of guesses are wasted during

classic, unoptimized mangling rules attacks. Figure 3 further

reports the distribution of selected rules during the adaptive

Algorithm 1: Adaptive mangling rules attack.

Data: dictonary D, rules-set R, budget β, neural net πR

1 forall w ∈ D do

2 R
β
w = {r|πR(w)r > (1−β)};

3 forall r ∈ R
β
w do

4 g = r(w);
5 issue g;
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Figure 2: Comparison between adaptive and classic mangling rules on four combination password leaks (dictionary/attacked-set)

using the rules-set PasswordPro. β=0.5 is used for the adaptive case.
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Figure 3: Selection frequencies of adaptive mangling rules

for the 3120 rules of PasswordPro.

attack of Figure 2a. It emphasizes how mangling rules hetero-

geneously interact with the underlying dictionary. Although

very few rules interact well with all the words (e.g., selection

frequency is > 70%), most of the mangling rules participate

only in rare events.

Further empirical validation for the adaptive mangling rules

will be given later in Section 5.

The Attack Budget Unlike standard dictionary attacks,

whose effectiveness solely depends on the initial configu-

ration, adaptive mangling rules can be controlled by an ad-

ditional scalar parameter that we refer to as the attack bud-

get β. This parameter defines the threshold of compatibility

that a rule must exceed to be included in the rules-set R
β
w

for a word w. Indirectly, this value determines the average

size of compatible rules-sets, and consequently, the total num-

ber of guesses performed during the attack. More precisely,

low values of β force compatible rule-sets to include only

rules with high-compatibility. Those will produce only a lim-

ited number of guesses, inducing very precise attacks at the

cost of missing possible hits (i.e., high precision, low recall).

Higher values of β translate in a more permissive selection,

where also rules with low-compatibility are included in the

compatible set. Those will increase the number of produced

guesses, inducing more exhaustive, yet more imprecise, at-

tacks (i.e., higher recall, lower precision). When β reaches

1, the adaptive mangling rules attack becomes a standard

mangling rules attack, since all the rules are unconditionally

included in the compatible rules-set. The effect of the bud-

get parameter is better captured by the examples reported

in Figure 4. Here, the performance of multiple values of β
is visualized and compared with the total hits and guesses

performed by a standard mangling rules attack.

The budget parameter β can be used to model differ-

ent types of adversaries. For instance, rational attackers [5]

change their configuration in consideration of the practical

cost of performing the attack. This parameter permit to easily

describe those attackers and evaluate password security ac-

cordingly. For instance, using a low budget (e.g., β=0.4), we

can model a greedy attacker who selects an attack configura-

tion that maximizes guessing precision at the expense of the

number of compromised accounts (a rational behavior in case

of an expensive hash function).

Seeking a more pragmatic interpretation, the budget param-

eter is implicitly equivalent to early-stopping4 (i.e., Eq. 1),

where single guesses are sorted in optimal order i.e., guesses

are exhaustively generated before the attack, and indirectly

sorted by decreasing probability/compatibility.

The optimal value of β depends on the rules-set. In our

tests, we found these optimal values to be 0.6, 0.8 and 0.8
for PassowordPro, generated and generated2, respectively.

Hereafter, we use these setups, unless otherwise specified.

Computational cost One of the core advantages of dictio-

nary attacks over more sophisticated approaches [28, 31, 44]

is their speed. For mangling rules attacks, generating guesses

has almost a negligible impact. Despite being consistently

more complex in their mechanisms, adaptive mangling rules

do not tend to change this feature.

In Algorithm 1, the only additional operation over the stan-

dard mangling rules attack is the selection of compatible rules

for each dictionary-word via the trained neural net. As dis-

cussed in Section 3.2.1, this operation requires just a single

network inference to be computed; that is, with a single in-

ference, we obtain a compatibility score for each element

in {w}×R. Furthermore, inference for multiple consecutive

4The attack stops before the guesses are terminated.
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Figure 4: Effect of the parameter β on the guessing performance for four different combinations of password sets and Pass-

wordPro rules. Plots are normalized according to the results of the standard mangling rules attack (i.e., β = 1). For instance,

(x=0.1, y=0.95) means that we guessed 95% of the password guessed with the standard mangling rules attack by performing

10% of the guesses required from the latter.

words can be trivially batched and computed in parallel, fur-

ther reducing the computation’s impact.

