
UCRL-JRNL-206780

Reducing Complexity in Parallel
Algebraic Multigrid
Preconditioners

H. De Sterck, U. M. Yang, J. Heys

September 24, 2004

SIAM (Society for Industrial and Applied Mathematics) Journal
on Matrix Analysis and Applications

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

REDUCING COMPLEXITY IN PARALLEL ALGEBRAIC

MULTIGRID PRECONDITIONERS

HANS DE STERCK†§ , ULRIKE MEIER YANG‡¶, AND JEFFREY J. HEYS‖∗

Abstract. Algebraic multigrid (AMG) is a very efficient iterative solver and preconditioner
for large unstructured linear systems. Traditional coarsening schemes for AMG can, however,
lead to computational complexity growth as problem size increases, resulting in increased memory
use and execution time, and diminished scalability. Two new parallel AMG coarsening schemes
are proposed, that are based on solely enforcing a maximum independent set property, result-
ing in sparser coarse grids. The new coarsening techniques remedy memory and execution time
complexity growth for various large three-dimensional (3D) problems. If used within AMG as
a preconditioner for Krylov subspace methods, the resulting iterative methods tend to converge
fast. This paper discusses complexity issues that can arise in AMG, describes the new coarsening
schemes and examines the performance of the new preconditioners for various large 3D problems.

Key words.

AMS subject classifications.

1. Introduction. The Algebraic Multigrid (AMG) algorithm [1, 11, 12, 2] is
one of the most efficient algorithms for solving large unstructured sparse linear sys-
tems that arise in a wide range of science and engineering applications. One of
AMG’s most desirable properties, especially in the context of large scale problems
and massively parallel computing, is its potential for algorithmic scalability: for
a matrix problem with n unknowns, the number of iterative V-cycles required for
convergence is ideally independent of the problem size n (resulting from error reduc-
tion per cycle with convergence factors bounded away from one that are constant in
terms of the problem size n), and the work in the setup phase and in each V-cycle
is, in the ideal case, linearly proportional to the problem size n. A brief overview
of the basic AMG algorithm is given in Sec. 2. Familiarity with the basic AMG
algorithm is assumed in the remainder of this introductory section. For real-life
problems, the AMG algorithm has shown to deliver consistent near-optimal algo-
rithmic scalability for a wide range of applications [5, 12]. Various parallel versions
of AMG have been developed [4, 6, 9, 8].

Traditional coarsening schemes for AMG that are based on the coarsening
heuristics originally proposed by Ruge and Stueben (RS) [11], tend to work well for
problems that arise from the discretization of elliptic partial differential equations
(PDEs) in two spatial dimensions (2D). For many 2D problems, a solver with opti-
mal scalability can be obtained, with the number of iterations that is required for
convergence independent of the problem size n, and memory use, setup time, and
solution time per iteration linearly proportional to n. However, when traditional
AMG algorithms are applied to three-dimensional (3D) problems, numerical tests
show that in many cases scalability is lost: while the number of iterations required
may remain constant, computational complexities, particularly stencil size, may
grow significantly leading to increased execution times and memory usage. This
loss of scalability is already an issue on serial machines, but for larger problem sizes
on parallel machines the effects are even more severe, with additional degradation

†Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1,
Canada

‡Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, PO Box
808, Livermore, CA 94551, USA

‖Chemical and Materials Engineering Department, Box 876006, Arizona State University,
Tempe, Arizona 85287-6006, USA

§hdesterck@uwaterloo.ca
¶umyang@llnl.gov
∗jheys@asu.edu

1

2 De Sterck, Yang, Heys

due to increased communication. Complexity issues have been considered before.
In [12] Stueben suggests the application of aggressive coarsening (which can be im-
plemented as applying standard coarsening twice) to the finer levels, which leads
to reduced complexities. Aggressive coarsening is also used in [8]. This approach
also requires the use of long-range interpolation, which in combination with inter-
polation truncation is efficient for sequential computations. It is, however, difficult
to implement in parallel, since it requires information that goes beyond immediate
neighbors and might even be located on processors that are not neighbor processors
according to the graph of the original matrix. In search for a simpler and possibly
more efficient method, we tried to avoid the need for long-range interpolation in the
present work.

