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ABSTRACT 

Technology advancements have enabled the integration of large 

on-die embedded DRAM (eDRAM) caches. eDRAM is 

significantly denser than traditional SRAMs, but must be 

periodically refreshed to retain data. Like SRAM, eDRAM is 

susceptible to device variations, which play a role in determining 

refresh time for eDRAM cells. Refresh power potentially 

represents a large fraction of overall system power, particularly 

during low-power states when the CPU is idle. Future designs 

need to reduce cache power without incurring the high cost of 

flushing cache data when entering low-power states.  

In this paper, we show the significant impact of variations on 

refresh time and cache power consumption for large eDRAM 

caches. We propose Hi-ECC, a technique that incorporates multi-

bit error-correcting codes to significantly reduce refresh rate. 

Multi-bit error-correcting codes usually have a complex decoder 

design and high storage cost. Hi-ECC avoids the decoder 

complexity by using strong ECC codes to identify and disable 

sections of the cache with multi-bit failures, while providing 

efficient single-bit error correction for the common case. Hi-ECC 

includes additional optimizations that allow us to amortize the 

storage cost of the code over large data words, providing the 

benefit of multi-bit correction at same storage cost as a single-bit 

error-correcting (SECDED) code (2% overhead). Our proposal 

achieves a 93% reduction in refresh power vs. a baseline eDRAM 

cache without error correcting capability, and a 66% reduction in 

refresh power vs. a system using SECDED codes.  

Categories and Subject Descriptors 

B.3.4 [Memory Structures]: Reliability, Testing, Fault-

Tolerance. 

General Terms 

Design, Reliability, Power. 

Keywords 
ECC, Multi-Bit ECC, DRAM, eDRAM, refresh power, Vccmin. 

1. INTRODUCTION 
Advances in technology scaling have led to dramatic yearly 

improvements in on-die cache capacity. New process 

technologies have also enabled integrating DRAM on a logic 

process, leading to the use of embedded DRAM (eDRAM) to 

build on-die caches that are much denser than SRAM-based 

caches (e.g., IBM Power 7 [14]). However, a side effect of 

technology scaling is the increasing susceptibility of cache 

structures to device variations [1, 27], where a few weak cells can 

constrain the operating range of the whole cache.  

In traditional SRAM caches, intrinsic variations force operation at 

high voltages due to a few weak cells that fail at lower voltages, 

and impede efforts to reduce power [29, 33]. Likewise, in 

eDRAM caches, device variations affect the retention time of 

individual DRAM cells, with a few particularly weak bits 

determining the refresh time of the whole cache. A high refresh 

rate significantly increases cache power. 

Reducing power consumption is a first-order design constraint for 

modern processors. In pursuit of improved power and energy 

efficiency, processors implement a number of idle states to 

support lower power modes. Reducing the power consumed 

during idle states is particularly important because the typical 

CPU spends the vast majority of its time in idle state. Many 

desktop applications, such as word processors and spreadsheets, 

spend much of the time waiting for I/O and tend to require the 

CPU to operate only 10-20% of the time during use. Studies done 

on the Intel® Core™/Core™ 2 Duo show that an idling processor 

will consume an average of 0.5W-1.05W [24] depending on the 

processor and frequency of idle state exits caused by events like 

OS interrupts. Our analysis projects that a future processor with 

128MB of eDRAM cache will consume 926mW just refreshing 

the eDRAM. Based on these power numbers, we project that the 

power consumption of large memory structures, like eDRAM 

caches, will be the biggest contributor to overall idle power.  

One popular method to reduce cache power is to power-gate large 

blocks of memory at the cost of losing its state [6]. But as cache 

density increases, the performance and power costs of this 

approach also increase. One of the important goals in 

implementing idle states is reducing power consumption, while 

minimizing the transition latency into and out of the idle state. In 

the Intel® Core™ 2, a transition out of the C4 idle state can take 

about 100-200us [9]. In contrast, if the state in a 128MB eDRAM 

cache were sacrificed to save power, it would take 4.2ms to re-

fetch the 128MB of lost data assuming full usage of the 30GB/s 

bandwidth provided by system memory. In future products with 

denser eDRAM caches, navigating the tradeoffs between idle exit 
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latency and idle power consumption will become increasingly 

difficult. As the capacity of embedded memory grows, the 

performance and power cost of flushing this memory also grows. 

A key challenge for future product designers is to enable flexible 

memory structures that can operate at very low idle power, 

without dramatically increasing transition latency to and from the 

idle power state due to data loss.  

In this paper, we evaluate a modern processor with a 128MB 

eDRAM cache. We show that refresh time plays the key role in 

determining the eDRAM’s power. We first explore the role of 

variation-related cell failures in determining refresh time. We then 

evaluate the potential for using error-correcting codes (ECC) to 

mitigate refresh-related failures. Augmenting eDRAM with error-

correcting codes enables reliable cache operation with longer 

refresh periods, thereby lowering system power.  

We propose Hi-ECC, a practical, low-latency, low-cost, error- 

correcting system that can compensate for high failure rates in 

eDRAM caches. Hi-ECC implements a strong BCH code with the 

ability to correct 5 and detect 6 errors (hereafter referred to as a 

5EC6ED code). A traditional approach using strong ECC suffers 

from two prohibitive overheads that limit its applicability. First, 

building a low-latency decoder for multi-bit ECC codes is 

extremely costly. Second, the storage overhead of ECC bits is 

high (around 10% for a 5EC6ED ECC code for a 64 byte line). 

Hi-ECC proposes architectural solutions to both problems. It uses 

a simple ECC decoder optimized for the 99.5% of the lines that 

require little or no correction, and provides a high latency 

alternative for lines that require complex multi-bit correction. To 

minimize the performance impact of processing high latency 

multi-bit corrections, Hi-ECC disables lines with multi-bit 

failures. Finally, Hi-ECC leverages the natural spatial locality of 

the data to reduce the cost of ECC storage. We make the 

following main contributions: 

1. We demonstrate that device variations lead to significant 

increases in cache refresh rates. 

2. We propose Hi-ECC, a practical system for using strong 

error correcting codes that avoids decoder complexity and 

latency.  