Table 4 reports the number of compatibility values that dif-

ferent neural networks can compute per second. In the table,

we used our largest networks without any form of optimiza-

tion. Nevertheless, the overhead over the plain mangling rules

attack is minimal (see Appendix D). Additionally, similar to

standard dictionary attacks, adaptive mangling rules attacks

are inherently parallel and, therefore, distributed and scalable.

4 Dynamic Dictionary attacks

This section introduces the second and last component of our

password model—a dynamic mechanism that systematically

adapts the guessing configuration to the unknown attacked-

set. In Section 4.1, we introduce the Dynamic Dictionary

Augmentation technique. Next, in Section 4.2, we introduce

the concept of a Dynamic Budgets.

Motivation: As widely documented [6, 10, 27, 32], pass-

word composition habits slightly change from sub-population

to sub-population. Although passwords tend to follow the

same general distribution, credentials created under different

environments exhibit unique biases. Users within the same

group usually choose passwords related to each other, influ-

enced mostly by environmental factors or the underlying ap-

plicative layer. Major factors, for example, are users’ mother

tongue [10], community interests [46] and, imposed password

composition policies [23]. These have a significant impact on

Table 4: Number of compatible scores computed per second

(c/s) for different networks. Values computed on a single

NVIDIA V100 GPU.

generated2

(large)

generated

(large)

PasswordPro

(large)

130.550.403 c/s 89.049.382 c/s 31.836.734 c/s

defining the final password distribution, and, consequently,

the guessability of the passwords [21]. The same factors that

shape a password distribution are generally available to the

attackers who can collect and use them to drastically improve

the configuration of their guessing attacks. Unfortunately,

current automatic guessing techniques fail to describe this

natural adversarial behavior [21, 26, 27, 41, 45]. Those meth-

ods are based on static configurations that apply the same

guessing strategy to each attacked-set of passwords, mostly

ignoring trivial information that can be either a priori col-

lected or distilled from the running attack. In this section, we

discuss suitable modifications of the mangling-rules frame-

work to describe a more realistic guessing strategy. In partic-

ular, avoiding the necessity of any prior knowledge over the

attacked-set, we rely on the concept of dynamic attack [32].

Here, a dynamic attacker is an adversary who changes his

guessing strategy according to the attack’s success rate. Suc-

cessful guesses are used to select future attempts with the

goal of exploiting the non-i.i.d. of passwords originated from

the same environment. In other words, dynamic password

guessing attacks automatically collect information on the tar-

get password distribution and use it to forge unique guessing

configurations for the same set during the attack. Similarly,

this general guessing approach can be easily linked to the op-

timal guessing strategy harnessed from human experts in [41],

where mangling rules were manually created at execution

time based on the initially guessed passwords.

4.1 Dynamic Dictionary Augmentation

In [32], dynamic adaptation of the guessing strategy is ob-

tained from password latent space manipulations of deep gen-

erative models. A similar effect is reproduced within our

mangling rules approach by relying on a consistently simpler,

yet effective, solution based on hits-recycling. That is, every

time we guess a new password by applying a mangling rule

over a dictionary word, we insert the guessed password in the

dictionary at runtime. In practice, we dynamically augment

the dictionary during the attack using the guessed pass-
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steph

steph69 phpphp

phpphp00 php123 phpman

php00 php1234 123php thephpman

thephpphp12345

php123456 p12345 s12345

p123456 s123456

php001 php007 phper

phper123

Figure 5: Example of small hits-tree induced by the dynamic

attack performed on the phpBB leak. In the tree, every vertex

is a guessed password; an edge between two nodes indicates

that the child password has been guessed by applying a man-

gling rule to the parent password.

words.5 In the process, every new hit is directly reconsidered

and syntactically extended through mangling rules. This recur-

sive method brings about massive chains/trees of hits that can

extend for thousands of levels.6 Figure 5 depicts an extremely

small subtree (“hits-tree") obtained by attacking the password

leak phpBB. The tree starts when the word “steph” is mangled,

incidentally producing the word “phpphp”. Since the latter

lies in a dense zone of the attacked set (i.e., it is a common

users’ practice to insert the name of the website or related

strings in their password), it induces multiple hits and causes

the attack to focus in that specific zone of the key-space. The

focus of the attack grows exponentially hit after hit and auto-

matically stops only when no more passwords are matched.

