
Reducing Cache Power with Low-Cost, Multi-bit

Error-Correcting Codes
Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti,

Wei Wu, Dinesh Somasekhar, and Shih-Lien Lu
Intel Labs

Hillsboro, Oregon, USA

{chris.wilkerson, alaa.r.alameldeen, zeshan.a.chishti, wei.a.wu, dinesh.somasekhar, shih-lien.l.lu} @intel.com

ABSTRACT

Technology advancements have enabled the integration of large

on-die embedded DRAM (eDRAM) caches. eDRAM is

significantly denser than traditional SRAMs, but must be

periodically refreshed to retain data. Like SRAM, eDRAM is

susceptible to device variations, which play a role in determining

refresh time for eDRAM cells. Refresh power potentially

represents a large fraction of overall system power, particularly

during low-power states when the CPU is idle. Future designs

need to reduce cache power without incurring the high cost of

flushing cache data when entering low-power states.

In this paper, we show the significant impact of variations on

refresh time and cache power consumption for large eDRAM

caches. We propose Hi-ECC, a technique that incorporates multi-

bit error-correcting codes to significantly reduce refresh rate.

Multi-bit error-correcting codes usually have a complex decoder

design and high storage cost. Hi-ECC avoids the decoder

complexity by using strong ECC codes to identify and disable

sections of the cache with multi-bit failures, while providing

efficient single-bit error correction for the common case. Hi-ECC

includes additional optimizations that allow us to amortize the

storage cost of the code over large data words, providing the

benefit of multi-bit correction at same storage cost as a single-bit

error-correcting (SECDED) code (2% overhead). Our proposal

achieves a 93% reduction in refresh power vs. a baseline eDRAM

cache without error correcting capability, and a 66% reduction in

refresh power vs. a system using SECDED codes.

Categories and Subject Descriptors

B.3.4 [Memory Structures]: Reliability, Testing, Fault-

Tolerance.

General Terms

Design, Reliability, Power.

Keywords
ECC, Multi-Bit ECC, DRAM, eDRAM, refresh power, Vccmin.

1. INTRODUCTION
Advances in technology scaling have led to dramatic yearly

improvements in on-die cache capacity. New process

technologies have also enabled integrating DRAM on a logic

process, leading to the use of embedded DRAM (eDRAM) to

build on-die caches that are much denser than SRAM-based

caches (e.g., IBM Power 7 [14]). However, a side effect of

technology scaling is the increasing susceptibility of cache

structures to device variations [1, 27], where a few weak cells can

constrain the operating range of the whole cache.

In traditional SRAM caches, intrinsic variations force operation at

high voltages due to a few weak cells that fail at lower voltages,

and impede efforts to reduce power [29, 33]. Likewise, in

eDRAM caches, device variations affect the retention time of

individual DRAM cells, with a few particularly weak bits

determining the refresh time of the whole cache. A high refresh

rate significantly increases cache power.

Reducing power consumption is a first-order design constraint for

modern processors. In pursuit of improved power and energy

efficiency, processors implement a number of idle states to

support lower power modes. Reducing the power consumed

during idle states is particularly important because the typical

CPU spends the vast majority of its time in idle state. Many

desktop applications, such as word processors and spreadsheets,

spend much of the time waiting for I/O and tend to require the

CPU to operate only 10-20% of the time during use. Studies done

on the Intel® Core™/Core™ 2 Duo show that an idling processor

will consume an average of 0.5W-1.05W [24] depending on the

processor and frequency of idle state exits caused by events like

OS interrupts. Our analysis projects that a future processor with

128MB of eDRAM cache will consume 926mW just refreshing

the eDRAM. Based on these power numbers, we project that the

power consumption of large memory structures, like eDRAM

caches, will be the biggest contributor to overall idle power.

One popular method to reduce cache power is to power-gate large

blocks of memory at the cost of losing its state [6]. But as cache

density increases, the performance and power costs of this

approach also increase. One of the important goals in

implementing idle states is reducing power consumption, while

minimizing the transition latency into and out of the idle state. In

the Intel® Core™ 2, a transition out of the C4 idle state can take

about 100-200us [9]. In contrast, if the state in a 128MB eDRAM

cache were sacrificed to save power, it would take 4.2ms to re-

fetch the 128MB of lost data assuming full usage of the 30GB/s

bandwidth provided by system memory. In future products with

denser eDRAM caches, navigating the tradeoffs between idle exit

83

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10 June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

latency and idle power consumption will become increasingly

difficult. As the capacity of embedded memory grows, the

performance and power cost of flushing this memory also grows.

A key challenge for future product designers is to enable flexible

memory structures that can operate at very low idle power,

without dramatically increasing transition latency to and from the

idle power state due to data loss.

In this paper, we evaluate a modern processor with a 128MB

eDRAM cache. We show that refresh time plays the key role in

determining the eDRAM’s power. We first explore the role of

variation-related cell failures in determining refresh time. We then

evaluate the potential for using error-correcting codes (ECC) to

mitigate refresh-related failures. Augmenting eDRAM with error-

correcting codes enables reliable cache operation with longer

refresh periods, thereby lowering system power.

We propose Hi-ECC, a practical, low-latency, low-cost, error-

correcting system that can compensate for high failure rates in

eDRAM caches. Hi-ECC implements a strong BCH code with the

ability to correct 5 and detect 6 errors (hereafter referred to as a

5EC6ED code). A traditional approach using strong ECC suffers

from two prohibitive overheads that limit its applicability. First,

building a low-latency decoder for multi-bit ECC codes is

extremely costly. Second, the storage overhead of ECC bits is

high (around 10% for a 5EC6ED ECC code for a 64 byte line).

Hi-ECC proposes architectural solutions to both problems. It uses

a simple ECC decoder optimized for the 99.5% of the lines that

require little or no correction, and provides a high latency

alternative for lines that require complex multi-bit correction. To

minimize the performance impact of processing high latency

multi-bit corrections, Hi-ECC disables lines with multi-bit

failures. Finally, Hi-ECC leverages the natural spatial locality of

the data to reduce the cost of ECC storage. We make the

following main contributions:

1. We demonstrate that device variations lead to significant

increases in cache refresh rates.

2. We propose Hi-ECC, a practical system for using strong

error correcting codes that avoids decoder complexity and

latency.

3. We show how Hi-ECC can be extended to reduce the

storage overhead of the error-correcting codes by amortizing the

cost of the code over larger data words. This allows implementing

Hi-ECC with a 2% storage overhead, comparable to that of a

single error correcting code (SECDED) over 64 byte lines.

4. For a system with a 128 MB eDRAM cache, we show that

Hi-ECC can reduce cache refresh power by 93% compared to an

eDRAM with no error correction capability, and 66% compared

to an eDRAM with SECDED, all for about the same storage

overhead as a SECDED code. When accounting for dynamic

power, an optimized Hi-ECC reduces total power by 61% relative

to SECDED.

The remainder of this paper is organized as follows. In Section 2,

we review some of the design tradeoffs for eDRAM caches,

including a discussion of retention failures and previous work on

mitigating them. Section 3 describes our proposed Hi-ECC

architecture, and is followed by a review of the mathematical

properties of BCH codes that Hi-ECC relies on in Section 4. We

describe our evaluation methodology and results in Section 5 and

conclude in Section 6.