3. We show how Hi-ECC can be extended to reduce the 

storage overhead of the error-correcting codes by amortizing the 

cost of the code over larger data words. This allows implementing 

Hi-ECC with a 2% storage overhead, comparable to that of a 

single error correcting code (SECDED) over 64 byte lines. 

4. For a system with a 128 MB eDRAM cache, we show that 

Hi-ECC can reduce cache refresh power by 93% compared to an 

eDRAM with no error correction capability, and 66% compared 

to an eDRAM with SECDED, all for about the same storage 

overhead as a SECDED code. When accounting for dynamic 

power, an optimized Hi-ECC reduces total power by 61% relative 

to SECDED. 

The remainder of this paper is organized as follows.  In Section 2, 

we review some of the design tradeoffs for eDRAM caches, 

including a discussion of retention failures and previous work on 

mitigating them. Section 3 describes our proposed Hi-ECC 

architecture, and is followed by a review of the mathematical 

properties of BCH codes that Hi-ECC relies on in Section 4. We 

describe our evaluation methodology and results in Section 5 and 

conclude in Section 6.  

2. BACKGROUND 
Embedded DRAM technology enables smaller memory cells as 

compared to SRAM cells, resulting in a three to four times 

increase in memory density [21]. The higher density of eDRAM 

makes it a promising candidate to replace SRAM as the last-level 

on-chip cache in future high performance processors. IBM has 

recently announced that its upcoming Power7 processor will use a 

32 MB on-chip eDRAM cache [14]. As feature sizes continue to 

decrease, even larger eDRAM caches can be incorporated on 

chip. In this paper, we model a 128 MB eDRAM cache, two 

technology generations ahead of IBM Power7’s eDRAM cache. 

One of the main problems with eDRAM cells is that they lose 

charge over time due to leakage currents. The retention time of an 

eDRAM cell is defined as the length of time for which the cell 

can retain its state. Cell retention time depends on the leakage 

current, which, in turn, depends on the access device leakage. To 

preserve the state of stored data, eDRAM cells need to be 

refreshed on a periodic basis. In order to prevent failures, the 

refresh period needs to be less than the cell retention time. 

Because eDRAM uses fast logic transistors with a higher leakage 

current than conventional DRAM, the refresh time for eDRAM is 

about a thousand times shorter than conventional DRAM.  For 

example, Barth, et al. [2] report the refresh time of a small 

eDRAM to be 40us as compared to 64ms refresh time in 

commodity DRAM [22]. This low refresh time poses serious 

problems for eDRAM because it not only increases the idle 

power, but also leads to reduced availability. Previous work has 

shown that variations in threshold voltage cause retention times of 

different DRAM cells to vary significantly [8, 10, 11, 18]. These 

variations are caused predominantly by random dopant 

fluctuations and manifest themselves as a random distribution of 

retention times amongst eDRAM cells. We use the data published 

in [18] to model the retention time distribution in Figure 1.  
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Figure 1: eDRAM retention time distribution 

The pfbit curve in Figure 1 represents the probability of a 

retention failure in a single bit cell (derived from Figure 3 in [18]) 

and the pfCache curve represents the failure probability of a 

128MB eDRAM cache for different refresh times. Our model 

assumes that bit retention failures are distributed randomly 

throughout the eDRAM cache, consistent with [18]. A cache 

containing even a single failure must be discarded. Therefore, the 
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probability of failure for the entire cache is (1 – probability of 

success), where the probability of success is the probability that 

each bit in the cache stays failure-free. We assume that the 

pfCache must be kept at less than 1 out of 1000 to achieve 

acceptable manufacturing yields [33]. Under these assumptions, 

data in Figure 1 shows that the refresh time for a baseline 128MB 

eDRAM cache is 30 microseconds, close to the 40 microseconds 

refresh time reported in [2] for a 13.5Mbit eDRAM macro.  

Refresh mechanisms in eDRAM designs typically use a single 

worst case refresh period dictated by the cell with the lowest 

retention time. As eDRAM capacity increases in future 

generations, eDRAM idle power, dominated by refresh, will 

grow. Some previous papers have proposed hardware mechanisms 

to exploit retention time variations by refreshing different DRAM 

cells at different refresh rates [16, 26]. Venkatesan, et al. [32] 

proposed a software mechanism that allocates DRAM pages with 

longer retention time before allocating pages with shorter 

retention time, and then chooses a refresh period that is 

determined only by the populated pages instead of the entire 

DRAM. These approaches require additional storage to track 

retention times and rely on memory tests to identify marginal bit 

cells. In [33] Wilkerson et al propose the bit-fix algorithm, 

another testing-based approach, to address the problem of high 

failure rates in the context of Vccmin reduction in SRAM caches 

instead of DRAM refresh time. Since test time grows 

proportionately with the capacity of the memory being tested, 

increasing cache capacities may limit the applicability of all 

testing-based approaches.  

Ghosh and Lee [10] recently proposed a SmartRefresh technique 

to reduce refresh power by adding timeout counters in each 

DRAM row and avoiding unnecessary refreshes for those rows 

which were recently read or written. However, SmartRefresh is 

ineffective during the idle mode when the cache is not being 

accessed, and therefore does not improve idle power. 

Another promising approach to increase DRAM refresh times is 

the use of error-correcting codes (ECC) to dynamically identify 

and repair bits that fail [8, 15]. This approach sets refresh time 

irrespective of the weakest bits, using ECC to compensate for 

failures. With this approach, a stronger error-correcting code, with 

the ability to correct multiple bits, implies increased refresh time 

and reduced power. However, strong ECC codes have a high 

storage and complexity overhead which limit their applicability. 

In the following two sections, we propose an architectural 

mechanism that uses strong ECC codes with a low storage and 

complexity overhead.  

3. STRONG ECC ARCHITECTURE 
When designing a large eDRAM cache, a designer strives to 

minimize eDRAM power consumption in the low-power 

operating modes without penalizing performance in the normal 

operating mode. To achieve this objective, we propose Hi-ECC, 

which implements a multi-bit error-correcting code with very 

small area, latency, and power overheads.  

