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Abstract

Schedule-based or headway-based control schemes to reduce bus bunching are
not resilient because they cannot prevent buses from losing ground to the buses
they follow when disruptions increase the gaps separating them beyond a critical
value. (Following buses are then overwhelmed with passengers and cannot
process their work quick enough to catch up.) This critical gap problem can be
avoided, however, if buses at the leading end of such gaps are given information
to cooperate with the ones behind by slowing down.

This paper builds on this idea. It proposes an adaptive control scheme
that adjusts a bus cruising speed in real-time based on both, its front and
rear spacings much as if successive bus pairs were connected by springs. The
scheme is shown to yield regular headways with faster bus travel than existing
control methods. Its simple and decentralized logic automatically compensates
for traffic disruptions and inaccurate bus driver actions. Its hardware and data
requirements are minimal.



1. Introduction

It has been known for nearly 50 years (Newell and Potts, 1964) that if buses
are left to their own devices, they cannot stay on schedule. The reason is that
a lagging bus has to collect more passengers, and therefore tends to fall further
behind. And the reverse is also true. So there is a positive feedback loop
that leads to undesirable bunching. Transit agencies typically deal with this
problem by inserting slack into their schedules, enforcing the latter at control
points. Slack, however, reduces the buses’ commercial speed - i.e., the average
speed that passengers experience including stops. Formulae in Daganzo (1997)
quantify this reduction; they show that this medicine (slack) is sometimes worse
than the illness (irregular headways).

In view of this, adaptive control schemes based on real-time information
have been proposed. They are of three types: simulation-heuristics (see e.g.,
Hickman, 2001), optimization (e.g., Eberlein et al, 2001) and control (Daganzo,
2009).1 As explained in this latter reference, the control approach can system-
atically account for the uncertainties due to traffic and demand while reducing
the commercial speed only slightly. Therefore, this paper will be in the control
genre, and build on this last reference.

This reference, and the present paper, propose control strategies for high-
frequency bus or transit lines run without a schedule. Their goal is providing
quasi-regular headways while maintaining as high a commercial speed as possi-
ble. Daganzo (2009) proposes to hold buses at discrete control points for brief
periods of time that depend on the time interval since the passage of the previous
bus - the headway. Although the method turns out to be quite efficient when dis-
turbances are small, its forward-looking/non-cooperative character (buses are
not allowed to slow down in response to events behind) hinders performance
whenever disturbances are large. In fact, the method cannot prevent collapse if
disturbances create supra-critical gaps in the sense of Newell (1977).

To alleviate this problem, a cooperative, two-way-looking strategy based on
the spacings in the front and back of each bus is proposed and evaluated here.
To further enhance performance, the strategy will allow these spacings to be
monitored as frequently as desired. The paper is organized as follows. Section
2 examines an idealized version of the problem for which cooperative strategies
can be easily designed. Section 3 proposes one such strategy. Section 4 develops
approximate performance formulae for the idealized scenario and compares the
proposed strategy with non-cooperative counterparts. Section 5 generalizes the
results to real settings; it is found that real systems are more easily controlled
than idealized ones and that real performance is well predicted with the idealized
formulae. Finally, Section 6 discusses potential improvements and future work.

1There is also a literature dealing with small systems and strategies that do not fully use
available real-time information; e.g., Osuna and Newell (1972), Barnett (1974), Newell (1974),
Ignall and Kolesar (1974), Hickman (2001) and Zhao et al. (2006).
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2. A continuum idealization

Considered is a closed loop of length L (km) on which n = 1, 2...N transit vehi-
cles operate. These transit vehicles shall be called “buses”. The loop includes
m = 1, 2, ...M stops with an even inter-stop distance, D = L/M . Passengers
arrive along this loop as a spatially homogeneous, time-independent process
with independent increments, average rate λ (pax/km-hr) and index of disper-
sion γ (pax). They materialize uniformly along the route but board the bus at
the nearest stop, so the average demand rate at each stop is λL/M (pax/hr).
Buses are assumed to cruise at an average speed of v̄ (km/hr). This is the
maximum speed that they can sustain including random delays due to traffic.
Their average commercial speed is lower because buses are delayed by serving
passengers.

This model is now simplified so it can be used to identify control laws
and quantify their performance. It shall be assumed that bus delays due to
passenger-related stops are directly proportional to the number of passengers
boarding the bus, and that these delays are continuously distributed along the
perimeter of the loop as if passengers were infinitely divisible and were picked
up where they appeared. This is why the approximation is labeled “contin-
uum”. In this continuum model bus travel time has two components: a part
that is independent of the number of passengers and inversely proportional to
the cruising speed, and a part that accrues with the passengers the bus meets
at a rate of b (hr/pax).