Eventually, this process makes it possible to guess passwords

that would be missed with the static approach. For instance,

in Figure 5, all the nodes in bold are passwords matched by

the dynamic attack but missed by the static one (i.e., standard

dictionary attack) under the same configuration.

Figure 6 compares the guessing performance of the dy-

namic attack against the static version on a few examples for

the PasswordPro rules-set. The plots show that the dynamic

augmentation of the dictionary has a very heterogeneous ef-

fect on the guessing attacks. In the case of Figure 6a, the

dynamic attack produces a substantial increment in the num-

ber of guesses as well as in the number of hits i.e., from

∼ 15% to ∼ 80% recovered passwords. Arguably, such a gap

is due to the minimal size of the original dictionary phpBB.

In the attack of Figure 6b, instead, a similar improvement is

5Although we have not found any direct reference to the hits-recycling

technique in the literature, it is likely well known and routinely deployed by

professionals.
6I.e., a forest, where the root of each tree is a word from the original

dictionary.

achieved by requiring only a small number of guesses. On the

other hand, in the attack depicted in Figure 6c, the dynamic

augmentation has a limited effect on the final hits number.

However, it increases the attack precision in the initial phase.

Conversely, attacks in Figures 6d and 6e show a decreased pre-

cision in the initial phase of the attack, but that is compensated

later by the dynamic approach.

Another interesting property of the dynamic augmentation

is that it makes the guessing attack consistently less sensitive

to the choice of the input dictionary. Indeed, in contrast with

the static approach, different choices of the initial dictionary

tend to produce very homogeneous results in the dynamic ap-

proach. This behavior is captured in Figure 7, where results,

obtained by varying three input dictionaries, are compared

between static and dynamic attack. The standard attacks (Fig-

ure 7a) result in very different outcomes; for instance, using

phpBB we match 15% of the attacked-set, whereas we match

more than 80% with MyHeritage. These differences in per-

formance are leveled out by the dynamic augmentation of the

dictionary (Figure 7b); all the dynamic attacks recover ∼ 80%

of the attacked-set. Intuitively, dynamic augmentation reme-

dies deficiencies in the initial configuration of the dictionary,

promoting its completeness. These claims will find further

support in Section 5.

4.2 Dynamic budgets

Adaptive mangling rules (Section 3.3) demonstrated that it is

possible to consistently improve the precision of the guessing

attack by promoting compatibility among rules-set and dictio-

nary (i.e., simulating high-quality configurations at runtime).

This approach assumes that the compatibility function mod-

eled before the attack is sufficiently general to simulate good

configurations for each possible attacked-set. However, as

motivated in the introduction of Section 4, every attacked set

of passwords present peculiar biases and, therefore, different

compatibility relations among rules and dictionary-words.

To reduce the effect of this dependence, we introduce an ad-

ditional dynamic approach supporting the adaptive mangling

rules framework. Rather than modifying the neural network at

runtime (which is neither a practical nor a reliable solution),

we alter the selection process of compatible rules by acting

on the budget parameter β.

Algorithm 2 details our solution. Here, rather than having a

global parameter β for all the rules of the rules-set R, we have

a budget vector B that assigns a dedicated budget value to each

rule in R (i.e., B ∈ (0,1]|R|). Initially, all the budget values in

B are initialized to the same value β (i.e., ∀r∈R Br=β) given

as an input parameter. During the attack, the elements of B

are individually increased and decreased to better describe

the attacked set of passwords. Within this context, increasing

the budget Br of a rule r means reducing the compatibility

threshold needed to include r in the compatible rules-set of a

dictionary-word w, and, consequently, making r more popular
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Figure 6: Performance comparison between dynamic and standard (static) attack for five different setups of dictionary/attacked-set.