We propose a system with a large (128MB) eDRAM last level 

cache. In a baseline configuration with no error correction 

capability, the time between refreshes for such a cache will be 30 

microseconds, leading to a significant amount of power consumed 

even when the processor is idle. Refresh power can be reduced by 

flushing and power gating the cache during the low-power 

operating modes. This, however, causes a significant performance 

penalty when the processor wakes up from the idle mode since it 

will need to reload the cache, thereby incurring a large number of 

cold start misses. Alternatively, we can lower refresh power 

consumption by decreasing the refresh frequency (i.e., increasing 

time between refreshes). However, as we show in Figure 1, 

decreasing refresh frequency implies the need to tolerate a higher 

number of failures for each cache line. Implementing a strong 

error-correcting code with the capability to correct multiple errors 

is necessary to achieve this goal.  

At the core of Hi-ECC is a strong 5EC6ED (five bit correction, 

six bit detection) BCH code. We explain implementation details 

for BCH codes in Section 4. Traditional implementations of a 

5EC6ED BCH code would suffer from two key drawbacks: high 

storage overhead for the code itself, and high decoder complexity 

and latency. In this section, we describe how Hi-ECC addresses 

both of these drawbacks. Since our implementation requires 

architectural changes that would increase dynamic power, we also 

propose an architectural optimization to lower the impact on the 

cache dynamic power. 

3.1 Reducing Storage Overhead  
The storage required for a 5EC6ED code for a 64B cache line is 

51 bits, a 10% overhead. Since the cache occupies a large portion 

of the die area (50% or higher), augmenting the eDRAM cache 

with 5EC6ED code will significantly increase the die area and 

cost. In contrast, a single error correcting, double error detecting 

(SECDED) code for a 64B line requires 11 bits, an overhead of 

around 2%. Our goal is to implement the 5EC6ED code with the 

same storage overhead as the SECDED code.  

To achieve this goal, we leverage two important properties. First, 

the size of an ECC code relative to that of the data word 

diminishes as the size of the data word grows, as we show in 

Section 4.3. While a SECDED code for a 64B line has an 11-bit 

overhead (2%), a SECDED code for a 1KB line has a 15-bit 

overhead (0.18%). Second, the efficacy of a code only diminishes 

slightly as the size of the data word increases. In Figure 2, we 

show the failure probability (i.e., the probability that the line will 

have more failures than those correctible by ECC) for three 

different codes: SECDED on a 64B line, SECDED on a 1KB line, 

and double error correcting, triple error detecting code 

(DECTED) on a 1KB line. At very low refresh times, failure rates 

of the SECDED 64B line and the SECDED 1KB line are very 

close. DECTED-1KB (with only a 29-bit overhead, 0.35%) has a 

lower failure probability than both SECDED codes, except at high 

refresh times, such as 500us, where it is very close to the 

SECDED-64B code. By choosing a stronger code and amortizing 

the cost of the code over larger cache lines, we can improve our 

ability to tolerate failures with a very small storage overhead.  

Our Hi-ECC design implements a 5EC6ED code on each 1KB 

line (5EC6ED-1KB), requiring an additional 71 bits (0.87% 

overhead) for each line to store the code. In Figure 3, we compare 

the refresh time of a 128MB cache augmented with Hi-ECC to the 

baseline configuration with no error correction capability as well 

as a configuration using a SECDED code for each 64B sub-block 

(SECDED-64B). Like previous work that focused on SRAM [33], 

we assume that the refresh time will be chosen such that no more 

than 1E-03 (i.e., 1/1000) of the caches will fail. The baseline 

configuration with no failure mitigation must operate at the 
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baseline refresh time of 30us. Adding a SECDED code allows a 

5X increase in refresh time to 150us. Hi-ECC allows us to 

increase the refresh time to 440us (almost a 15X reduction in 

refresh frequency compared to the baseline).  
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Figure 2. Comparing bit failure probabilities for three 

code/line size combinations. DECTED on 1KB lines achieves 

higher refresh time than SECDED on 64B lines 
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Figure 3. Hi-ECC achieves a higher refresh time than 

SECDED at the same failure probability 

3.2 Reducing Latency 
A hardware implementation of a 5EC6ED code is very complex 

and imposes a long decoding latency penalty, proportional to both 

the number of error bits corrected and the number of data bits 

(Section 4.1). If the full strength encoding/decoding was required 

for every cache access, this could significantly increase cache 

access latency. However, our proposal leverages the fact that 

error-prone portions of the cache can be disabled, avoiding the 

high latency of decode during typical operation.  

The Hi-ECC technique relies on a simple, one cycle ECC block to 

correct a single bit error, and an un-pipelined, high-latency ECC 

processing block to correct multiple bit failures in a cache line [7, 

20]. When a line is read from the cache, a simple decoder 

generates the syndrome for the line, which includes information 

on whether it has zero, one, or a higher number of errors (Section 

4.2). If the line has zero or one bit failures, the simple ECC 

decoder can perform the correction in a single cycle. Figure 4 

shows a high-level block diagram for Hi-ECC. The block referred 

to as Quick-ECC contains the syndrome generation logic and the 

error correction logic for lines with zero or one failures. The 

Quick-ECC block also classifies lines into two groups based on 

the syndrome: those that require complex multi-bit error 

correction and those that have zero or one errors. Lines that 

require multi-bit error correction are forwarded to a high latency 

(potentially hundreds of cycles) ECC processing unit that 

performs error correction using either software or a simple state 

machine. This allows us to simplify the design at the expense of 

increased latency for lines with two or more failures. Lines that 

require one or less error corrections can be immediately corrected 

and forwarded to the unit requesting the line.    

 

Figure 4: Block diagram for Hi-ECC 

The high latency of handling multi-bit failures could significantly 

reduce performance. To avoid incurring this latency, problematic 

lines could be completely disabled or a mechanism such as bit-fix 

[33] could be integrated as shown by the dotted box labeled 

optional repair in Figure 4.  This guarantees that the performance 

penalty of multi-bit decoding is incurred only once, the first time 

a failure is identified.  The frequency of failures plays a role in 

the disable strategy that we choose.  Low multi-bit failure rates 

motivate a simple approach such as disabling cache lines 

containing multi-bit failures.  On the other hand, cache line 

disable will result in unacceptable cache capacity loss if multi-bit 

failure rates are high.  In this case, a more complex mechanism 

such as bit-fix might be used to minimize the capacity lost to 

disabling.  