2. BACKGROUND
Embedded DRAM technology enables smaller memory cells as

compared to SRAM cells, resulting in a three to four times

increase in memory density [21]. The higher density of eDRAM

makes it a promising candidate to replace SRAM as the last-level

on-chip cache in future high performance processors. IBM has

recently announced that its upcoming Power7 processor will use a

32 MB on-chip eDRAM cache [14]. As feature sizes continue to

decrease, even larger eDRAM caches can be incorporated on

chip. In this paper, we model a 128 MB eDRAM cache, two

technology generations ahead of IBM Power7’s eDRAM cache.

One of the main problems with eDRAM cells is that they lose

charge over time due to leakage currents. The retention time of an

eDRAM cell is defined as the length of time for which the cell

can retain its state. Cell retention time depends on the leakage

current, which, in turn, depends on the access device leakage. To

preserve the state of stored data, eDRAM cells need to be

refreshed on a periodic basis. In order to prevent failures, the

refresh period needs to be less than the cell retention time.

Because eDRAM uses fast logic transistors with a higher leakage

current than conventional DRAM, the refresh time for eDRAM is

about a thousand times shorter than conventional DRAM. For

example, Barth, et al. [2] report the refresh time of a small

eDRAM to be 40us as compared to 64ms refresh time in

commodity DRAM [22]. This low refresh time poses serious

problems for eDRAM because it not only increases the idle

power, but also leads to reduced availability. Previous work has

shown that variations in threshold voltage cause retention times of

different DRAM cells to vary significantly [8, 10, 11, 18]. These

variations are caused predominantly by random dopant

fluctuations and manifest themselves as a random distribution of

retention times amongst eDRAM cells. We use the data published

in [18] to model the retention time distribution in Figure 1.

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0 100 200 300 400 500

Refresh Time (usec)

P
ro

b
a
b
li
ty

 o
f
F
a
il
u
re

 pfbit pfCache

30us

Figure 1: eDRAM retention time distribution

The pfbit curve in Figure 1 represents the probability of a

retention failure in a single bit cell (derived from Figure 3 in [18])

and the pfCache curve represents the failure probability of a

128MB eDRAM cache for different refresh times. Our model

assumes that bit retention failures are distributed randomly

throughout the eDRAM cache, consistent with [18]. A cache

containing even a single failure must be discarded. Therefore, the

84

probability of failure for the entire cache is (1 – probability of

success), where the probability of success is the probability that

each bit in the cache stays failure-free. We assume that the

pfCache must be kept at less than 1 out of 1000 to achieve

acceptable manufacturing yields [33]. Under these assumptions,

data in Figure 1 shows that the refresh time for a baseline 128MB

eDRAM cache is 30 microseconds, close to the 40 microseconds

refresh time reported in [2] for a 13.5Mbit eDRAM macro.

Refresh mechanisms in eDRAM designs typically use a single

worst case refresh period dictated by the cell with the lowest

retention time. As eDRAM capacity increases in future

generations, eDRAM idle power, dominated by refresh, will

grow. Some previous papers have proposed hardware mechanisms

to exploit retention time variations by refreshing different DRAM

cells at different refresh rates [16, 26]. Venkatesan, et al. [32]

proposed a software mechanism that allocates DRAM pages with

longer retention time before allocating pages with shorter

retention time, and then chooses a refresh period that is

determined only by the populated pages instead of the entire

DRAM. These approaches require additional storage to track

retention times and rely on memory tests to identify marginal bit

cells. In [33] Wilkerson et al propose the bit-fix algorithm,

another testing-based approach, to address the problem of high

failure rates in the context of Vccmin reduction in SRAM caches

instead of DRAM refresh time. Since test time grows

proportionately with the capacity of the memory being tested,

increasing cache capacities may limit the applicability of all

testing-based approaches.

Ghosh and Lee [10] recently proposed a SmartRefresh technique

to reduce refresh power by adding timeout counters in each

DRAM row and avoiding unnecessary refreshes for those rows

which were recently read or written. However, SmartRefresh is

ineffective during the idle mode when the cache is not being

accessed, and therefore does not improve idle power.

Another promising approach to increase DRAM refresh times is

the use of error-correcting codes (ECC) to dynamically identify

and repair bits that fail [8, 15]. This approach sets refresh time

irrespective of the weakest bits, using ECC to compensate for

failures. With this approach, a stronger error-correcting code, with

the ability to correct multiple bits, implies increased refresh time

and reduced power. However, strong ECC codes have a high

storage and complexity overhead which limit their applicability.

In the following two sections, we propose an architectural

mechanism that uses strong ECC codes with a low storage and

complexity overhead.

3. STRONG ECC ARCHITECTURE
When designing a large eDRAM cache, a designer strives to

minimize eDRAM power consumption in the low-power

operating modes without penalizing performance in the normal

operating mode. To achieve this objective, we propose Hi-ECC,

which implements a multi-bit error-correcting code with very

small area, latency, and power overheads.

We propose a system with a large (128MB) eDRAM last level

cache. In a baseline configuration with no error correction

capability, the time between refreshes for such a cache will be 30

microseconds, leading to a significant amount of power consumed

even when the processor is idle. Refresh power can be reduced by

flushing and power gating the cache during the low-power

operating modes. This, however, causes a significant performance

penalty when the processor wakes up from the idle mode since it

will need to reload the cache, thereby incurring a large number of

cold start misses. Alternatively, we can lower refresh power

consumption by decreasing the refresh frequency (i.e., increasing

time between refreshes). However, as we show in Figure 1,

decreasing refresh frequency implies the need to tolerate a higher

number of failures for each cache line. Implementing a strong

error-correcting code with the capability to correct multiple errors

is necessary to achieve this goal.

At the core of Hi-ECC is a strong 5EC6ED (five bit correction,

six bit detection) BCH code. We explain implementation details

for BCH codes in Section 4. Traditional implementations of a

5EC6ED BCH code would suffer from two key drawbacks: high

storage overhead for the code itself, and high decoder complexity

and latency. In this section, we describe how Hi-ECC addresses

both of these drawbacks. Since our implementation requires

architectural changes that would increase dynamic power, we also

propose an architectural optimization to lower the impact on the

cache dynamic power.

3.1 Reducing Storage Overhead
The storage required for a 5EC6ED code for a 64B cache line is

51 bits, a 10% overhead. Since the cache occupies a large portion

of the die area (50% or higher), augmenting the eDRAM cache

with 5EC6ED code will significantly increase the die area and

cost. In contrast, a single error correcting, double error detecting

(SECDED) code for a 64B line requires 11 bits, an overhead of

around 2%. Our goal is to implement the 5EC6ED code with the

same storage overhead as the SECDED code.

To achieve this goal, we leverage two important properties. First,

the size of an ECC code relative to that of the data word

diminishes as the size of the data word grows, as we show in

Section 4.3. While a SECDED code for a 64B line has an 11-bit

overhead (2%), a SECDED code for a 1KB line has a 15-bit

overhead (0.18%). Second, the efficacy of a code only diminishes

slightly as the size of the data word increases. In Figure 2, we

show the failure probability (i.e., the probability that the line will

have more failures than those correctible by ECC) for three

different codes: SECDED on a 64B line, SECDED on a 1KB line,

and double error correcting, triple error detecting code

(DECTED) on a 1KB line. At very low refresh times, failure rates

of the SECDED 64B line and the SECDED 1KB line are very

close. DECTED-1KB (with only a 29-bit overhead, 0.35%) has a

lower failure probability than both SECDED codes, except at high

refresh times, such as 500us, where it is very close to the

SECDED-64B code. By choosing a stronger code and amortizing

the cost of the code over larger cache lines, we can improve our

ability to tolerate failures with a very small storage overhead.