2.1. Equilibrium relations

Consider now an equilibrium where passengers arrive at a steady rate, buses
are evenly separated with spacing S = L/N , and travel with the same commer-
cial speed, c̄. In this equilibrium the headway, H, is:

H = S/c̄. (1)

A relation between the equilibrium c̄ and v̄ is obtained by decomposing the time
it takes a bus to travel one distance unit, 1/c̄, into time cruising, 1/v̄, and time
collecting passengers, bλH = bλS/c̄. The resulting equality, 1/c̄ = 1/v̄ + bλS/c̄,
can be rearranged to yield:

c̄ = v̄(1 − λbS). (2)

2.2. Quasi-equilibrium, stochastic law of motion

Consider now the system’s stochastic behavior when all its variables are
close to equilibrium. Sought is an expression for the position of vehicle n at
time t + ∆t in terms of its position at time t.

Let “yn” denote the position of bus n at some t, and “sn = yn⊖1 ⊖ yn”
the spacing in front of it. The “o-minus” notation denotes substraction modulo
N for the vehicle number subscript, and modulo L for the vehicle positions.
(Recall, we have N vehicles; thus, when applied to vehicles,“o-minus” denotes

3



the vehicle in front; and “o-plus” shall denote the vehicle behind.) In order to
eliminate the time variable from the notation the comparison operator “:=” will
be used. It will signify that the values on its LHS are evaluated one step ∆t
after those on its RHS. For example, if vehicle n has commercial speed c′n at
time t, then:

yn := yn ⊕ c′n∆t. (3)

The relation between c′n and the current cruising speed v′
n ≤ v̄ is examined now.

Assume for the moment that the demand is deterministic and consider what
happens to the bus in one time step ∆t, while it travels a distance c′n∆t. The
number of passengers it collects is the product of the demand rate, the headway
and the distance traveled. Since the system is in quasi-equilibrium, this product
is approximately λ(sn/c′n⊖1)(c

′
n∆t). Now, since both commercial speeds should

be close to the average, and there is no reason for one to be greater than the
other, the number of passengers can be approximated by λsn∆t. Therefore the
bus is stopped for a time λbsn∆t, leaving (1 − λbsn)∆t time units available
for cruising. The cruising distance is therefore approximately given by v′

n(1 −
λbsn)∆t. Since the cruising distance must equal c′n∆t, it follows that:

c′n ≈ v′

n(1 − λbsn). (4)

Note how for any given v′
n lower cruising speeds arise as a result of greater

spacings. Thus, if no control was exercised and the v′
n were allowed to remain

constant, buses that fall behind would tend to fall further behind and those
that catch up would speed up. They would bunch. As shown below, this can
be avoided by adjusting v′

n dynamically.

3. A control law for the idealized scenario

A quasi-equlibrium, stochastic law of motion is obtained by combining (3) and
(4), and adding noise terms, νn, to capture the effect of traffic disturbances,
driver errors and randomness in passenger arrivals:

yn :≈ yn ⊕ c′n∆t ⊕ νn ≈ yn ⊕ v′

n(1 − λbsn)∆t ⊕ νn, n = 1, 2, ...N. (5)

Cruising speeds are dynamically adjusted as a function of the spacings as per:

v′

n
.
= v̄ + Cn(s, S), n = 1, 2, ...N, (6)

where s the vector of spacings and Cn(s, S) is:

Cn(s, S)
.
= [λbv̄(sn − S) + α(sn − sn⊕1) − δ]/(1 − λbsn), n = 1, 2, ...N. (7)

The constants α and δ are free parameters.
It will be convenient to denote the numerator of Cn(s, S) by F . The three

terms of F attempt three things: (i) accelerating a bus when its spacing is
greater than the equilibrium target; (ii) retarding it if the following bus is far
behind; and (iii) ensuring that F ≤ 0 so that target cruising speed does not
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exceed v̄. The control law is two-way-looking because a bus reacts to both, its
front and rear spacings.

The special form (6-7) has been chosen because, as is now shown, once
inserted in (5) it produces a stochastic law of motion in the family studied in
Daganzo (2009), which overcomes the bunching problem. To see how this comes
about insert (7) in (6), and multiply both sides of the result by (1−λbsn). Then,
using (2) and (4) to express the result in terms of commercial speeds, one finds:
c′n ≈ c̄− λbv̄(sn −S) + [λbv̄(sn −S) + α(sn − sn⊕1)− δ]. Since the two λ-terms
cancel out, the result is:

c′n ≈ c̄ + α(sn − sn⊕1) − δ. (8)