Figure 5 shows the probability that N (X-axis) or more lines have 

multi-bit failures for a 128MB eDRAM cache at the refresh time 

we propose (440us). On average, a 128MB eDRAM will have 750 

1KB lines with multi-bit failures that need to be disabled, 

(0.573% of all lines). As highlighted in the figure, the probability 

that 900 or more lines (0.7% of all cache lines) will exhibit multi-

bit errors is 6.77x10-8.  For comparison, Hi-ECC augmented with 

a simplified version of bit-fix [33] that repairs a single additional 

bit per cache line requires an additional 13 bits per line (0.13% 

overhead).  However, this 13-bit overhead enables efficient 

correction of lines with 2-bit errors and reduces the number of 

lines that need to be disabled.  Disabling lines with only 3 or more 

errors reduces the average number of disabled lines from 750 to 

28 (0.02% of all lines), with a probability of 5.95x10-8 that 60 or 

more lines contain three or more errors.  Although adding bit-fix 

reduces wasted cache capacity, the improvement over simple line 

disable is marginal for the failure rates in our model and doesn’t 

justify the additional latency and complexity.  As a result, the rest 

C 

P 

U 

TAG/ECC  
ARRAY 

eDRAM 
Address

optional 
repair 

Quick 
ECC 

> 1  

fail? 

High latency 
ECC 

processing 

86



of this paper will focus on the Hi-ECC approach that relies solely 

on line disable for lines with multi-bit (two or more) errors.  

Due to the implementation of our eDRAM cache, there are 

restrictions to how many and which lines can be disabled. Since 

our cache is a 16-way set-associative, and since disabling all lines 

in a particular cache set could be catastrophic for some 

workloads, we limit the maximum number of lines that can be 

disabled in a particular set to 14 of the 16 ways. We also limit the 

maximum number of failing lines to 900 to quantify overhead. 

With a refresh time of 440us, the probability of at least one of the 

lines containing more than 5 failing bits is 6.21x10-4 (Figure 3), 

the probability of more than 900 multi-bit failures (disabled lines) 

is 6.77x10-8 (Figure 5), and the probability of more than 14 multi-

bit failures in a single set is 1.12x10-61. This indicates that 

disabling cache lines with multi-bit failures will have little effect 

on the overall probability that our cache meets the quality 

requirements at 440us. The total storage overhead for our 

approach is 1.58% including a 0.88% overhead for the code and a 

single per-line disable bit, and a 0.7% overhead for the 900 

disabled lines.  
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Figure 5. The distribution of failing lines for a 128MB Cache 

with 1KB lines with (w/) and without (w/o) bit-fix. 

3.3 Reducing Dynamic Power 
Our Hi-ECC proposal uses larger cache line sizes to reduce the 

area cost of strong ECC codes. However, larger line sizes 

introduce some additional challenges. Although 1KB is a 

reasonable line size for a large embedded memory, our baseline 

configuration has a much smaller L2 cache with a 64B cache line 

(referred to as sub-block). Some implementation issues arise 

when we read from or write to our large L3 eDRAM cache due to 

the mismatch between its 1KB line size and the 64B sub-blocks 

used by other caches.  

Most writes to the large L3 eDRAM cache will be in the form of 

smaller 64B sub-blocks generated at lower-level caches or fetched 

from memory. To modify a 64B sub-block in a 1KB line, we need 

to perform a read-modify-write operation since we need to 

compute the ECC code. First, the old 64B block that is being 

overwritten must be read, along with the ECC code for the entire 

line. We then use the old data, old ECC, and new data to compute 

the new ECC for the whole 1KB line. We then write the new 64B 

sub-block and the new ECC. However, we do not need to read the 

whole 1KB line to compute the new ECC, as explained later in 

Section 4.3.  

The purpose of most L3 reads will be to provide cache lines for 

allocation in lower-level caches. Processing any sub-block 

requires the ECC code to be processed with the entire data word 

(1KB cache line) that it protects. Since each 64B sub-block must 

be checked, each reference to a 64B sub-block must be 

accompanied by a reference to the surrounding 64B sub-blocks. 

This implies that any L3 read will access all 16 sub-blocks in the 

1KB line, as well as the ECC code that they share. As an 

example, if we need to read eight out of the 16 sub-blocks in one 

1KB line, we must read all 16 sub-blocks eight times, for a total 

of 128 sub-block reads. This large number of additional reads 

causes a substantial increase in dynamic power consumption and 

a drastic reduction in the useful bandwidth delivered by the 

memory.  

To address the extra power overhead for L3 reads, we consider 

the fact that the vast majority of eDRAM failures are retention 

failures. Since the retention time of our baseline eDRAM is 30us, 

and each read automatically implies a refresh, we know that 

retention failures will not occur for 30us after a line has been 

read. Our proposal leverages this property and also the temporal 

and spatial locality of the data to minimize the number the 

superfluous reads. Using a structure we refer to as the Recently 

Accessed Lines Table (RALT), we attempt to track lines that have 

been referenced in the last 30us.  

The first read to a line causes all sub-blocks in the line to be read 

and checked for failures. The address of the line is then placed in 

the RALT to indicate that it has recently been checked and will 

remain free from retention failures for the next 30usec. As long as 

the address of the line is held in the RALT, any sub-block reads 

from the line can forgo ECC processing and thus avoid reading 

the ECC code and other sub-blocks in the line. To operate 

correctly, the RALT must ensure that none of its entries are more 

than 30us old. To guarantee this, each 30us is divided into four 

equal periods (P0, P1, P2, P3). Entries allocated in the RALT 

during each period are marked with a 2-bit identifier to specify 

the allocation period. Transitions between periods, P0 to P1 for 

example, will cause all RALT entries previously allocated in P1 

to be invalidated.  

Each entry in the RALT consists of the following fields: a line 

address to identify the line the entry is associated with; a valid bit, 

a 2-bit period identifier field to indicate in which of the four 

periods the line was allocated (P0, P1, P2, P3); and a 16-bit parity 

consisting of one parity bit for each 64B sub-block in the line. 