Our Hi-ECC design implements a 5EC6ED code on each 1KB

line (5EC6ED-1KB), requiring an additional 71 bits (0.87%

overhead) for each line to store the code. In Figure 3, we compare

the refresh time of a 128MB cache augmented with Hi-ECC to the

baseline configuration with no error correction capability as well

as a configuration using a SECDED code for each 64B sub-block

(SECDED-64B). Like previous work that focused on SRAM [33],

we assume that the refresh time will be chosen such that no more

than 1E-03 (i.e., 1/1000) of the caches will fail. The baseline

configuration with no failure mitigation must operate at the

85

baseline refresh time of 30us. Adding a SECDED code allows a

5X increase in refresh time to 150us. Hi-ECC allows us to

increase the refresh time to 440us (almost a 15X reduction in

refresh frequency compared to the baseline).

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0 100 200 300 400 500
Refresh Time

P
ro

b
a
b

il
it

y
 o

f
F

a
il

u
re

SECDED 1KB

SECDED 64B

DECTED 1KB

Figure 2. Comparing bit failure probabilities for three

code/line size combinations. DECTED on 1KB lines achieves

higher refresh time than SECDED on 64B lines

1.E-21

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0 100 200 300 400 500

Refresh Time

P
ro

b
a
b

il
it

y
 o

f
F

a
il
u

re

Base

SECDED-64B

Hi-ECC: 5EC6ED-1KB

30us 150us 440us

Figure 3. Hi-ECC achieves a higher refresh time than

SECDED at the same failure probability

3.2 Reducing Latency
A hardware implementation of a 5EC6ED code is very complex

and imposes a long decoding latency penalty, proportional to both

the number of error bits corrected and the number of data bits

(Section 4.1). If the full strength encoding/decoding was required

for every cache access, this could significantly increase cache

access latency. However, our proposal leverages the fact that

error-prone portions of the cache can be disabled, avoiding the

high latency of decode during typical operation.

The Hi-ECC technique relies on a simple, one cycle ECC block to

correct a single bit error, and an un-pipelined, high-latency ECC

processing block to correct multiple bit failures in a cache line [7,

20]. When a line is read from the cache, a simple decoder

generates the syndrome for the line, which includes information

on whether it has zero, one, or a higher number of errors (Section

4.2). If the line has zero or one bit failures, the simple ECC

decoder can perform the correction in a single cycle. Figure 4

shows a high-level block diagram for Hi-ECC. The block referred

to as Quick-ECC contains the syndrome generation logic and the

error correction logic for lines with zero or one failures. The

Quick-ECC block also classifies lines into two groups based on

the syndrome: those that require complex multi-bit error

correction and those that have zero or one errors. Lines that

require multi-bit error correction are forwarded to a high latency

(potentially hundreds of cycles) ECC processing unit that

performs error correction using either software or a simple state

machine. This allows us to simplify the design at the expense of

increased latency for lines with two or more failures. Lines that

require one or less error corrections can be immediately corrected

and forwarded to the unit requesting the line.

Figure 4: Block diagram for Hi-ECC

The high latency of handling multi-bit failures could significantly

reduce performance. To avoid incurring this latency, problematic

lines could be completely disabled or a mechanism such as bit-fix

[33] could be integrated as shown by the dotted box labeled

optional repair in Figure 4. This guarantees that the performance

penalty of multi-bit decoding is incurred only once, the first time

a failure is identified. The frequency of failures plays a role in

the disable strategy that we choose. Low multi-bit failure rates

motivate a simple approach such as disabling cache lines

containing multi-bit failures. On the other hand, cache line

disable will result in unacceptable cache capacity loss if multi-bit

failure rates are high. In this case, a more complex mechanism

such as bit-fix might be used to minimize the capacity lost to

disabling.

Figure 5 shows the probability that N (X-axis) or more lines have

multi-bit failures for a 128MB eDRAM cache at the refresh time

we propose (440us). On average, a 128MB eDRAM will have 750

1KB lines with multi-bit failures that need to be disabled,

(0.573% of all lines). As highlighted in the figure, the probability

that 900 or more lines (0.7% of all cache lines) will exhibit multi-

bit errors is 6.77x10-8. For comparison, Hi-ECC augmented with

a simplified version of bit-fix [33] that repairs a single additional

bit per cache line requires an additional 13 bits per line (0.13%

overhead). However, this 13-bit overhead enables efficient

correction of lines with 2-bit errors and reduces the number of

lines that need to be disabled. Disabling lines with only 3 or more

errors reduces the average number of disabled lines from 750 to

28 (0.02% of all lines), with a probability of 5.95x10-8 that 60 or

more lines contain three or more errors. Although adding bit-fix

reduces wasted cache capacity, the improvement over simple line

disable is marginal for the failure rates in our model and doesn’t

justify the additional latency and complexity. As a result, the rest

C

P

U

TAG/ECC
ARRAY

eDRAM
Address

optional
repair

Quick
ECC

> 1

fail?

High latency
ECC

processing

86

of this paper will focus on the Hi-ECC approach that relies solely

on line disable for lines with multi-bit (two or more) errors.

Due to the implementation of our eDRAM cache, there are

restrictions to how many and which lines can be disabled. Since

our cache is a 16-way set-associative, and since disabling all lines

in a particular cache set could be catastrophic for some

workloads, we limit the maximum number of lines that can be

disabled in a particular set to 14 of the 16 ways. We also limit the

maximum number of failing lines to 900 to quantify overhead.

With a refresh time of 440us, the probability of at least one of the

lines containing more than 5 failing bits is 6.21x10-4 (Figure 3),

the probability of more than 900 multi-bit failures (disabled lines)

is 6.77x10-8 (Figure 5), and the probability of more than 14 multi-

bit failures in a single set is 1.12x10-61. This indicates that

disabling cache lines with multi-bit failures will have little effect

on the overall probability that our cache meets the quality

requirements at 440us. The total storage overhead for our

approach is 1.58% including a 0.88% overhead for the code and a

single per-line disable bit, and a 0.7% overhead for the 900

disabled lines.

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0 200 400 600 800

lines (N)

P
ro

b
a
b

il
it

y
 #

 l
in

e
s
 w

il
l
fa

il

mean (750 lines)

pfail 900 lines

6.77E-8

mean (28 lines)

w/ bit-fix

pfail 60 lines

5.95E-8

w/o bit-fix

Figure 5. The distribution of failing lines for a 128MB Cache

with 1KB lines with (w/) and without (w/o) bit-fix.

3.3 Reducing Dynamic Power
Our Hi-ECC proposal uses larger cache line sizes to reduce the

area cost of strong ECC codes. However, larger line sizes

introduce some additional challenges. Although 1KB is a

reasonable line size for a large embedded memory, our baseline

configuration has a much smaller L2 cache with a 64B cache line

(referred to as sub-block). Some implementation issues arise

when we read from or write to our large L3 eDRAM cache due to

the mismatch between its 1KB line size and the 64B sub-blocks

used by other caches.