The rules set PasswordPro in non-adaptive mode is used in all the reported attacks. The 5 setups have been handpicked to fully

represent the possible effects of the dynamic dictionary augmentation.
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(b) dynamic attack

Figure 7: Guessing attacks performed on the animoto leak

using three different dictionaries. The panel on the left reports

the guessing curves for the static setup. The panel on the right

reports those for the dynamic setup. The x-axis is logarithmic.

during the attack. On the other hand, by decreasing Br, we

reduce the chances of selection for r; r is selected only in case

of high-compatibility words.

In the algorithm, we increase the budget Br when the rule r

produces a hit. The added increment is a small value ∆ that

scales inversely with the number of guesses produced. At

the end of the internal loop, the vector B is then normalized;

i.e., we scale the values in B so that ∑R
r Br = ∑

|R|
i β. Normaliz-

ing B has two aims. (1) It reduces the budgets for non-hitting

rules (the mass we add to the budget of rule r is subtracted

from all other budgets). (2) It maintains the total budget of

Algorithm 2: Adaptive rules with Dynamic budget

Data: dictonary D, rules-set R, attacked-set X , budget β

1 forall w ∈ D do

2 R
β
w = {r|πR(w)r > (1−Bi)};

3 forall r ∈ R
β
w do

4 g = r(w);
5 if g ∈ X then

6 X = X −{g};

7 Br = Br +∆;

8 B = B · ∑|B| β

∑|B| B
;

the attack (i.e., ∑
|R|
i β) unchanged so that dynamic and static

budget leads to almost the same number of guesses during

the attack for a given β. Furthermore, we impose a maximum

and a minimum bound on the increments or decrements of B.

This is to prevent values of zero (rule always excluded) or

equal/higher than one (rule always included).

As for the dynamic dictionary augmentation, the dynamic

budget has always a positive, but, heterogeneous, effect on the

guessing performance. Mostly, the number of hits increases

or remains unaffected. Among the proposed techniques, this

is the one with the mildest effect. Yet, this will be particularly

useful when combined with dynamic dictionary augmenta-

tion in the next section. Appendix C better explicates the

improvement induced from the dynamic budgets.

5 Adaptive, Dynamic Mangling rules: AdaMs

The results of the previous section confirm the effectiveness of

the dynamic guessing mechanisms. We increased the number

of hits compared to classic dictionary attacks by using the

produced guesses to improve the attack on the fly. However, in

the process, we also increased the number of guesses, possibly

in a way that is hard to control and gauge. Moreover, by

changing the dictionary at runtime, we disrupt any form of

optimization of the initial configuration, such as any a priori

ordering in the wordlist [26] and any joint optimization with

the rules-set7. Unavoidably, this leads to sub-optimal attacks

that may overestimate passwords strength.

To mitigate this phenomenon, we combine the dynamic

augmentation technique with the complementary Adaptive

Mangling Rules framework. The latter seeks an optimal con-

figuration at runtime on the dynamic dictionary, promoting

compatibility with the rules-set and limiting the impact of

imperfect dictionary-words even if these are unknown before

the attack. This process is further supported by the dynamic

budgets that address the possible covariate-shift [40] of the

compatibility function induced by the augmented dictionary.

Hereafter, we refer to this final guessing strategy as

AdaMs (Adaptive, Dynamic Mangling rules). Details on the

7I.e., new words may not interact well with the mangling rules in use.
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(e) MyHeritage with generated
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(l) RockYou with generated2

Figure 8: Each plot reports the number of guesses (in log scale) and the percentage of matched passwords for different rule-sets

and dictionaries against several attacked-sets. Each row reports a rule-set, whereas each column identifies an attacked-set. We use

four dictionaries, each identified by a colored line. Continuous lines show AdaMs attacks whereas dashed lines refer to standard

mangling rules attacks.

implementation of AdaMs are given in Appendix E, whereas

we benchmark it in Appendix D.