The RALT is direct mapped, but supports a CAM invalidate on 

the 2-bit period field to allow bulk invalidates of RALT entries 

during period transitions.  

Figure 6 compares the implementation of the baseline L3 

protection scheme (top) with that of Hi-ECC (bottom). The 

baseline scheme uses a separate tag for each 1KB line and a 

separate SECDED code for each 64B sub-block. To read a 64B 

block, first the ECC and the block itself are read, then the ECC is 

processed. In our Hi-ECC technique, the first time a sub-block is 

read the entire ECC code is read along with each sub-block in the 

1KB line to allow ECC processing for a single 64B block. We 

update the RALT with the line address of the referenced line, a 2-

bit period ID, and a single parity bit for each sub-block. After the 
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first hit to a line, future accesses to the same 1KB line within the 

next 30us should hit in the RALT. Figure 7 demonstrates a RALT 

hit. In most cases, only the requested 64B sub-block is read. 

Parity for the 64B sub-block is computed and compared to the 

parity stored in the RALT. If the parity matches, we infer that 

sub-block is valid and forward it to the requesting cache or 

processor. A parity mismatch is treated as a RALT miss where the 

whole 1KB line needs to be read. 

 

Figure 6: Initial read and update of the Recently Accessed 

Lines Table (RALT). 

 

Figure 7: Hits to the Recently Accessed Lines Table (RALT) 

3.4 Summary 
In this section, we described our L3 cache architecture supporting 

a strong ECC code. We use a 5-bit correcting code over a 1KB 

cache line to minimize the area overhead. We check for zero or 

one-bit errors in the common case to minimize latency and 

complexity. We use an additional structure, the RALT, to track 

recently accessed lines so that we avoid reading the whole 1KB 

line on every cache read, thus minimizing dynamic power. This 

design allows us to reduce the cache refresh power with minimal 

area and performance overhead.  

4. MULTI-BIT ECC FOR EDRAM CACHES  
Error-correcting codes (ECC) have been used extensively in 

memory and storage devices to tolerate both soft and hard errors. 

On-chip caches and memory chips typically use simple and fast 

ECC such as SECDED (single error correction, double error 

detection) Hamming codes [19], whereas slower devices such as 

flash memories use multi-bit ECCs with strong error correcting 

capabilities (e.g., Reed-Solomon codes [19]). The higher 

decoding latencies of the strong ECC mechanisms do not pose a 

problem for mass storage devices, because the encoding/decoding 

latency is insignificant as compared to intrinsic device access 

time. However, as a result of technology scaling, the on-chip 

memory arrays are becoming more susceptible to multi-bit errors, 

and strong ECC codes are becoming desirable for these fast 

memories as well.  

Besides the latency overhead, the storage overhead of more ECC 

check bits is another obstacle to using strong codes for on-chip 

caches. In [34], for example, the authors propose to reduce the 

cost of storing error-correcting codes for the last level cache 

(LLC) by partitioning the code between the LLC and memory. 

Many previously proposed techniques have exploited the tradeoff 

between code complexity and check bit overhead to mitigate the 

higher latency of multi-bit ECC. These techniques combine 

simple ECC with bit rearrangement mechanisms such as bit 

interleaving [28], address skewing [12] or 2-dimensional product 

codes [5, 17], to correct certain multi-bit error patterns by 

dispersing multi-bit errors into multiple single-bit errors. While 

these techniques enable fast correction, they require more check 

bits and provide insufficient protection from random multi-bit 

errors [28].  

The Hi-ECC architecture, highlighted in the previous section, is a 

practical, low-latency, low-cost, multi-bit error-correcting system 

that can compensate for high failure rates in eDRAM caches. Hi-

ECC implements a strong BCH code with the ability to correct 5 

and detect 6 errors (5EC6ED). In the remainder of this section, we 

will introduce the multi-bit BCH algorithm, analyze its circuit 

complexity and latency, and explain in more detail how our 

selective correction technique mitigates both the high latency and 

high cost of strong ECC codes.  

4.1 Multi-bit BCH Code 
BCH codes are a large class of multi-bit error-correcting codes 

which can correct both highly concentrated and widely scattered 

errors [28]. In general, each BCH code is a linear block code 

defined over a finite Galois Field GF(2m) with a generator 

polynomial, where 2m represents the maximum number of code 

word bits. 

 

Figure 8. Overview of a BCH-based error-correcting scheme 

Figure 8 shows a high-level block diagram for BCH error 

correction. The ECC logic includes two main components, (i) 

ECC encoding and (ii) ECC decoding. 

(i) ECC encoding: The encoding logic takes the k-bit input data 

word d and uses a pre-defined encoder matrix G to generate the 

corresponding code word u (u = d × G). Since BCH is a 
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systematic code, the original k-bit data is retained in the code 

word, and is followed by r check bits.  

(ii) ECC decoding: The decoding logic detects and corrects any 

errors in the stored code word to recover the original value of 

data. The decoding logic can be further divided into three 

components, (a) syndrome generation, (b) error classification and 

(c) error correction. 

(a) Syndrome generation: Let v be a code word with error e, 

such that v = u + e. The decoder first computes a syndrome S by 

multiplying v with the transpose of a pre-defined H-matrix (S = v 

× HT). The detailed derivation of H-matrix is beyond the scope of 

this paper and can be found in [13, 28]. However, it is relevant to 

mention that the G and H matrices are constructed in such a way 

that G × HT = 0. The general form of H-matrix is as follows: 
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 (1) 

In the finite field GF(2m), each element αi can be represented as a 

polynomial of α with a degree less than m, or simply a vector 

with m binary coefficients of the polynomial. Therefore, the H 

matrix can be expanded into a binary matrix with (t*m+1) rows, 

where t is the maximum number of errors that the code can 

correct. Since S = v × HT, S also has t*m+1 bits, which can be 

divided into multiple components [Parity, S1, S3, …, S2t-1]. 