This shows that the equilibrium speed achieved with control is c̄ − δ; i.e.,
that it is δ units lower than the theoretical maximum, c̄. Now,use c̄′ = c̄− δ for
the equilibrium speed with control, and combine (5) and (8) to write:

yn :≈ yn ⊕ c̄′∆t ⊕ α(sn − sn⊕1)∆t ⊕ νn, n = 1, 2, ...N. (9)

Next, express (9) in terms of deviations, ǫn, from the equlibrium trajectories,
xn, which are:

xn := xn ⊕ c̄′∆t, n = 1, 2, ...N. (10)

To introduce the deviations, subtract (10) from (9) and make the substitutions:
sn = S + ǫn⊖1 − ǫn and sn⊕1 = S + ǫn − ǫn⊕1. The result is:

ǫn :≈ ǫn ⊕ (α∆t)ǫn⊖1 ⊕ (1− 2α∆t)ǫn ⊕ (α∆t)ǫn⊕1 ⊕ νn, n = 1, 2, ...N. (11)

Except for the modular arithmetic, due to the closed loop, this system of
linear difference equations with random impulses is identical to the open-loop
systems analyzed in Daganzo (2009). Therefore, if system (11) dissipates distur-
bances over small distances compared with L, the closedness of the loop should
not come into play and the results in Daganzo (2009) should apply approxi-
mately. This should happen when the number of buses on the loop is large
compared with 1. This fact is used below to evaluate the control law.

4. Performance

Proposition 2 in Daganzo (2009) states that if the νn are uncorrelated with
identical variances (u.i.v.), and α∆t ∈ (0, 0.5) so that the coefficients of (11)
from a pdf, then the ratio of var(sn) (the mean squared error of the infinite time-
series {sn}) and var(νn), is a constant that only depends on the coefficients of
(11). This suggests that, in our case, var(sn)/var(νn) should also be a constant
that only depends on α∆t and N . Appendix A proves that this is in fact true.2

2Appendix A also shows that if the νn are not u.i.v., but are uniformly bounded for all t

by a quantity ν̄, then the deviations {sn −S} are uniformly bounded by a quantity that only
depends on ν̄, N and α∆t, provided still that α∆t ∈ (0, 0.5).

5



4.1. Approximate formulae

Simulations in Daganzo (2009) under the u.i.v. assumption also show that
var(sn)/var(νn) roughly equals the variance of the coefficients of the dynamic
equation; i.e., (11) in our case. Therefore, it is conjectured (and later demon-
strated with simulations) that this is also approximately true in our case, if the
system includes more than just a few buses.3 Note, under the u.i.v. assumption,
var(νn) should be of the form: var(νn) = r2∆t, where r2 is the variance of the
noise per unit time (km2/hr). Since the variance of the coefficients of (11) is
2α∆t, the following approximation should hold for problems with many buses:

var(sn) ≈ 1

2
r2/α, n = 1, 2, ...N. (12)

This result applies to the infinite time series of spacings. However, if a
system is observed for a short time, the initial transient will not have been
dissipated and the variance of the spacings will depend on the initial conditions.
To estimate the transient, note that if we let ∆t → 0 in (11) the only time
constant that can be formed from the data defining the problem is the parameter
1/α. Hence, the transient should be comparable with this quantity. As a result,
the observation time required for (12) to apply should be several times larger
than 1/α.

Equation (12) can be used to choose α and δ that optimize the control.
For example, assume that the transit agency wishes to maximize the buses’
commercial speed (i.e. minimize δ) while preventing bunching. If the sytem is
to behave as predicted, the quantity F = [λbv̄(sn−S)+α(sn−sn⊕1)−δ] should
stay negative most of the time. Hence, δ is constrained to equal or exceed 3
standard deviations of G

.
= λbv̄(sn−S)+α(sn−sn⊕1). This standard deviation

depends on the correlation between sn and sn⊕1. Since these correlations should
be slightly negative, the formulas below assume that the correlation is −0.25.4

The reader can verify that var(G) ≈ [2.5α2 + 2.5λbv̄α + (λbv̄)2]var(sn); and
using (12), that:

var(G) ≈ 1

2
r2[2.5α + 2.5λbv̄ + (λbv̄)2/α]. (13)

Thus, with the criterion δ ≈ 3
√

var(G), the smallest feasible δ for a given α is:

δ ≈ 2.12r[2.5α + 2.5λbv̄ + (λbv̄)2/α]1/2. (14)

The value of α that minimizes this expression is:

α∗ ≈ 0.63λbv̄; (15)

and the corresponding reduction in average commercial speed is therefore:

δ∗ ≈ 5.0r(λbv̄)1/2. (16)

3Appendix A gives an exact formula for var(sn), which is too complicated to be useful.
4This value produces results within 16% of the worst case with correlation −1, and smaller

errors for the optimistic case with zero correlation. So the approximation is robust.
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Finally, the variance of the spacing under this type of control is:

var(s∗n) ≈ 0.79r2/(λbv̄). (17)

4.2. Comparison with one-way-looking

Appendix B rederives the above expressions for a forward-looking control law
which includes only sn as a state variable. It shows that if this law is applied
in continuous time (i.e., with ∆t → 0) then the commercial speed penalty (16)
increases by 20% and the spacing variance (17) by 25%. So, two-way looking
is not just good because it overcomes the critical gap problem, it also performs
better under ordinary conditions.