We present here two new, simplified parallel coarsening algorithms. The first
one, which we call the Parallel Modified Independent Set (PMIS) algorithm, is a
modification of an existing parallel maximal independent set algorithm by Luby
[10, 7]. This algorithm can be implemented in such a way that the resulting
coarse grid is independent of the number of processors and the distribution of the
points across processors. The second one, the Hybrid Modified Independent Set
(HMIS) algorithm, is obtained by combining the PMIS algorithm with a one-pass
RS scheme. We find that, using PMIS and HMIS coarsening, complexity growth
problems largely disappear. Not surprisingly, we observe that, using regular AMG
interpolation combined with PMIS and HMIS coarsening, AMG convergence factors
deteriorate as a function of problem size, resulting in a loss of scalability. However,
this convergence degradation can be counteracted effectively by using Krylov sub-
space acceleration of the AMG solvers. We show that the resulting preconditioners,
with regard to total execution times and memory use, often significantly outperform
preconditioners that use parallel coarsening schemes based on the classical sequen-
tial RS coarsening (e.g., the CLJP coarsening algorithm [6]). For large problems on
parallel machines in the several 1,000 processor class, the newly proposed methods
typically use less than half the memory, and require less than half the computer
time. Also, for the problem sizes and machines tested, the scalability in memory
and execution time (especially AMG setup times) is generally much better than
for the existing approaches. We investigate whether these improvements hold for
a large class of structured problems arising from scalar elliptic 3D PDEs, includ-
ing anisotropic and convection-diffusion problems, and investigate whether these
improvements also hold for 3D PDE systems on unstructured grids, in particular,
First-Order System Least-Squares finite element discretizations of Stokes flow.

The paper is organized as follows. In the following section a brief overview
is given of the basic AMG algorithm. In Section 3 a more detailed discussion of
the arising complexity issues is presented. Section 4 describes the new PMIS and
HMIS coarsening algorithms. In Section 5 the performance of the PMIS and HMIS
schemes is compared with that of RS-based parallel coarsening strategies (namely
CLJP and its hybrid variant, Falgout coarsening), for a large class of structured and
unstructured problems arising from scalar elliptic 3D PDEs. Section 6 describes
scaling studies for a 3D PDE system modeling Stokes flow. Finally, conclusions are
formulated in Section 7.

2. Algebraic Multigrid. In this section we give an outline of the basic prin-
ciples and techniques that comprise AMG, and we define terminology and notation.
Detailed explanations may be found in [11, 12, 2]. Consider a problem of the form

Au = f, (2.1)

where A is an n × n matrix with entries aij . For convenience, the indices are
identified with grid points, so that ui denotes the value of u at point i, and the
grid is denoted by Ω = {1, 2, . . . , n}. In any multigrid method, the central idea is

Reducing Complexity in Parallel AMG 3

that “smooth error,” e, that is not eliminated by relaxation must be removed by
coarse-grid correction. This is done by solving the residual equation Ae = r on a
coarser grid, then interpolating the error back to the fine grid and using it to correct
the fine-grid approximation by u← u+ e.

Using superscripts to indicate level number, where 1 denotes the finest level so
that A1 = A and Ω1 = Ω, the components that AMG needs are as follows:

1. “Grids” Ω1 ⊃ Ω2 ⊃ . . . ⊃ ΩM .
2. Grid operators A1, A2, . . . , AM .
3. Grid transfer operators:

Interpolation P k, k = 1, 2, . . .M − 1,
Restriction Rk, k = 1, 2, . . .M − 1.

4. Smoothers Sk, k = 1, 2, . . .M − 1.

These components of AMG are determined in a first step, known as the setup phase.

AMG Setup Phase:

1. Set k = 1.
2. Partition Ωk into disjoint sets Ck and F k.
(a) Set Ωk+1 = Ck .
(b) Define interpolation P k.

3. Define Rk (often Rk = (P k)T).
4. Set Ak+1 = RkAkP k (Galerkin condition).
5. Set up Sk, if necessary.
6. If Ωk+1 is small enough, set M = k + 1 and stop. Other-
wise, set k = k + 1 and go to step 2.

Once the setup phase is completed, the solve phase, a recursively defined cycle, can
be performed as follows:

Algorithm: MGV (Ak, Rk, P k, Sk, uk, fk).
If k = M , solve AMuM = fM with a direct
solver.