5.1 Evaluation

Figure 8 reports an extensive comparison of AdaMs against

standard mangling-rules attacks. In the figure, we test all pairs

of dictionary/rule-set obtained from the combination of the

dictionaries: MyHeritage, RockYou, animoto, phpBB and the

rules-sets: PasswordPro, generated and generated2 on four

attacked-sets. Hereafter, we switch to a logarithm scale given

the heterogeneity of the number of guesses produced by the

various configurations.

For the reasons given in the previous sections, AdaMs out-

performs standard mangling rules within the same config-

urations, while requiring fewer guesses on average. More

interestingly, AdaMs attacks generally exceed the hits count

of all the standard attacks regardless of the selected dictio-

nary. In particular, this is always true for the generated and

generated2 rules-sets.

Conversely, in cases where the dynamic dictionary augmen-

tation offers only a small gain in the number of hits (e.g., at-

tacking RockYou), AdaMs equalizes the performance of vari-

ous dictionaries, typically, towards the best configuration for

the standard attack. In Figures 8d and 8h, all the configura-

tions of AdaMs reach a number of hits comparable to the best

configuration for the standard attack, i.e., using MyHeritage,

while requiring up to an order of magnitude fewer guesses

(e.g., Figure 8d), further confirming that the best standard

attack is far from being optimal. In the reported experiments,

the only outlier is phpBB when used against zooks in Fig-

ure 8b. Here, AdaMs did not reach/exceed all the standard

attacks in the number of hits despite consistently redressing

the initial configuration. However, this discrepancy is can-

celed out when more mangling rules are considered such as

in Figure 8f.

Eventually, the AdaMs attack makes the initial selection

of the dictionary systematically less influential. For instance,

in our experiments, a set such as phpBB reaches the same

performance of wordlists that are two orders of magnitude

larger (e.g., RockYou). The crucial factor remains the rules-

set’s cardinality that ultimately determines the magnitude

of the attack, even though it does not appreciably affect the

guessing performance.

The effectiveness of AdaMs is better captured by the re-

sults reported in Figure 9. Here, we create a synthetic optimal

dictionary for an attacked-set and evaluate the capability of

AdaMs to converge to the performance of such an optimal

configuration. To this end, given a password leak X , we ran-
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Figure 9: Comparison of AdaMs against optimal dictionary

for two sets of passwords.

domly divide it in two disjointed sets of equal size, say Xdict

and Xtarget. Then, we attack Xtarget by using both Xdict (i.e., op-

timal dictionary) and an external dictionary (i.e., sub-optimal

dictionary). Arguably, Xdict is the a priori optimal dictionary

to attack Xtarget since Xdict and Xtarget are samples of the very

same distribution.

We report the results for two sets: MyHeritage and youku.

The attacks are carried out by using the rules-set generated

and RockYou as the external dictionary. In the case of My-

Heritage, the AdaMs attack is more precise than the optimal

dictionary and produces a comparable number of hits. Sim-

ilarly, in the case of youku, the AdaMs attack guesses faster

than the optimal dictionary within the first 1011 guesses. How-

ever, in this case, it does not reach an equivalent number of

guessed passwords. We can attribute this to the high discrep-

ancy between the initial dictionary RockYou and the attacked-

set youku that cannot be bridged without prior knowledge.8

Nevertheless, the dictionary augmentation technique can in-

duce a dictionary that has a comparable utility to one of the

best optimal a priori setup, while requiring no information

on the attacked-set. In the process, the adaptive framework

consistently accounts for the noise introduced by the aug-

mentation, allowing AdaMs to be even more precise than the

optimal dictionary for most of the attack (i.e., within the first

1011 guesses).

Further comparison with other password models can be

found in Appendix A.