The headway control strategy in Daganzo (2009) should perform similarly
as the strategy of Appendix B since both are forward-looking – or perhaps a
little worse because headway control is not applied continuously but at discrete
points along the route. For the following data (λ = 27 pax/hr-km, b = 4 s, v̄ =
20 km/hr, r2 = 0.12 km2/hr (which corresponds to a standard error of about
0.045 km per minute) the formulae just presented yield: α∗ = 0.38 hr−1, δ∗

= 1.3 km/hr and
√

var(sn) = 0.40 km. If buses are closely spaced with say
S = 1.5 km, then: c̄ = 19.1 km/hr, c̄′ = 17.8 km/hr, and H ≈ 5.0 min. For
these commercial speeds, the standard deviation in the headways is about 1.5
min and the increase in in-vehicle travel time due to the control is about 13.8
s per km traveled. The time added by the headway-based control strategy in
Daganzo (2009) for a similar set of conditions is 19 s/km (37% greater); and
the time added by conventional schedule control about 60 s/km (about 334%
greater). Thus, the proposed strategy shows promise.

The results in this section are approximate, however, and only pertain to
the idealized model. Therefore, the next section generalizes the model and the
control law. It shows that real systems perform approximately as predicted in
this section – slightly better in fact.

5. Generalized results for realistic settings

This section proposes and evaluates control laws for realistic settings with dis-
crete stops and passengers, where all passengers access the bus to/from these
stops. It is assumed that buses do not skip stops and that alighting passengers
do not contribute strongly to the bus dwell time at a stop. More specifically,
buses are delayed by a fixed amount, τ , each time they pass a stop (correspond-
ing to the time it takes the bus to decelerate, accelerate open and close its
doors), and an additional time B for each boarding passenger. The control laws
about to be derived can also be used without these assumptions; but these are
the assumptions under which they will be tested.

Noise in a discrete system arises both because of traffic/driver errors, and
because of variations in the number of passengers that board at each stop. As
before, the traffic/driver noise is assumed to obey a stationary stochastic process
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with independent increments. Its variance rate is denoted R2

T (km2/hr). Passen-
gers are assumed to arrive at the stops according to stochastic processes with in-
dependent increments and index of dispersion γ (p). Thus, the quai-equilibrium
variance rate of the time added at each stop is approximately: λγDHB2 (hr2).
Therefore, the variance rate per unit distance is λγHB2 (hr2/km). Since vehi-
cles travel at an average speed of c̄′ the variance rate of the distance traveled per
unit time is approximately: λγHB2c̄′3 = λγSB2c̄′2 (km2/hr). The total rate
combines traffic and passenger effects. It is: R2 .

= R2

T + λγSB2c̄′2 (km2/hr).

5.1. Three generalized control methods

It is conjectured that a discrete model with τ = 0 will behave similarly
as a continuum model with r = R since the effect of an individual passenger is
usually small, and its precise location should not matter. (This will be discussed
in more detail in the next subsection.) However, because τ is usually at least an
order of magnitude greater than B, its lumpiness could have a more significant
effect. Therefore, three control methods are now introduced to deal with the
lumpiness in τ . All three methods work by introducing an imaginary problem
with τ∗ = 0 that is similar in behavior to the original problem.

Method 1 : The first and most complex method captures the effect of the
intervening stops by introducing their fixed delays as state variables. Let the
cumulative number of stops visited by bus n be zn. These quantities are initial-
ized so that the modulo M difference, zn⊖1 ⊖ zn, is at all times the number of
stops between buses zn⊖1 and zn. The quantities are allowed to be fractional, to
account for buses that are at a stop but have not yet been fully delayed. Define
then the effective spacings as:

s∗n
.
= sn + τ(zn⊖1 ⊖ zn)v̄. (18)

Consider now an imaginary system without fixed stop times, but including
an extra distance τ v̄ in front of each stop. Without control, this system should
have the same headways and travel times as the original, and its spacings should
be related to the original by (18); i.e., the conventional spacings of the imaginary
system equal the effective spacings of the real system. Since the two systems
are dual images of each other, a dynamic control law such as (6-7) that works
well in this imaginary system will also work well in the original. Accordingly,
the proposed control law is:

v′

n
.
= v̄ + Cn(s∗, S∗), n = 1, 2, ...N, (19)

where S∗ is the effective equlibrium spacing; i.e., the equlibrium spacing in the
imaginary model. The formula is: S∗ .