Most writes to the large L3 eDRAM cache will be in the form of

smaller 64B sub-blocks generated at lower-level caches or fetched

from memory. To modify a 64B sub-block in a 1KB line, we need

to perform a read-modify-write operation since we need to

compute the ECC code. First, the old 64B block that is being

overwritten must be read, along with the ECC code for the entire

line. We then use the old data, old ECC, and new data to compute

the new ECC for the whole 1KB line. We then write the new 64B

sub-block and the new ECC. However, we do not need to read the

whole 1KB line to compute the new ECC, as explained later in

Section 4.3.

The purpose of most L3 reads will be to provide cache lines for

allocation in lower-level caches. Processing any sub-block

requires the ECC code to be processed with the entire data word

(1KB cache line) that it protects. Since each 64B sub-block must

be checked, each reference to a 64B sub-block must be

accompanied by a reference to the surrounding 64B sub-blocks.

This implies that any L3 read will access all 16 sub-blocks in the

1KB line, as well as the ECC code that they share. As an

example, if we need to read eight out of the 16 sub-blocks in one

1KB line, we must read all 16 sub-blocks eight times, for a total

of 128 sub-block reads. This large number of additional reads

causes a substantial increase in dynamic power consumption and

a drastic reduction in the useful bandwidth delivered by the

memory.

To address the extra power overhead for L3 reads, we consider

the fact that the vast majority of eDRAM failures are retention

failures. Since the retention time of our baseline eDRAM is 30us,

and each read automatically implies a refresh, we know that

retention failures will not occur for 30us after a line has been

read. Our proposal leverages this property and also the temporal

and spatial locality of the data to minimize the number the

superfluous reads. Using a structure we refer to as the Recently

Accessed Lines Table (RALT), we attempt to track lines that have

been referenced in the last 30us.

The first read to a line causes all sub-blocks in the line to be read

and checked for failures. The address of the line is then placed in

the RALT to indicate that it has recently been checked and will

remain free from retention failures for the next 30usec. As long as

the address of the line is held in the RALT, any sub-block reads

from the line can forgo ECC processing and thus avoid reading

the ECC code and other sub-blocks in the line. To operate

correctly, the RALT must ensure that none of its entries are more

than 30us old. To guarantee this, each 30us is divided into four

equal periods (P0, P1, P2, P3). Entries allocated in the RALT

during each period are marked with a 2-bit identifier to specify

the allocation period. Transitions between periods, P0 to P1 for

example, will cause all RALT entries previously allocated in P1

to be invalidated.

Each entry in the RALT consists of the following fields: a line

address to identify the line the entry is associated with; a valid bit,

a 2-bit period identifier field to indicate in which of the four

periods the line was allocated (P0, P1, P2, P3); and a 16-bit parity

consisting of one parity bit for each 64B sub-block in the line.

The RALT is direct mapped, but supports a CAM invalidate on

the 2-bit period field to allow bulk invalidates of RALT entries

during period transitions.

Figure 6 compares the implementation of the baseline L3

protection scheme (top) with that of Hi-ECC (bottom). The

baseline scheme uses a separate tag for each 1KB line and a

separate SECDED code for each 64B sub-block. To read a 64B

block, first the ECC and the block itself are read, then the ECC is

processed. In our Hi-ECC technique, the first time a sub-block is

read the entire ECC code is read along with each sub-block in the

1KB line to allow ECC processing for a single 64B block. We

update the RALT with the line address of the referenced line, a 2-

bit period ID, and a single parity bit for each sub-block. After the

87

first hit to a line, future accesses to the same 1KB line within the

next 30us should hit in the RALT. Figure 7 demonstrates a RALT

hit. In most cases, only the requested 64B sub-block is read.

Parity for the 64B sub-block is computed and compared to the

parity stored in the RALT. If the parity matches, we infer that

sub-block is valid and forward it to the requesting cache or

processor. A parity mismatch is treated as a RALT miss where the

whole 1KB line needs to be read.

Figure 6: Initial read and update of the Recently Accessed

Lines Table (RALT).

Figure 7: Hits to the Recently Accessed Lines Table (RALT)

3.4 Summary
In this section, we described our L3 cache architecture supporting

a strong ECC code. We use a 5-bit correcting code over a 1KB

cache line to minimize the area overhead. We check for zero or

one-bit errors in the common case to minimize latency and

complexity. We use an additional structure, the RALT, to track

recently accessed lines so that we avoid reading the whole 1KB

line on every cache read, thus minimizing dynamic power. This

design allows us to reduce the cache refresh power with minimal

area and performance overhead.

4. MULTI-BIT ECC FOR EDRAM CACHES
Error-correcting codes (ECC) have been used extensively in

memory and storage devices to tolerate both soft and hard errors.

On-chip caches and memory chips typically use simple and fast

ECC such as SECDED (single error correction, double error

detection) Hamming codes [19], whereas slower devices such as

flash memories use multi-bit ECCs with strong error correcting

capabilities (e.g., Reed-Solomon codes [19]). The higher

decoding latencies of the strong ECC mechanisms do not pose a

problem for mass storage devices, because the encoding/decoding

latency is insignificant as compared to intrinsic device access

time. However, as a result of technology scaling, the on-chip

memory arrays are becoming more susceptible to multi-bit errors,

and strong ECC codes are becoming desirable for these fast

memories as well.

Besides the latency overhead, the storage overhead of more ECC

check bits is another obstacle to using strong codes for on-chip

caches. In [34], for example, the authors propose to reduce the

cost of storing error-correcting codes for the last level cache

(LLC) by partitioning the code between the LLC and memory.

Many previously proposed techniques have exploited the tradeoff

between code complexity and check bit overhead to mitigate the

higher latency of multi-bit ECC. These techniques combine

simple ECC with bit rearrangement mechanisms such as bit

interleaving [28], address skewing [12] or 2-dimensional product

codes [5, 17], to correct certain multi-bit error patterns by

dispersing multi-bit errors into multiple single-bit errors. While

these techniques enable fast correction, they require more check

bits and provide insufficient protection from random multi-bit

errors [28].

The Hi-ECC architecture, highlighted in the previous section, is a

practical, low-latency, low-cost, multi-bit error-correcting system

that can compensate for high failure rates in eDRAM caches. Hi-

ECC implements a strong BCH code with the ability to correct 5

and detect 6 errors (5EC6ED). In the remainder of this section, we

will introduce the multi-bit BCH algorithm, analyze its circuit

complexity and latency, and explain in more detail how our

selective correction technique mitigates both the high latency and

high cost of strong ECC codes.

4.1 Multi-bit BCH Code
BCH codes are a large class of multi-bit error-correcting codes

which can correct both highly concentrated and widely scattered

errors [28]. In general, each BCH code is a linear block code

defined over a finite Galois Field GF(2m) with a generator

polynomial, where 2m represents the maximum number of code

word bits.

Figure 8. Overview of a BCH-based error-correcting scheme

Figure 8 shows a high-level block diagram for BCH error

correction. The ECC logic includes two main components, (i)

ECC encoding and (ii) ECC decoding.