(b) Error classification: The error classification logic uses the 

syndrome S to detect if the code word has any errors. Since:  

TTTT HeHeGdHeuHvS ×=×+×=×+=×= )()(   (2) 

Therefore, in case of zero errors, S = 0 and the following equation 

would hold true: 

0... 1231 ===== −tSSSParity
    (3) 

(c) Error correction: If the above equation is not satisfied then 

the error correction logic uses the syndrome to pinpoint the 

locations of corrupted bits. Let the error locations in e be denoted 

as [j1, j2, … , jt], then each syndrome component Si can be 

specified as: 

ijtijij
iS **2*1 ... ααα +++=

    (4) 

The correction logic implements the following three steps:  

Step 1: Determine the coefficients of error location polynomial 

σ(x), where σ(x) is defined such that the roots of σ(x) are given by 

the inverse of error elements αj1, αj2, … , αjt
 respectively,  

  )1)...(1)(1(...1)( 21

1 xxxxxx jtjjt

t ααασσσ −−−=+++=    (5) 

Step 2: Solve the roots of σ(x), which are the error locations. 

When polynomial σ(x) is determined, each field element αj is 

substituted into the polynomial. Those elements which make the 

polynomial equal to zero are the roots.  

Step 3: Calculate the correct value for data bits. This is done by 

simply flipping the bits at error locations. 

Previous studies have shown that the decoding procedure of 

multi-bit BCH is tedious [3, 20] and its complexity grows rapidly 

with the increase in the number of bit corrections. Error correction 

is the most complex and time consuming component [31]. Step 1 

of error correction is based on a t-step iterative algorithm, where 

each iteration involves a Galois Field inversion, which alone takes 

2m operations [4]. The implementation of Step 2 can either take 

n-cycles with one circuit, or a single cycle with n parallel circuits 

[7]. Either way, the base circuit is O(t*m2). Overall, both the 

decoding latency and area complexity is proportional to (t*m) 

[31]. Next, we describe a mechanism for lowering the latency and 

complexity in the common case of zero or one-bit errors. 

4.2. Reducing Decoder Overhead  
The latency analysis in the previous subsection is based on the 

worst case scenario of correctable errors, i.e. t-bit errors. 

However, we observe that for the case of zero or one errors, the 

detection and correction logic can be a lot simpler and faster: 

(i) Detection of zero error: No errors in the code word lead to a 

syndrome value of zero, as shown in equation (3). This case can 

be detected by performing a logical OR of all the syndrome bits. 

This requires ceil(log2tm) 2-input gate delays. 

(ii) Single-bit error detection and correction: In the case of a 

single-bit error, the syndrome exactly matches the H-matrix 

column that corresponds to the error bit. Therefore, one can detect 

and pinpoint a single-bit error by comparing each column of the 

H-matrix with the syndrome. Notice that this correction is 

significantly faster than the general case of t-bit correction (with  

t > 1) because it does not require Step 1 and most of the Step 2 of 

the error correction logic. In fact, we do not even need to match 

all the syndrome components with entire H-matrix columns. We 

just need to compare S1 to each column in H1 (defined in equation 

(1)) and verify that the following equation is satisfied: 
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    (6) 

To minimize latency, we assume that the comparison of S1 with 

H1 and all the comparisons in equation (6) can proceed in parallel. 

Based on the above observations, we propose an ECC decoding 

mechanism that can correct multi-bit errors with a low latency 

overhead in the common case. The main idea is to differentiate 

the slow decoding process of multi-bit errors from the case of 

zero or one errors. In our proposed Hi-ECC mechanism, fast 

hardware correction is used for the common case of zero or one 

errors, whereas software or state machine-based correction is used 

to deal with multi-bit errors, as highlighted in Section 3.2.  

4.3 Reducing ECC Storage Overhead 
One of the main drawbacks of multi-bit ECC is that correcting 

more errors requires higher redundancy, which leads to high 

check bit overhead. To correct t-bit errors in k-bit input data, a 

BCH code typically requires r = t * ceil(log2k) + 1 check bits 

[28]. In order to reduce the check bit overhead, we make the 

observation that due to the logarithmic relationship between r and 

k, the number of check bits increases much slower than the size of 

data. Therefore, we can reduce the ECC check bit overhead by 

increasing the size of data word, as explained in Section 3.1.  

Figure 9 shows the check bit overhead for three types of BCH 

codes correcting different data sizes. For each data size, we show 
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the total number of check bits (solid lines) and code percentage 

overhead (dashed lines). The figure shows that the check bit 

overhead drops significantly with the increase in data size. For 

example, for 5EC6ED code based on 16B data word, almost 25% 

of the code word is ECC. However, for a 4KB word, the number 

of check bits doubles, but the overhead reduces to 0.3%.  
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Figure 9. Comparing the storage overhead for check bits for 

different error-correcting codes. Solid lines represent #check 

bits (left axis), and dashed lines represent the percentage 

overhead (right axis). 

Using large cache lines introduces another potential problem: 

writes to sub-blocks within the cache-line may require the entire 

line to be read every time to regenerate the ECC bits. Fortunately, 

as a linear code, BCH inherits the additive property of linear 

systems, which ensures that ECC check bits can be updated using 

only the information of the modified chunk of data. Let the data 

word d (representing a cache line) be divided into multiple chunks 

[di-1,di-2,…,d0]. The G matrix used in ECC encoding can be 

divided into two parts as G=[Ik, P], where P is the generator for 

ECC check word C, i.e., C = d x P. If the jth chunk of data dj is 

written with a new value dj_new, then the new ECC would be: 

PddC

PdddPdC

newjoldj

newjoldjnewnew

×++=

×++=×=

]0),...,(,...,0[

])0),...,(,...,0[(

__

__     (7) 

The above equation shows that the generation of new check bits 

requires only the old value of check bits, and the old and new 

values of the sub-block being modified.  