= (L + Mτv̄)/N .
Note every quantity on the RHS of (19) is known at the moment control

is applied. Thus, the strategy is feasible. The strategy can be applied with
little modification even if the fixed stop times differ across stops. This may be
important when one or more of the stops include long periods for drivers to rest.

Method 2 : If D << S (i.e., consecutive buses are always separated by many
stops) then the benefit of the expanded state variables introduced with Method
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1 is diluted. In this case it could be almost as effective, and simpler, to work
only with the original spacings. With this method, the fixed stop delays τ
would be captured in the imaginary system by reducing its bus cruising speed
just enough to preserve the equlibrium bus trip times. The real and imaginary
systems are not exact duals of each other but should behave similarly. If we
use an asterisk for the vehicle speeds of the imaginary model, the two cruising
speeds are related by 1/v∗

n ≈ 1/v′
n + τ/D. Therefore, differential changes in

these speeds are related by ∆v′
n ≈ ∆v∗

n(v′2
n /v∗2

n ) ≈ ∆v∗
n(1 + τv′

n/D)2. In quasi-
equilibrium, where v∗

n − v̄∗ .
= ∆v∗

n and v′
n − v̄

.
= ∆v′

n, the adjustment in speed
for the imaginary model stipulated by (6-7), v∗

n− v̄∗ = Cn(s, S), should be small
and satisfy approximately the differential relation; i.e., (v′

n − v̄) ≈ (v∗
n − v̄∗)(1+

τv′
n/D)2 ≈ Cn(s, S)(1 + τv′

n/D)2 ≈ Cn(s, S)(1 + τ v̄/D)2. Thus, it is proposed
to use:

v′

n
.
= v̄ + (1 + τ v̄/D)2Cn(s, S), n = 1, 2, ...N. (20)

Method 3 : An alternative approach, still with s as the state (used in Pi-
lachowski, 2009), uses a continuum imaginary model with τ∗ = 0 and the
same cruising speed at the original, but adjusts the boarding time per pas-
senger, b∗, so as to keep the bus stop times at equlibrium invariant; i.e, so that:
b∗(λHD) = b(λHD) + τ . The imaginary boarding time per passenger is there-
fore: b∗ = b + τ/(λHD) = b + τ c̄′/(λSD) ≈ b + τ c̄/(λSD). This parameter is
then used instead of b in (6-7) to obtain the target cruising speed.

The imaginary system of Method 3 (unlike those of the other 2 methods)
assumes that buses bunch even if b = 0. As a result, the method could sometimes
over-control and reduce the cruising speeds more than necessary. The method
is well suited, however, for applications where buses skip stops because then the
time buses lose by accelerating/decelerating and opening/closing doors does
depend on the number of passengers. In this type of application the marginal
time added by a passenger, b∗, could be estimated empirically or analytically.
Note however that all three methods are roughly equivalent if τ ≈ 0.

5.2. Evaluation

It is claimed that a real system with discrete stops is more easily controlled
than its continuum counterpart; i.e., that the predictions of (12) and (14) for
the continuum version of a real system are upper bounds to the performance of
the latter.

To see why this claim is reasonable consider an extreme case consisting
of a very long route with no traffic noise, τ = 0 and many more buses than
stops, M/N >> 1. Examine now what happens when the separation between
bus stops is increased by reducing N while keeping everything else constant,
including the control law. First note that the set of buses traveling between stops
are deterministically governed by versions of (6-7) and (11) without the noise
terms, and that this deterministic control relaxes the bus positions and spacings
toward equilibrium exponentially. This means that the distance buses require to
(nearly) reach their equilibrium trajectories after experiencing a disturbance at
a stop should grows logarithmically with the size of the disturbance. Now, since
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the demand density is constant, these disturbances should be proportional to
the square root of the distance bettween stops. As a result, the distance buses
require to reach equilibrium increases by a fixed quantity when the station
spacing is doubled; i.e., the road section downstream of a stop where buses
relax toward equilibrium becomes a smaller fraction of the inter-stop distance
as the latter increases. In other words, the more separated the stations (and
the lumpier the disequilibrium impulses) the longer buses stay near equilibrium;
i.e., the less the standard deviation of the bus spacings and the headways. This
is what was claimed.

Simulation results: Pilachowski (2009) describes a simulation tool for the
discrete system. This simulation keeps track of individual passengers at the
stops and in the buses, and models the motion of the buses as described in this
paper. The only significant difference is that the simulation allows buses to skip
stops when nobody needs to board or alight.