(i) ECC encoding: The encoding logic takes the k-bit input data

word d and uses a pre-defined encoder matrix G to generate the

corresponding code word u (u = d × G). Since BCH is a

1KB block 64Bx16

line addr parity valid 2-bit period

0

63

1

ECC

ECC

tag

address

per sub block parity

Hi-ECC (RALT hit, parity used in lieu of ECC)

recency cntr

0-99999

period?

64-entry
RALT

1KB block 64Bx16

line addr parity valid 2-bit period

0

63

1

ECC

ECC

tag

address

per sub block parity

Hi-ECC

recency cntr

0-99999

period?

TAG ECCx16 1KB (64Bx16)

… …

ECC

Baseline

64-entry
RALT

88

systematic code, the original k-bit data is retained in the code

word, and is followed by r check bits.

(ii) ECC decoding: The decoding logic detects and corrects any

errors in the stored code word to recover the original value of

data. The decoding logic can be further divided into three

components, (a) syndrome generation, (b) error classification and

(c) error correction.

(a) Syndrome generation: Let v be a code word with error e,

such that v = u + e. The decoder first computes a syndrome S by

multiplying v with the transpose of a pre-defined H-matrix (S = v

× HT). The detailed derivation of H-matrix is beyond the scope of

this paper and can be found in [13, 28]. However, it is relevant to

mention that the G and H matrices are constructed in such a way

that G × HT = 0. The general form of H-matrix is as follows:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−−−−

−

−

−
)1(*)12()12(*3)12(*2)12(

)1(3963

)1(32

12

3

1

...1

...

...1

...1

1...1111

...
ntttt

n

n

tH

H

H

Parity

H

αααα

αααα
αααα

MMMMM

 (1)

In the finite field GF(2m), each element αi can be represented as a

polynomial of α with a degree less than m, or simply a vector

with m binary coefficients of the polynomial. Therefore, the H

matrix can be expanded into a binary matrix with (t*m+1) rows,

where t is the maximum number of errors that the code can

correct. Since S = v × HT, S also has t*m+1 bits, which can be

divided into multiple components [Parity, S1, S3, …, S2t-1].

(b) Error classification: The error classification logic uses the

syndrome S to detect if the code word has any errors. Since:

TTTT HeHeGdHeuHvS ×=×+×=×+=×=)()((2)

Therefore, in case of zero errors, S = 0 and the following equation

would hold true:

0... 1231 ===== −tSSSParity
 (3)

(c) Error correction: If the above equation is not satisfied then

the error correction logic uses the syndrome to pinpoint the

locations of corrupted bits. Let the error locations in e be denoted

as [j1, j2, … , jt], then each syndrome component Si can be

specified as:

ijtijij
iS **2*1 ... ααα +++=

 (4)

The correction logic implements the following three steps:

Step 1: Determine the coefficients of error location polynomial

σ(x), where σ(x) is defined such that the roots of σ(x) are given by

the inverse of error elements αj1, αj2, … , αjt
 respectively,

)1)...(1)(1(...1)(21

1 xxxxxx jtjjt

t ααασσσ −−−=+++= (5)

Step 2: Solve the roots of σ(x), which are the error locations.

When polynomial σ(x) is determined, each field element αj is

substituted into the polynomial. Those elements which make the

polynomial equal to zero are the roots.

Step 3: Calculate the correct value for data bits. This is done by

simply flipping the bits at error locations.

Previous studies have shown that the decoding procedure of

multi-bit BCH is tedious [3, 20] and its complexity grows rapidly

with the increase in the number of bit corrections. Error correction

is the most complex and time consuming component [31]. Step 1

of error correction is based on a t-step iterative algorithm, where

each iteration involves a Galois Field inversion, which alone takes

2m operations [4]. The implementation of Step 2 can either take

n-cycles with one circuit, or a single cycle with n parallel circuits

[7]. Either way, the base circuit is O(t*m2). Overall, both the

decoding latency and area complexity is proportional to (t*m)

[31]. Next, we describe a mechanism for lowering the latency and

complexity in the common case of zero or one-bit errors.

4.2. Reducing Decoder Overhead
The latency analysis in the previous subsection is based on the

worst case scenario of correctable errors, i.e. t-bit errors.

However, we observe that for the case of zero or one errors, the

detection and correction logic can be a lot simpler and faster:

(i) Detection of zero error: No errors in the code word lead to a

syndrome value of zero, as shown in equation (3). This case can

be detected by performing a logical OR of all the syndrome bits.

This requires ceil(log2tm) 2-input gate delays.

(ii) Single-bit error detection and correction: In the case of a

single-bit error, the syndrome exactly matches the H-matrix

column that corresponds to the error bit. Therefore, one can detect

and pinpoint a single-bit error by comparing each column of the

H-matrix with the syndrome. Notice that this correction is

significantly faster than the general case of t-bit correction (with

t > 1) because it does not require Step 1 and most of the Step 2 of

the error correction logic. In fact, we do not even need to match

all the syndrome components with entire H-matrix columns. We

just need to compare S1 to each column in H1 (defined in equation

(1)) and verify that the following equation is satisfied:

1)](&...&)(&)(&)1[(12

12

15

5

13

3

1 ========= −
−

t

t
SSSSSSparity

 (6)

To minimize latency, we assume that the comparison of S1 with

H1 and all the comparisons in equation (6) can proceed in parallel.

Based on the above observations, we propose an ECC decoding

mechanism that can correct multi-bit errors with a low latency

overhead in the common case. The main idea is to differentiate

the slow decoding process of multi-bit errors from the case of

zero or one errors. In our proposed Hi-ECC mechanism, fast

hardware correction is used for the common case of zero or one

errors, whereas software or state machine-based correction is used

to deal with multi-bit errors, as highlighted in Section 3.2.

4.3 Reducing ECC Storage Overhead
One of the main drawbacks of multi-bit ECC is that correcting

more errors requires higher redundancy, which leads to high

check bit overhead. To correct t-bit errors in k-bit input data, a

BCH code typically requires r = t * ceil(log2k) + 1 check bits

[28]. In order to reduce the check bit overhead, we make the

observation that due to the logarithmic relationship between r and

k, the number of check bits increases much slower than the size of

data. Therefore, we can reduce the ECC check bit overhead by

increasing the size of data word, as explained in Section 3.1.

Figure 9 shows the check bit overhead for three types of BCH

codes correcting different data sizes. For each data size, we show

89

the total number of check bits (solid lines) and code percentage

overhead (dashed lines). The figure shows that the check bit

overhead drops significantly with the increase in data size. For

example, for 5EC6ED code based on 16B data word, almost 25%

of the code word is ECC. However, for a 4KB word, the number

of check bits doubles, but the overhead reduces to 0.3%.

0

20

40

60

80

100

16B 64B 256B 1KB 4KB

Size of the data protected by ECC

N
u

m
b

e
r

o
f

E
C

C

C
h

e
c

k
 B

it
s

0%

5%

10%

15%

20%

25%

30%

E
C

C
 C

h
e

c
k

 B
it

s

O
v

e
rh

e
a

d

SECDED (t=1) DECTED (t=2) 5EC-6ED (t=5)

SECDED DECTED 5EC-6ED

Figure 9. Comparing the storage overhead for check bits for

different error-correcting codes. Solid lines represent #check

bits (left axis), and dashed lines represent the percentage

overhead (right axis).