4.4 Logic Overhead 
In Section 3, we show that the area overhead for storing the multi-

bit error-correcting code is 71 bits for every 1KB line. We 

estimate the total gate count for the error detection and correction 

based on Strukov’s analysis [31]. Each 64B L3 read requires 

about 290 XOR gates for each of the 71 check bits for a total of 

21k XOR gates. The ECC encoding process requires another 21k 

XOR gates. The one-cycle single error correction logic consists of 

three components: 1) error detection (70 ORs), 2) error 

classification (1k XORs and 1k ANDs) and 3) 1-bit correction (7k 

XORs and 7k ORs). The logic to handle multi-bit errors integrates 

the BM algorithm [20] with Chien’s search algorithm [7] and uses 

~ 47 registers, 28 GF additions, 28 GF multiplications and tens of 

logic gates, equivalent to fewer than 14k XOR gates but needs 

many cycles to perform the correction. Overall, the logic uses 

fewer than 100k XOR gates. Assuming each gate is equal in area 

to six eDRAM cells, the total logic overhead is similar to that of 

600k bits, or less than 0.1% of the total area for a 128MB cache.  

5. EVALUATION 
In this section we evaluate the impact of our Hi-ECC proposal on 

cache power and system performance. We demonstrate that Hi-

ECC has almost no impact on performance, while significantly 

reducing refresh and total power. We first describe our simulation 

framework, benchmarks, and methodology. We then compare the 

performance and power of Hi-ECC and other alternatives.  

5.1 Simulation Framework 

Baseline simulation configuration. We use a cycle-accurate, 

execution-driven simulator running IA32 binaries. The simulator 

is micro-operation (uOp) based, executes both user and kernel 

instructions, and models a detailed memory subsystem. As a 

baseline, we model an out-of-order superscalar processor that is 

similar to the Intel® Core™ i7 processor with the addition of a 

large 128MB eDRAM last-level (L3) cache instead of a 

traditional SRAM cache. Our memory system includes a 32KB, 

8-way set-associative L1 instruction cache, a 32KB, 8-way set-

associative L1 data cache, a 256KB, 16-way set-associative 

unified L2 cache, and a 128MB eDRAM 16-way set-associative 

L3 (last-level) cache. L1 and L2 caches use 64-byte lines, and the 

baseline L3 cache uses 1KB lines with no error correction 

capability. Our processor runs at 2 GHz, and we assume a 40-

cycle latency for an L3 hit.  

Benchmarks. In our experiments, we simulate nine categories of 

benchmarks. For each individual benchmark, we select multiple 

sample traces that well represent the benchmark behavior. Table 1 

lists the number of traces and example benchmarks included in 

each category. We use instructions per cycle (IPC) as the 

performance metric. We calculate IPC of each category as the 

geometric mean of IPCs for all traces within that category. We 

normalize the IPC of each category to the baseline to show 

relative performance. We use activity factors for different cache 

structures as inputs to our power model to estimate power 

consumption. When modeling power consumption, we model a 

16-core system running multi-program benchmarks. 

Simulated configurations. We model four different 

configurations, starting with the baseline configuration (BASE) 

with 1KB L3 cache lines and a 40-cycle L3 hit latency. The 

second configuration (SD) models an eDRAM augmented with a 

single error correcting, double error detecting (SECDED) ECC 

code, and has an additional 2-cycle latency for each L3 hit to 

model ECC checking, i.e., a 42-cycle total latency. The last two 

configurations are variations on our Hi-ECC mechanism with and 

without a RALT. Recall that Hi-ECC uses the multi-bit ECC code 

to identify and remove lines with high failure rates.    

Consequently, the latency of multi-bit error processing only 

impacts processor initialization latency and doesn’t impact 

runtime performance.  Furthermore, the 1% reduction in cache 

capacity (line disable) has a negligible performance impact.  As a 

result, in our performance analysis we focus on the impact of 

increased L3 latency introduced by Hi-ECC. The Hi-ECC 

configuration without the RALT (HE) suffers a small penalty for 

each write (since it must be preceded with a read) and large 32-

cycle additional latency penalty for each read (since each 2-cycle 

64B read is accompanied by reads to the other 15 sub-blocks in 
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the line to allow for ECC processing). The Hi-ECC including the 

RALT (HER) configuration attempts to avoid the additional read 

latency penalty. With the RALT, the 32-cycle additional penalty 

typically only applies to the first read in a 1KB line. Subsequent 

references to other sub-blocks in the line that hit in the RALT will 

check the sub-block against the parity stored in the RALT. We 

assume the RALT will be accessed in parallel to the eDRAM to 

minimize additional latency, but we model the parity check as 

additional 2-cycle penalty, similar to the SECDED ECC check.  

Table 1.  Evaluation benchmarks 

Category # traces Example benchmarks 

Digital home (DH) 46 H264 decode/encode, flash 

SPECINT2006 (ISPEC) 12 www.spec.org 

SPECFP2006 (FSPEC) 22 www.spec.org 

Games (GM) 10 Doom, quake 

Multimedia (MM) 49 Photoshop, raytracer 

Office (OFF) 38 Spreadsheet/word processing  

Productivity (PROD) 34 File compression, Winstone 

Server (SERV) 15 SQL, TPC-C 

Workstation (WS) 24 CAD, bioinformatics 

ALL 250  

 

5.2 Results 
Performance. We compare the performance of four configurations 

with different L3 hit latencies across all nine benchmark categories. 

On average, the SECDED configuration loses less than 0.1% of its 

performance compared to our baseline with no error correction. 

With no RALT, Hi-ECC configuration loses 0.48% of the baseline 

performance. When we add a RALT with 64 entries, performance 

loss goes down to 0.35%. With a 512-entry RALT, performance 

loss is below 0.1%, the same as that of the SECDED configuration. 

We do not show detailed performance results since they are almost 

indistinguishable from the baseline. These results show that Hi-ECC 

can achieve performance comparable to the baseline configuration.  

Power modeling. We compared the refresh power, dynamic power, 

and total power for our four configurations. We used an analytical 

model for power that uses activity factors from our simulation 

experiments (e.g., number of L3 reads/writes and number of RALT 

hits/misses per second) to obtain different power components. We 

assume a 16-core system for power modeling, since the dynamic 

power consumed by a single core is almost insignificant compared 

to refresh power. We provide more details on our power model in 

Appendix A. We estimate that the baseline refresh power is 

approximately 926mW. We also estimate that the dynamic power is 

421mW per L3 sub-block read, 425mW per L3 sub-block write, 

22mW per RALT access, and 5152mW for reading an entire 1K line 

with 16 sub-blocks. 