6 Takeaways and New Directions

The AdaMs attack autonomously pushes the attack strategy to-

wards the optimal one, producing password strength estimates

that better model actual adversarial capabilities. As shown

in Figure 8, the approach also makes the guessing attack

more resilient to deficiencies in the initial configuration, re-

ducing the bias induced by misconfiguration. In this direction,

the AdaMs attack further proves the intrinsic unsuitability of

8The leak youku is mostly composed of Chinese passwords that are

underrepresented in RockYou.

arbitrarily chosen configurations and the overestimation of

password security that those can induce.

Compared with other systems [28, 32], our framework pro-

vides researchers and security practitioners with a markedly

more efficient and flexible solution. We make our code and

trained models publicly available9 in the hope our system

will help improve the soundness of password strength es-

timation techniques.

Finally, our techniques pave the way for new valuable di-

rections in the study of password security: (1) our dynamic

attack offers a framework capable of explaining causality

relations among guessed passwords in a dynamic context;

the hits-tree produce from our technique could provide in-

sights on how to proactively reduce the threat of dynamic

attackers. (2) Mangling rules are not necessarily effective

or ineffective as assumed in current automatic configuration

techniques [4, 26]. They have a conditional nature that must

be accounted for to seek optimal configurations. Adaptive

mangling rules have proven to be superior and more effective.

Still, it would be interesting to devise new techniques to au-

tomatically formulate mangling rules rather than select and

compose existing ones.
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Appendices

A Comparison with other password models

Next, we compare AdaMs with other password models.

Figure A.1 reports a direct comparison against the RNN-

based approach of Melicher et al. [28] and PCFG [44]. The

RNN-based password model is the state-of-the-art for pass-

word strength estimation, although its computational cost in

generating guesses makes it impractical for real password

guessing. We train the model using RockYou and simulate

password guessing attacks using [11]. In the process, we use

default parameters of the available software [13] and consider

passwords with guess-number within 1012.

PCFG is the academic approach that better mirrors the guess-

ing generation process of dictionary attacks. We train the
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Figure A.1: Comparison of the AdaMs attacks against the RNN-based approach of Melicher et al. [28] and PCFG [44] for three

password leaks.

PCFG-based model on RockYou using the default setting [33].

In this case, we limit to the first 1011.

We compare the models on three leaks: MyHeritage, youku

and zooks. For the AdaMs attacks, we use RockYou as a dic-

tionary, whereas we report results for three rules-sets.

Surprisingly, the AdaMsreach performance very close to the

one obtained from the RNN-based model. It even outper-

forms the parametric attack in two of the three attack-sets.

Similarly, AdaMs tend to perform better than PCFG in the

three cases, especially after the initial guesses. Furthermore,
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Figure A.2: Performance comparison between AdaMs and

the dynamic attack [32]. Classic mangling rules attacks and

StaticGAN [32] are reported as baseline.

Figure A.2 compares AdaMs against the original GAN-based

dynamic attack [32]. We base the comparison on the same

leaks used in [32]; namely, the youku and zomato leak (details

given in Table 2). The GAN-based model is trained on the

RockYou leak and the attack is performed with the same hyper-

parameters used in [32]: σ = 0.35 and hot-start α = 10%. De-

spite our simpler approach, the AdaMs attack performs very

similarly to the GAN-based attack, besides being significantly

faster in generating guesses (see Table D.1).

B Details on the deep learning framework

This Appendix details the architecture used to implement

the neural approximations of the compatibility functions pre-

Algorithm 3: Residual Block: residualBlock(·):

Data: input tensor: xin

1 x = batchNormalization(xin);
2 x = ReLU(x);
3 x = 1D-Convolution(x, f ,k);
4 x = batchNormalization(x);
5 x = ReLU(x);
6 x = 1D-Convolution(x, f ,k);
7 return xin +0.3 · x

Algorithm 4: Architecture:

Data: input tensor: xin, rules-set R

1 x = charactersEmbedding(xin,128);
2 x = 1D-Convolution(x, f ,k);
3 for 0 to d do

4 x = residualBlock(x)

5 bneck = ⌈ f
b ⌉;

6 x = 1D-Convolution(x,bneck,k);
7 x = flattern(x);
8 logits = dense(x, |R|);
9 return logits

sented in Section 3.2.1. It can be defined using five parameters,

namely:

• Depth (d): The number of residual blocks compos-

ing the network. Each residual block includes two 1D-

convolutional layers, supported by normalization layers

and activation i.e., Algorithm 3.