Using large cache lines introduces another potential problem:

writes to sub-blocks within the cache-line may require the entire

line to be read every time to regenerate the ECC bits. Fortunately,

as a linear code, BCH inherits the additive property of linear

systems, which ensures that ECC check bits can be updated using

only the information of the modified chunk of data. Let the data

word d (representing a cache line) be divided into multiple chunks

[di-1,di-2,…,d0]. The G matrix used in ECC encoding can be

divided into two parts as G=[Ik, P], where P is the generator for

ECC check word C, i.e., C = d x P. If the jth chunk of data dj is

written with a new value dj_new, then the new ECC would be:

PddC

PdddPdC

newjoldj

newjoldjnewnew

×++=

×++=×=

]0),...,(,...,0[

])0),...,(,...,0[(

__

__ (7)

The above equation shows that the generation of new check bits

requires only the old value of check bits, and the old and new

values of the sub-block being modified.

4.4 Logic Overhead
In Section 3, we show that the area overhead for storing the multi-

bit error-correcting code is 71 bits for every 1KB line. We

estimate the total gate count for the error detection and correction

based on Strukov’s analysis [31]. Each 64B L3 read requires

about 290 XOR gates for each of the 71 check bits for a total of

21k XOR gates. The ECC encoding process requires another 21k

XOR gates. The one-cycle single error correction logic consists of

three components: 1) error detection (70 ORs), 2) error

classification (1k XORs and 1k ANDs) and 3) 1-bit correction (7k

XORs and 7k ORs). The logic to handle multi-bit errors integrates

the BM algorithm [20] with Chien’s search algorithm [7] and uses

~ 47 registers, 28 GF additions, 28 GF multiplications and tens of

logic gates, equivalent to fewer than 14k XOR gates but needs

many cycles to perform the correction. Overall, the logic uses

fewer than 100k XOR gates. Assuming each gate is equal in area

to six eDRAM cells, the total logic overhead is similar to that of

600k bits, or less than 0.1% of the total area for a 128MB cache.

5. EVALUATION
In this section we evaluate the impact of our Hi-ECC proposal on

cache power and system performance. We demonstrate that Hi-

ECC has almost no impact on performance, while significantly

reducing refresh and total power. We first describe our simulation

framework, benchmarks, and methodology. We then compare the

performance and power of Hi-ECC and other alternatives.

5.1 Simulation Framework

Baseline simulation configuration. We use a cycle-accurate,

execution-driven simulator running IA32 binaries. The simulator

is micro-operation (uOp) based, executes both user and kernel

instructions, and models a detailed memory subsystem. As a

baseline, we model an out-of-order superscalar processor that is

similar to the Intel® Core™ i7 processor with the addition of a

large 128MB eDRAM last-level (L3) cache instead of a

traditional SRAM cache. Our memory system includes a 32KB,

8-way set-associative L1 instruction cache, a 32KB, 8-way set-

associative L1 data cache, a 256KB, 16-way set-associative

unified L2 cache, and a 128MB eDRAM 16-way set-associative

L3 (last-level) cache. L1 and L2 caches use 64-byte lines, and the

baseline L3 cache uses 1KB lines with no error correction

capability. Our processor runs at 2 GHz, and we assume a 40-

cycle latency for an L3 hit.

Benchmarks. In our experiments, we simulate nine categories of

benchmarks. For each individual benchmark, we select multiple

sample traces that well represent the benchmark behavior. Table 1

lists the number of traces and example benchmarks included in

each category. We use instructions per cycle (IPC) as the

performance metric. We calculate IPC of each category as the

geometric mean of IPCs for all traces within that category. We

normalize the IPC of each category to the baseline to show

relative performance. We use activity factors for different cache

structures as inputs to our power model to estimate power

consumption. When modeling power consumption, we model a

16-core system running multi-program benchmarks.

Simulated configurations. We model four different

configurations, starting with the baseline configuration (BASE)

with 1KB L3 cache lines and a 40-cycle L3 hit latency. The

second configuration (SD) models an eDRAM augmented with a

single error correcting, double error detecting (SECDED) ECC

code, and has an additional 2-cycle latency for each L3 hit to

model ECC checking, i.e., a 42-cycle total latency. The last two

configurations are variations on our Hi-ECC mechanism with and

without a RALT. Recall that Hi-ECC uses the multi-bit ECC code

to identify and remove lines with high failure rates.

Consequently, the latency of multi-bit error processing only

impacts processor initialization latency and doesn’t impact

runtime performance. Furthermore, the 1% reduction in cache

capacity (line disable) has a negligible performance impact. As a

result, in our performance analysis we focus on the impact of

increased L3 latency introduced by Hi-ECC. The Hi-ECC

configuration without the RALT (HE) suffers a small penalty for

each write (since it must be preceded with a read) and large 32-

cycle additional latency penalty for each read (since each 2-cycle

64B read is accompanied by reads to the other 15 sub-blocks in

90

the line to allow for ECC processing). The Hi-ECC including the

RALT (HER) configuration attempts to avoid the additional read

latency penalty. With the RALT, the 32-cycle additional penalty

typically only applies to the first read in a 1KB line. Subsequent

references to other sub-blocks in the line that hit in the RALT will

check the sub-block against the parity stored in the RALT. We

assume the RALT will be accessed in parallel to the eDRAM to

minimize additional latency, but we model the parity check as

additional 2-cycle penalty, similar to the SECDED ECC check.

Table 1. Evaluation benchmarks

Category # traces Example benchmarks

Digital home (DH) 46 H264 decode/encode, flash

SPECINT2006 (ISPEC) 12 www.spec.org

SPECFP2006 (FSPEC) 22 www.spec.org

Games (GM) 10 Doom, quake

Multimedia (MM) 49 Photoshop, raytracer

Office (OFF) 38 Spreadsheet/word processing

Productivity (PROD) 34 File compression, Winstone

Server (SERV) 15 SQL, TPC-C

Workstation (WS) 24 CAD, bioinformatics

ALL 250

5.2 Results
Performance. We compare the performance of four configurations

with different L3 hit latencies across all nine benchmark categories.

On average, the SECDED configuration loses less than 0.1% of its

performance compared to our baseline with no error correction.

With no RALT, Hi-ECC configuration loses 0.48% of the baseline

performance. When we add a RALT with 64 entries, performance

loss goes down to 0.35%. With a 512-entry RALT, performance

loss is below 0.1%, the same as that of the SECDED configuration.

We do not show detailed performance results since they are almost

indistinguishable from the baseline. These results show that Hi-ECC

can achieve performance comparable to the baseline configuration.

Power modeling. We compared the refresh power, dynamic power,

and total power for our four configurations. We used an analytical

model for power that uses activity factors from our simulation

experiments (e.g., number of L3 reads/writes and number of RALT

hits/misses per second) to obtain different power components. We

assume a 16-core system for power modeling, since the dynamic

power consumed by a single core is almost insignificant compared

to refresh power. We provide more details on our power model in

Appendix A. We estimate that the baseline refresh power is

approximately 926mW. We also estimate that the dynamic power is

421mW per L3 sub-block read, 425mW per L3 sub-block write,

22mW per RALT access, and 5152mW for reading an entire 1K line

with 16 sub-blocks.