Simulation runs confirm the controlability claim. They show that if no con-
trol is applied, the continuum problem collapses into bunches before the discrete
problem; see Fig. 1.

Figure 1: Sample paths of the minimum spacing across all buses assuming, (i) discrete stops
(solid lines) and (ii) continuous boarding (dotted lines).

The simulation can also be applied with control methods 2 or 3 by prop-
erly selecting its parameters. They fall in 4 categories: bus-related (N, v̄, τ, B);
infrastructure-related (S,D,R2

T ); demand-related (λ, γ); and control-related (α,
δ, ∆t). The simulation keeps track of the positions and spacings of the buses
with a time resolution of 1 s, and returns the variance of the spacings and the
headways. Go to: http://www.ce.berkeley.edu/~daganzo/Simulations/

Bus_Bunching.html for a visualization.
To test the accuracy of the formulas of Section 3, a set of 200 simulations
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was run, with inputs selected at random from Table 1 and each lasting 8-hrs.
Control Method 2 was used.

The results turn out not to be sensitive to ∆t, as in the formulas. It is found,
also as expected, that the spacings produced by the simulation are slightly more
regular than those given by (12) and (14); see the summary results in Figures
2 (for τ = 0) and 3 (for τ = 30s). The figures confirm that cooperative control
indeed succeeeds in preventing bunching, and that the predictions of Section 3
are sufficiently accurate for planning purposes.

Table 1: Simulation Data

parameter range
N [3, 20]
v̄ (km/hr) [25, 60]
τ (s) 0 or 30
B (s/p) 2 or 4
S (km) [2, 6]
D/S 2, 4 or 8
R2

T (km2/hr) 0 , 0.1, or 0.4
λ (p/km-hr) [10, 100]
γ (p) 1
α/(λBv̄) 0.5, 1 or 2
δ (km/hr) given by eq.(14)
∆t (s) 5 or 20

6. Discussion: Further work

Non-linear effects: This paper recommends choosing a large enough speed re-
duction parameter, δ, to ensure that the (linear) control law (6) rarely stipulates
speeds greater than v̄. However, lower δ’s can be used if one is prepared to allow
the non-linear relation v′

n
.
= middle{0, v̄ + Cn(s, S), v̄} to occur. This is easy to

do in practice (and in simulation) but hard to analyze mathematically. Allowing
the system to enter the non-linear regime can be beneficial. Simulations show
that by reducing δ toward 0, the average commercial speed increases, albeit the
headway variance also increases. Simulations also show that, even if δ is chosen
as recommended in this paper, the non-linear regime arises when the system is
disrupted by a disturbance that creates a sufficiently large supra-critical gap.
The simulations also show that the proposed control law can successfully restore
order when supra-critical gaps arise. As such, it seems to solve the pesky critical
gap problem identified in the introduction. Clearly, a better understanding of
the system’s behavior under non-linear control is desirable.

More complex scenarios: Although adjustments can be made to the con-
trol laws and formulas of this paper to account for time-dependent and space-
dependent phenomena (e.g., involving demand and cruising speeds), a system-
atic understanding of these inhomogeneities is desirable. The ideas in this paper
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Figure 2: Predicted vs. observed standard deviations of the spacings (τ = 0s)

Figure 3: Predicted vs. observed standard deviations of the spacings (τ = 30s)

can also be generalized to systems operated with a schedule, and to corridors op-
erating multiple lines that interact through the sharing of passengers, or through
the sharing of a no-passing right-of-way.

Human factors and other practical considerations: Since the inspection and
control interval ∆t does not influence the results significantly, drivers do not have
to monitor their speeds continuously. (Recall that driver errors are accounted
for in the control.) Thus, an implementation can succeed by giving drivers rough
rules and simple, easy-to-understand, feedback mechanisms. One possibility is a

12



screen that would display a bus’ current “speed limit”. Drivers would only have
to obey this artificial speed limit approximately. Another possibility is remote
control of the buses’ top speed, which would allow drivers to operate normally.
This could be safe for systems with an exclusive right-of-way. Although many
implementation details remain to be worked out5 the proposed strategy can be
implemented with current technology. It only requires a GPS-enabled computer
on each bus, linked to the control center. Details should be evaluated, not just
theoretically, but in the field.
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Appendix A. The distribution of spacings

Let ǫi,n be the position error of bus n at time t = i∆t, and ξi,n = ǫi⊖1,n−ǫi,n the
error in the spacing in front of bus n at the same time. This appendix examines
the statistical distribution of these variables. To this end, it will be convenient
to denote the (N × 1) column vectors of position and spacing errors at instant
i by ǫi and ξi. An exact formula for cov(ξi) under u.i.v. noise is given. The
formula reveals that the variance of the spacings at any time i, var(si,n) ≡
var(ξi,n) is bounded by a quantity that is independent of both, i and L. It is
also shown that if the noise terms are bounded then the ξi,n themselves are
bounded, even if the noise terms are not u.i.v.