• Number of filters ( f ): The number of filters for each

convolutional layer in the network.

• Kernel size (k): Size of the kernel used in every convo-

lutional layer in the network.

• Final Bottleneck (b): Reduction of the number of filters

before the final dense layer.

The final architecture is described in Algorithm 4.

Our biggest models are realizations of the parameters:

d=15, f =512, k=5. We use b=2 for PasswordPro and

generated, b=3 for generated2 instead.
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Figure C.1: Effectiveness of the dynamic-budget

within AdaMs for different value of β. Continuous

lines present AdaMs, whereas dashed lines are AdaMs ablated

of the dynamic-budget

Table D.1: Number of guesses per second compute single

core/GPU on a NVIDIA DGX-2 machine.

AdaMs

generated2

AdaMs

generated

AdaMs

PasswordPro

Hashcat

CPU legacy

GAN [32]

Dynamic Attack

726182 g/s 709439 g/s 644444 g/s 928647 g/s 34189 g/s

C Impact of the Dynamic budget

We briefly illustrate the impact of the dynamic budget

(i.e., Section 4.2) on the performance of AdaMs. As previ-

ously discussed, the dynamic budget has always a positive or

neutral effect. Figure C.1 reports an example for the attacked-

set youku. In the figure, continuous lines refer to the complete

AdaMs attack, whereas dashed lines report the results for

AdaMs without dynamic budget for the same configuration.

We report the results for three values of β.

As shown in the example, the dynamic budget is particularly

effective when low β is used. In these cases, the dynamic

logic helps better organize the small total budget of the attack,

resulting in better global performance. The gain decreases

when bigger budgets are adopted.

D Benchmarks

In this Appendix, we analyze the computational cost of gen-

erating guesses with AdaMs. Primarily, we test the overhead

with respect to standard mangling rules (i.e., Hashcat CPU

legacy).

For the comparison, we produce 109 strings and compute

the number of guesses generated per second (i.e., g/s). In the

process, we include the time of checking for the guesses in

the set of the attacked passwords (the same methodology is

used for each tool and may not be computationally optimal).

Note that we do not perform any hash function computation

in the process. We repeat the test 5 times using RockYou as

dictionary and animoto as attacked-set, whereas we repeat

for the rules-sets: PasswordPro, generated and generated2.

Table D.1 averages the time for each tool. The result for the

standard mangling rules is reported as average over the three

rules-sets. Additionally, we report the timings for the GAN-

based, dynamic attack described in [32].

On average, AdaMs are just 25% slower than standard man-

gling rules. Considering that the Adaptive mangling rules can

reduce the number of guesses up to an order of magnitude,

this overhead becomes negligible in practice. Moreover, this

discrepancy easily fades out when slow hash functions, such

as [20, 34, 35], are considered.

E Implementation of AdaMs

We rely on the CPU legacy version of Hashcat10 to implement

AdaMs attacks. Our prototype uses the CPU version as it is

easier to modify its workflow, although the Hashcat GPU

engine can trivially support our approach.11

In the code, we modify the main loop of Hashcat, where it

scans over dictionary words and then iterates on all rules.

We read a batch of words from the dictionary, we give them

as input to the neural network, and then, for each word w

in the batch, we apply only the rules whose values of αR

are greater than (1 − β). We check all these guesses and,

those who match are added on top of the remaining words

in the dictionary, i.e., they will be part of the next batch of

words. The same batching approach is used for the dynamic

budget. Here, budget increments and normalization per rule

are performed conjointly after every batch to further reduce

computational overhead. In the implementation, we use batch-

size equals to 4096 dictionary words.

10https://github.com/hashcat/hashcat-legacy
11The GPU engine is also more suited as it would naturally support the

computation of the neural network on GPU, removing the CPU/GPU com-

munication overhead
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