Refresh power. We scale the refresh time from 30us for the

baseline to 150us and 440us for SECDED and Hi-ECC,

respectively. This scaling leads to a similar scaling for refresh

power, from 926mW for the baseline to 185 and 63mW for

SECDED and Hi-ECC, respectively. SECDED achieves a 5X

reduction in refresh power compared to our baseline, and Hi-ECC

achieves almost a 3X reduction compared to SECDED (almost 15X

compared to the baseline).

Dynamic power. The additional activities due to extra reads, writes

and ECC checks cause the dynamic power of the SECDED and Hi-

ECC configurations to increase. Figure 10 shows the refresh power,

dynamic (read and write) power, and total power across all

benchmark categories for our four configurations. The figure

demonstrates that SECDED has a marginal increase in dynamic

power over our baseline due to ECC checks. However, the Hi-ECC

configuration with no RALT (HE) incurs a significant increase in

dynamic power due to reading the whole 1K cache line with 16 sub-

blocks on every L3 read. If only refresh power is considered, Hi-

ECC will consume 34% of the power consumed by SECDED.

However, the increase in Hi-ECC’s dynamic power pushes its total

power to 58% of SECDED’s total power. On the other hand, using a

512-entry RALT (HER) decreases the number of 1KB line accesses

significantly, and the total power for Hi-ECC with RALT becomes

39% of the total power of SECDED (including the extra power due

to RALT accesses).

6. CONCLUSIONS
In this paper, we have argued that a significant portion of idle power

in future systems will be used to refresh eDRAM. To address this,

we have developed Hi-ECC, a practical system for tolerating

refresh-related failures in eDRAM-based caches. Hi-ECC reduces

the cache refresh power by 93%, compared to an eDRAM with no

error correction, and by 66% compared to an eDRAM with a single

error-correcting code (SECDED). We accomplish this with only 2%

storage overhead and without the loss of any cache state.

Figure 10. Refresh power, dynamic (Rd/Wr) power and total power in mW for different benchmark

categories across all four configurations on 16 cores.

0

100

200

300

400

500

600

700

800

900

1000

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

B
A

S
E

S
D

H
E

H
E

R

Rd/Wr

Refresh

DH ISPEC FSPEC GM MM OFF PROD SERV WS GEOMEAN

91

By employing a strong error-correcting code and augmenting it

with other failure mitigation mechanisms, such as bit-fix, Hi-ECC

offers a highly scalable solution for addressing very high failure

rates. Furthermore, although this paper’s evaluation focuses on

eDRAM, elements of Hi-ECC are applicable to many different

memory technologies and failure types, including Vccmin related

SRAM failures. In addition, Hi-ECC’s reliance on strong error-

correcting codes instead of memory tests to identify bit failures

makes it applicable to high capacity memories, such as bulk

DRAM and phase change memories.

7. ACKNOWLEDGMENTS
We would like to thank Ilya Wagner, Greg Taylor and the

anonymous reviewers for their feedback and suggestions.

8. REFERENCES
[1] A. Agarwal, et al., “Process variation in embedded

memories: failure analysis and variation aware architecture,”

IEEE Journal of Solid-state Circuits, vol. 40, no. 9, pp.

1804-1814, Sep., 2005.

[2] J. Barth, et al., “A 500 MHz random cycle, 1.5 ns latency,

SOI embedded DRAM macro featuring a three-transistor

micro sense amplifier”, IEEE Journal of Solid State Circuits,

vol. 43, no. 1, pp. 86–95, Jan. 2008.

[3] E. R. Berlekamp, Algebraic coding theory, New York:

McGraw-Hill, chapter 7, 1968.

[4] H. Brunner, A. Curiger and M. Hofstetter, “On computing

multiplicative inverses in GF(2m),” IEEE Transactions on

Computers, vol. 42, pp. 1010-1015, Aug. 1993.

[5] H. O. Burton and E. J.Weldon, Jr., “Cyclic product codes,”

IEEE Transactions on Information Theory, vol. 11, no. 3, pp.

433–439, Jul. 1965.

[6] J. Chang, et al., “The 65-nm 16-MB shared on-die L3 cache

for the dual-Core Intel® Xeon processor 7100 series,” IEEE

Journal of Solid-state Circuits, vol. 42, no. 4, pp. 846-852,

Apr. 2007.

 [7] R. T. Chien, "Cyclic decoding procedures for Bose-

Chaudhuri-Hocquenghem codes," IEEE Transactions on

Information Theory, vol. 10, no. 4, pp. 357-363, Oct. 1964.

 [8] P. Emma, W. Reohr and M. Meterelliyoz, “Rethinking

refresh: Increasing availability and reducing power in

DRAM for cache applications,” IEEE Micro, vol. 28, no. 6,

pp. 47-56, Nov 2008.

 [9] V. George, “45nm next generation Intel Core

microarchitecture (Penryn),” Hot Chips 19, Stanford, CA,

Aug. 2007.

[10] M. Ghosh and H. Lee, “Smart refresh: An enhanced memory

controller design for reducing energy in conventional and 3D

die-stacked DRAMs,” in Proceedings of the 40th

International Symposium on Microarchitecture, pp. 134–

145, Dec. 2007.

[11] T. Hamamoto, S. Sugiura and S, Sawada, “On the retention

time distribution of dynamic random access memory

(DRAM),” IEEE Transactions on Electron Devices, vol. 45,

no. 6, pp. 1300-1309, Jun. 1998.

[12] Mu Y. Hsiao, Douglas C. Bossen, “Orthogonal latin square

configuration for LSI memory yield and reliability

enhancement,” IEEE Transactions on Computers, vol. 24,

no. 5, pp. 512-516, May 1975.

[13] H. Imai and Y. Kamiyanagi, ''A construction method for

double error correcting codes for application to main

memories,'' Transactions of the IECE Japan, vol. J60-D, pp.

861-868, Oct. 1977.

[14] R. Kalla, “Power7: IBM’s next generation POWER

microprocessor,” Presentation at Hot Chips 21, Stanford,

CA, Aug. 2009.

[15] J. Kim and M. Papaefthymiou, “Dynamic memory design for

low data-retention power,” in Proceedings of the 10th

International Workshop on Integrated Circuit Design, Power

and Timing Modeling, Optimization and Simulation, pp. 207-

216, Sep. 2000.

[16] J. Kim, M. Papaefthymiou, “Block-based multiperiod

dynamic memory design for low data-retention power,”

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 11, no. 6, pp.1006-1018, Dec. 2003.

[17] J. Kim, et al., “Multi-bit error tolerant caches using two-

dimensional error coding,” in Proceedings of the 40th Annual

International Symposium on Microarchitecture (MICRO),

pp. 197-209, Dec. 2007.

[18] W. Kong, et al., “Analysis of retention time distribution of

embedded DRAM - A new method to characterize across-

chip threshold voltage variation,” in Proceedings of IEEE

International Test Conference (ITC 2008), pp. 1-7, Oct.

2008.

[19] S. Lin and D. J. Costello. Error control coding, Second

Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

2004.

[20] J. L. Massey, “Step-by-step decoding of the Bose-Chaudhuri-

Hocquenghem codes,” IEEE Transactions on Information

Theory, vol. 11, no. 4, pp. 580–585, Apr. 1965.