To start, rewrite (11) in matrix form as:

ǫi = Aǫi−1 + Iνi−1. (21)

In this expression I is the (N×N) identity matrix; and A is a symmetric, circu-
lant square matrix with elements: Am,n = 1 − 2α∆t if m = n, Am,n = α∆t if
m ⊖ n = ±1, and Am,n = 0 otherwise.

Now, iterate (21) i times, expressing each time the ǫ on the right hand side
in terms of the ǫ in the prior time step, to obtain:

ǫi =
i−1∑

j=1

Ajνj + Aiǫ0. (22)

Next, write the deviations from the spacings ξi using the linear transforma-
tion ξi = Dǫi, where D is the matrix that subtracts the terms of ǫi as per the
relation: ξi,n = ǫi,n⊖1 − ǫi,n. (The elements of D are: Dm,n = −1 if m = n;
and Dm,n = 1 if n = m ⊖ 1.) The result is:

5For example, for systems operated in traffic one needs to correlate the maximum cruising
speed given by (6), which includes traffic disturbances, with the bus’s top speed.
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ξi = Dǫi =

i−1∑

j=1

DAjνj + DAiǫ0. (23)

This expression involves powers of A and is now simplified. To this end,
define the uniform square matrix U , with elements 1/N . The following is true.

LEMMA 1: If 0 < α∆t < 0.5, there is a set of matrices, {Ek : k =
1, 2, ...N}, such that:

Aj = U +

N∑

k=2

λj
kEk, (24)

for a set of constants, λk, such that |λk| < 1 for k = 2, 3, ...N .

Proof : If 0 < α∆t < 0.5, then A has the structure of the one-step transition
probability matrix of a Markov chain. The chain is obviously non-periodic
and communicating; i.e., it is irreducible. Because of this property, the largest
eigenvalue of A is λ1 = 1; and the rest must satisfy |λk| < 1 (for k > 1).
So, raising the diagonalized version of A to the the j th power yields: Aj =∑

k λj
kEk. Now note: for j → ∞, Aj = E1. Because the chain is irreducible, the

rows of this matrix must be identical and equal to the steady state probability
vector. Furthermore, because A is symmetric, the steady state probability
vector has identical elements, 1/N . Thus, E1 = U , and Aj = U +

∑
k>1

λj
kEk.

QED

LEMMA 2: The eigenvalues, λk, and the elements of Ek
.
= (ekij) are:

λk = 1 − 2(α∆t)[1 − cos(2π(k − 1)/N)], ; and (25)

ekij = cos(2π(k − 1)(i − j)/N)/N. (26)

Proof : Let a be the first column of circulant matrix A and λ the vector of
eigenvalues. It is well known that the eigenvectors of any circulant matrix are the
columns of the (N×N) discrete Fourier transform matrix, F , and that the vector
of eigenvalues is given by the product of F and the first column of the circulant
matrix. Thus, λ = Fa in our case. Inserting aT = (1−2α∆t, α∆t, 0, ..., 0, α∆t)

in this expression yields (25). Now, recall that F−1 = F̃ /N , where the tilde

denotes complex conjugation. Hence A = F−1diag(λ)F = F̃diag(λ)F /N , and

Aj = F̃diag(λ)jF /N . Thus, if we denote by F k the square matrix obtained

by multiplying the kth column of F̃ and the kth row of F /N , the last equality
can be rewritten as: Aj =

∑
k λjF k. The eigenvalues and the LHS of this

expression are real but the F k are complex. Thus, conjugation shows that
Aj =

∑
k λjF̃ k. Now add the last two equalities and divide the result by 2 to

find Aj =
∑

k λjEk, where the Ek = (F k + F̃ k)/2 are real. The reader can
verify by following these steps that the elements of Ek are as given by (26).
QED
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Insert now (24) in (23), and note that DU = 0 because all the terms of U

are identical. The result can be written as:

ξi = Dǫi =

i−1∑

j=1

N∑

k=2

λj
kDEkνj +

N∑

k=2

λi
kDEkǫ0. (27)

The last term of this expression vanishes if the initial errors are zero. Now,
to simplify the notation, define λ

.
= maxk>1(|λk|). Note that λ < 1 if α∆t ∈

(0, 0.5), as per Lemma 1; that (27) is a linear combination of the (u.i.v.) noise
terms; and that the eigenvalues and the (matrix) weights only depend on α∆t,
and N . These observations are now used in the proof of the following result.