Refresh power. We scale the refresh time from 30us for the 

baseline to 150us and 440us for SECDED and Hi-ECC, 

respectively. This scaling leads to a similar scaling for refresh 

power, from 926mW for the baseline to 185 and 63mW for 

SECDED and Hi-ECC, respectively. SECDED achieves a 5X 

reduction in refresh power compared to our baseline, and Hi-ECC 

achieves almost a 3X reduction compared to SECDED (almost 15X 

compared to the baseline). 

Dynamic power. The additional activities due to extra reads, writes 

and ECC checks cause the dynamic power of the SECDED and Hi-

ECC configurations to increase. Figure 10 shows the refresh power, 

dynamic (read and write) power, and total power across all 

benchmark categories for our four configurations. The figure 

demonstrates that SECDED has a marginal increase in dynamic 

power over our baseline due to ECC checks. However, the Hi-ECC 

configuration with no RALT (HE) incurs a significant increase in 

dynamic power due to reading the whole 1K cache line with 16 sub-

blocks on every L3 read. If only refresh power is considered, Hi-

ECC will consume 34% of the power consumed by SECDED. 

However, the increase in Hi-ECC’s dynamic power pushes its total 

power to 58% of SECDED’s total power. On the other hand, using a 

512-entry RALT (HER) decreases the number of 1KB line accesses 

significantly, and the total power for Hi-ECC with RALT becomes 

39% of the total power of SECDED (including the extra power due 

to RALT accesses). 

6. CONCLUSIONS 
In this paper, we have argued that a significant portion of idle power 

in future systems will be used to refresh eDRAM.  To address this, 

we have developed Hi-ECC, a practical system for tolerating 

refresh-related failures in eDRAM-based caches. Hi-ECC reduces 

the cache refresh power by 93%, compared to an eDRAM with no 

error correction, and by 66% compared to an eDRAM with a single 

error-correcting code (SECDED). We accomplish this with only 2% 

storage overhead and without the loss of any cache state. 

Figure 10. Refresh power, dynamic (Rd/Wr) power and total power in mW for different benchmark 

categories across all four configurations on 16 cores. 
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By employing a strong error-correcting code and augmenting it 

with other failure mitigation mechanisms, such as bit-fix, Hi-ECC 

offers a highly scalable solution for addressing very high failure 

rates. Furthermore, although this paper’s evaluation focuses on 

eDRAM, elements of Hi-ECC are applicable to many different 

memory technologies and failure types, including Vccmin related 

SRAM failures.  In addition, Hi-ECC’s reliance on strong error-

correcting codes instead of memory tests to identify bit failures 

makes it applicable to high capacity memories, such as bulk 

DRAM and phase change memories.  
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APPENDIX A: EDRAM POWER MODEL 
Figure 11 shows the topology of the bit-cell and the array 

organization for the 128MB cache used in this study. This cache 

is organized with 128x32 sub-arrays. Each sub-array is made out 

of 67 I/O columns. A pair of “data-in data-out” (16 cells) is 

referred to as an I/O column. Each I/O column has 16 columns 

and 256 rows. This array organization allows data to move out of 

the cache in multiple cycles. To deliver the 64B data word, 8 sub-

arrays are activated at a time. 

In order to account for all capacitance for power calculation, we 

need to estimate the silicon area. Area is calculated with a 

conservative cell size of 16F2 where F is ½ of the minimum pitch 

of the process technology cell. Note that [2] quotes cell sizes 

smaller than this study. Table 2 illustrates the scaling of the 

technology parameters to a projected 22nm node. VccE is the 

voltage of the stored cell, while Vcc is the supply voltage for 

logic circuits. Array area calculation is performed based on a 

sense-amplifier structure efficiency loss of 35%, a wordline 

decoder loss of 25% and an overall assembly loss of 90% in each 

of the X and Y dimensions. 

In calculating the power consumption, we use the I/O column 

structure and the key technology metrics depicted in Figure 12. 

Note that the voltage swing on the word line is higher (1.8 V [2]) 

and is assumed to be generated by a 60% efficient charge pump 

[30]. Other design parameters include the usage of a small-signal 

sense amplifier with half-Vcc precharge, I/O column structure and 

a design with strobed data in the sense-amplifier which is pulled 

out using column selection (YSEL devices) to a final CMOS 

driver. Dynamic power of the nets is estimated by first computing 

an effective switched capacitance Cdyn and then putting it into 

the equation: Pdyn = ActivityFactor × Cdyn × Vcc2 × F. Cdyn 

accounts for global nets, clock circuit and repeater buffers. With 

this organization refreshing 8 sub-arrays requires only 256 refresh 

cycles each Trc clocks long and occurs at the retention rate. Thus, 

the amortized refresh power for 128MB over a retention period of 

30 microseconds is 926 mW. 
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Figure 11. 32MB eDRAM organization 

 
Met Pitch BL Pitch Gate Pitch Min Device Sense Dev VccE Vcc

45 nm 160nm 320nm 192nm 135nm 3600nm 1V 1V

32 nm 112nm 224nm 134nm 96nm 2560nm 1V 0.9V

22 nm projected 78nm 156nm 94nm 66nm 1760nm 1V 0.8V

Node

 
Table 2.  Process technology parameters [23, 25] 

 

Frequency 2 GHz

Trc 4 clk

Cwire 0.2 fF/um

Ccontact 0.6 fF/um

Cgate 1.5 fF/um

Idrive 1 mA/um

Drive Ratio 4 X

P/N ratio 1 X

Per Column Voltage swing

Bit-Line 23.24 fF 0.5V

Word-Line 0.20 fF 1.8V

Sense-Amp enable 7.47 fF 1.0V

PCH 1.25 fF 1.0V

Ysel+Final 0.86 fF 1.0V (1 of 8)

Capacitance

Refresh 44.7 pF 4.4 pF 98.28 mW

Read 48.0 pF 11.0 pF 147.4 pF 412.9 mW

Write 50.0 pF 11.0 pF 147.4 pF 416.8 mW

SubArray (Cdyn) Control (Cdyn) DataPath (Cdyn) Power

 
Figure 12.  I/O Column structure and technology metrics 

for power modeling 
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