[21] R. Matick and S. Schuster, “Logic based eDRAM: origins

and rationale for use,” IBM Journal of Research and

Development, vol. 49, no. 1, pp. 145 – 165, Jan. 2005.

[22] Micron Technology, Inc. “TN-41-01 : Calculating memory

system power for DDR3”, http://download.micron.com/pdf/

technotes/ddr3/TN41_01DDR3%20Power.pdf

[23] K.Mistry, et al., "A 45nm logic technology with high-

k+metal gate transistors, strained silicon, 9 Cu interconnect

layers, 193nm dry patterning, and 100% Pb-free packaging,"

in Proceedings of IEDM 2007, pp. 247–250, Dec. 2007.

[24] A. Naveh, et al., “Power and thermal management in the

Intel® Core® Duo processor,” Intel Technology Journal,

vol. 10, no. 2, May 2006.

[25] S. Natarajan, et.al., "A 32nm logic technology featuring 2nd-

generation high-k + metal-gate transistors, enhanced channel

strain and 0.171um2 SRAM cell size in a 291Mb array," in

Proceedings of IEDM 2008, pp. 1-3, Dec. 2008.

[26] T. Ohsawa, K. Kai and K. Murakami, “Optimizing the

DRAM refresh count for merged DRAM/Logic LSIs,” in

Proceedings of the 1998 International Symposium on Low

Power Electronics and Design (ISLPED), pp. 82-87, August

1998.

92

[27] S. Ozdemir, et. al., “Yield-aware cache architectures,” in

Proceedings of the 39th Annual International Symposium on

Microarchitecture (MICRO), pp. 15-25, Dec, 2006.

[28] T. Rao, E. Fujiwara, “Error-control coding for computer

systems,” Prentice-Hall, Inc., Upper Saddle River, NJ, 1989.

[29] D. Roberts, N. Kim and T. Mudge, “On-chip cache device

scaling limits and effective fault repair techniques in future

nanoscale technology,” in Proceedings of 10th Euromicro

Conference on Digital System Design Architectures,

Methods and Tools, pp. 570-578, Aug. 2007.

[30] D. Somasekhar, et al., “Multi-phase 1GHz voltage doubler

charge-pump in 32nm logic process,” in Proceedings of 2009

Symposium on VLSI Circuits, pp. 196-197, Jun. 2009.

[31] D. Strukov, “The area and latency tradeoffs of binary bit-

parallel BCH decoders for prospective nanoelectronic

memories,” in Proceedings of 2006 Asilomar Conference on

Signals Systems and Computers, pp. 1183-1187, Oct. 2006.

[32] R. Venkatesan, S. Herr and E. Rotenberg, “Retention aware

placement in DRAM (RAPID): Software methods for quasi-

non-volatile DRAM,” in Proceedings of 12th International

Symposium on High Performance Computer Architecture

(HPCA), pp. 155-165, Feb. 2006.

[33] C.Wilkerson, et. al, “Trading off cache capacity for

reliability to enable low voltage operation,” in Proceedings

of 35th International Symposium on Computer Architecture

(ISCA-35), pp. 203-214, Jun. 2008.

[34] D. H. Yoon and M. Erez, "Memory Mapped ECC: Low-Cost

Error Protection for Last Level Caches", in Proceedings of

the 36th International Symposium on Computer Architecture

(ISCA-36), pp. 116-127, June, 2009.

APPENDIX A: EDRAM POWER MODEL
Figure 11 shows the topology of the bit-cell and the array

organization for the 128MB cache used in this study. This cache

is organized with 128x32 sub-arrays. Each sub-array is made out

of 67 I/O columns. A pair of “data-in data-out” (16 cells) is

referred to as an I/O column. Each I/O column has 16 columns

and 256 rows. This array organization allows data to move out of

the cache in multiple cycles. To deliver the 64B data word, 8 sub-

arrays are activated at a time.

In order to account for all capacitance for power calculation, we

need to estimate the silicon area. Area is calculated with a

conservative cell size of 16F2 where F is ½ of the minimum pitch

of the process technology cell. Note that [2] quotes cell sizes

smaller than this study. Table 2 illustrates the scaling of the

technology parameters to a projected 22nm node. VccE is the

voltage of the stored cell, while Vcc is the supply voltage for

logic circuits. Array area calculation is performed based on a

sense-amplifier structure efficiency loss of 35%, a wordline

decoder loss of 25% and an overall assembly loss of 90% in each

of the X and Y dimensions.

In calculating the power consumption, we use the I/O column

structure and the key technology metrics depicted in Figure 12.

Note that the voltage swing on the word line is higher (1.8 V [2])

and is assumed to be generated by a 60% efficient charge pump

[30]. Other design parameters include the usage of a small-signal

sense amplifier with half-Vcc precharge, I/O column structure and

a design with strobed data in the sense-amplifier which is pulled

out using column selection (YSEL devices) to a final CMOS

driver. Dynamic power of the nets is estimated by first computing

an effective switched capacitance Cdyn and then putting it into

the equation: Pdyn = ActivityFactor × Cdyn × Vcc2 × F. Cdyn

accounts for global nets, clock circuit and repeater buffers. With

this organization refreshing 8 sub-arrays requires only 256 refresh

cycles each Trc clocks long and occurs at the retention rate. Thus,

the amortized refresh power for 128MB over a retention period of

30 microseconds is 926 mW.

WL0

WL1

WL2

WL3

BL0 BL1

2 cells

I/O column

(2 Di, 2 Do)

16 col

8:1 mux

SubArray – 67 I/O col

1072cell

25%

30%

Sense

128M

X 128

X
Y

2 2

X Y

Cell 0.188um 0.156um

I/O Column - 8 Cell 65um 1.5um

SubArray - 67 i/o col 65um 209um

128 MB unit (32 X 128) 9176um 7433um

Figure 11. 32MB eDRAM organization

Met Pitch BL Pitch Gate Pitch Min Device Sense Dev VccE Vcc

45 nm 160nm 320nm 192nm 135nm 3600nm 1V 1V

32 nm 112nm 224nm 134nm 96nm 2560nm 1V 0.9V

22 nm projected 78nm 156nm 94nm 66nm 1760nm 1V 0.8V

Node

Table 2. Process technology parameters [23, 25]

Frequency 2 GHz

Trc 4 clk

Cwire 0.2 fF/um

Ccontact 0.6 fF/um

Cgate 1.5 fF/um

Idrive 1 mA/um

Drive Ratio 4 X

P/N ratio 1 X

Per Column Voltage swing

Bit-Line 23.24 fF 0.5V

Word-Line 0.20 fF 1.8V

Sense-Amp enable 7.47 fF 1.0V

PCH 1.25 fF 1.0V

Ysel+Final 0.86 fF 1.0V (1 of 8)

Capacitance

Refresh 44.7 pF 4.4 pF 98.28 mW

Read 48.0 pF 11.0 pF 147.4 pF 412.9 mW

Write 50.0 pF 11.0 pF 147.4 pF 416.8 mW

SubArray (Cdyn) Control (Cdyn) DataPath (Cdyn) Power

Figure 12. I/O Column structure and technology metrics

for power modeling

93