THEOREM: If : (i) α∆t ∈ (0, 0.5), (ii) the noise terms are uncorrelated with

identical variance, σ2, and (iii) the initial errors are zero, then the quantity

var(sn,i) ≡ var(ξn,i) is bounded by a constant that only depends on N , α∆t and
σ2. Furthermore,

cov(ξi) = σ2

N∑

k=2

(
λ2

k − λ2i
k

1 − λ2

k

)(DEk)(DEk)T , (28)

where the eigenvalues and the weights on the RHS are given by Lemma 2.

Proof : The terms of (27) are uncorrelated. Therefore the covariance ma-
trix of their sum is the sum of the individual covariance matrices. So, take
covariances on both sides of (27) with ǫ0 = 0, and the result is

cov(ξi) =
i−1∑

j=1

N∑

k=2

λ2j
k σ2(DEk)(DEk)T , (29)

This reduces to (28) because λ2

k < 1 by virtue of Lemma 1.
Now, to see that the variances are bounded, use dk,n for the nth diagonal

term of (DEk)(DEk)T and write:

var(ξi,n) =
i−1∑

j=1

N∑

k=2

λ2j
k σ2dk,n. (30)

Note, the three factors on the right side of (30) are non negative. Thus, if we
define d

.
= maxk(dk,n), and recall that λ2j

k ≤ λ2j < 1, we can write:

var(ξi,n) ≤
i−1∑

j=1

N∑

k=2

λ2jσ2d ≤
λ2

1 − λ2
(N − 1)σ2d < ∞. (31)

Since λ and d are only functions of N and α∆t, this concludes the proof. QED

COROLLARY: If the noise errors are bounded by a quantity ν̄,then the de-

viations from the spacings are also bounded.
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Proof : Apply the L1 norm to both sides of the (27) with ǫ0 = 0. Then use
the triangle inequality to derive the upper bound by applying the norm to the
individual terms of the right hand side. The result is:

‖ξi‖ ≤
i−1∑

j=1

N∑

k=2

∣∣∣λj
k

∣∣∣ ‖DEkνj‖ . (32)

If mk is the largest absolute value of all the elements of DEk, then ‖DEkνj‖ ≤
Nmkν̄. Thus,

‖ξi‖ ≤
i−1∑

j=1

N∑

k=2

λjNmkν̄ ≤
λ

1 − λ
Nν̄

N∑

k=2

mk < ∞. QED (33)

The corollary is useful because it holds for any joint distribution of the error
terms; even if it they are time- and bus-dependent.

Appendix B. Results for forward-looking control

The steps of Section 2.3 are repeated with the following forward-looking law:

v′

n
.
= v̄ + On(s, S), n = 1, 2, ...N, (34)

where s the vector of spacings and On(s, S) is:

On(s, S)
.
= [λbv̄(sn − S) + αsn − δ]/(1 − λbsn), n = 1, 2, ...N, (35)

The law is forward-looking because it only includes the forward spacing as a state
variable. Similar manipulations as in Section 2.3 yield the dynamic commercial
speed relation:

c′n ≈ c̄ + αsn − δ, (36)

and the quasi-equilibrium trajectories:

yn :≈ yn ⊕ c̄′∆t ⊕ αsn∆t ⊕ νn, n = 1, 2, ...N. (37)

As before, now express (37) in terms of deviations, ǫn, from the equlibrium
trajectories (10), still recognizing that sn = S + ǫn⊖1 − ǫn, to obtain:

ǫn :≈ ǫn ⊕ (α∆t)ǫn⊖1 ⊕ (1 − α∆t)ǫn ⊕ νn, n = 1, 2, ...N. (38)

For this system of equations, the variance of the coefficients of the dynamic
equation is (α∆t)(1− α∆t) ≈ α∆t if ∆t is small. Therefore, as in Sec. 3.1, the
variance of the spacings can be approximated by:

var(sn) ≈ (α∆t)var(νn) = r2/α, n = 1, 2, ...N. (39)

It is still reasonable to choose δ to be about three standard deviations of G,
which in the present case is: G

.
= λbv̄(sn − S) + αsn. Since var(G) = [λbv̄α +

(λbv̄)]2var(sn) ≈ [λbv̄α + (λbv̄)]2r2/α, we choose:

δ ≈ 3[α + λbv̄]r/α1/2. (40)
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The value of α that minimizes this expression is

α∗ ≈ λbv̄, (41)

The optimum reduction in average commercial speed is therefore:

δ∗ ≈ 6.0r(λbv̄)1/2, (42)

and the variance of the spacing that arises under this type of control is:

var(s∗n) ≈ r2/(λbv̄). (43)

Note how (42) and (43) are inferior to the results obtained with two-way looking.
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