Otherwise:
Apply smoother Sk µ1 times to A

kuk = fk.
Perform coarse grid correction:
Set rk = fk −Akuk.
Set rk+1 = Rkrk.
ApplyMGV (Ak+1, Rk+1, P k+1, Sk+1, ek+1, rk+1).
Interpolate ek = P kek+1.
Correct the solution by uk ← uk + ek.

Apply smoother Sk µ2 times to A
kuk = fk.

The algorithm above describes a V(µ1, µ2)-cycle; other more complex cycles such as
W-cycles are described in [2, 13]. In every V-cycle, the error is reduced by a certain
factor, which is called the convergence factor. A sequence of V-cycles is executed
until the error is reduced below a specified tolerance. For a scalable AMG method,
the convergence factor is bounded away from one and independent of the problem
size n, and the computational work in both the setup and solve phases is linearly
proportional to the problem size n.

3. Complexity Issues. While scaling is often excellent for matrices arising
from 2D PDE problems, numerical tests (see Sec. 5) show that for many 3D problems
computational complexities may grow significantly for increasing problem size. this
growth can lead a large memory requirement and a significantly increased amount
of computational work, which may result in a severe loss of scalability that becomes
prohibitive when large problem sizes are attempted. The loss of scalability manifests
itself in non-scalable execution times for both the setup phase and the solve phase
of the AMG algorithm.

There are two types of complexities that need to be considered: the operator

4 De Sterck, Yang, Heys

complexity and the stencil size. The operator complexity, Cop, is defined as the
sum of the number of nonzero matrix elements in the operator matrices on all
grid levels, divided by the number of nonzero matrix elements of the fine grid
operator matrix, A. It is a measure for the memory use and execution time in the
solve phase. The stencil size on a given level is defined as the average number of
coefficients per matrix row, and strongly influences the setup time, as growing stencil
sizes substantially increase the number of operations required in the coarsening and
interpolation process due to the need of accessing neighbors of neighbors. So, large
stencil sizes can lead to large setup times, even when the operator complexity is
small. Both Cop and the stencil sizes on all levels should ideally be independent
of the problem size n. In large 3D tests using existing AMG coarsenings of RS-
type [11, 6], however, it can be seen that both the operator complexity, Cop, and
the stencil size may grow strongly, resulting in severe loss of scalability, see also
Section 5. For instance, the RS coarsening [11], and its parallel variants, the CLJP
and Falgout coarsenings [4, 6], generally give good results in terms of convergence
factors for 3D problems, but may result in large operator complexities and severe
stencil size growth. It is important to note that complexity growth can be kept
under control for some 3D problems. For elasticity problems, for instance, low
complexities can be obtained by judiciously choosing the AMG strength parameter,
which defines which matrix elements are considered in the coarse point selection
process, while retaining good convergence. For some 3D problems, interpolation
truncation can be quite effective to decrease operator complexitites and stencil
sizes.

We consider the classical RS-based coarsening strategies in more detail, in order
to gain some more insight into why these complexity growth problems arise. The
AMG coarsening process partitions the grid points on a given grid level into disjoint
sets of coarse points (C-points), which are taken to the next level, and fine points
(F -points), which are interpolated from C-points. Only matrix coefficients that are
sufficiently large are considered in the coarsening process: only strong connections
are considered. We say that a point i strongly depends on j or j strongly influences
i if

|aij | ≥ αmax
k 6=i
|aik|, (3.1)

where the strength threshold α is a positive constant smaller than one.
In the RS, Falgout and CLJP coarsenings [11, 4, 6], the following two heuristics

are imposed:

H1: For each point j that strongly influences an F -point i, j is
either a C-point, or strongly depends on a C-point k that
also strongly influences i.

H2: The set of C-points needs to form a maximal independent set
in the reduced graph of the matrix (with only strong connec-
tions retained in the graph).

H1 implies that two strongly connected F -points are interpolated by a common
C-point. In RS, Falgout and CLJP coarsening, H1 is strongly enforced, while
H2 is imposed where possible. Heuristic H1 assures that all strong connections
can be taken into account adequately when interpolation formulas are constructed,
generally resulting in a solver with constant AMG convergence factors bounded
away from one. However, H1 is imposed by choosing additional C points, and
may thus potentially lead to higher complexities. Heuristic H2 intends to provide
enough C-points (maximal set), but not too many (independent set) for efficient
and accurate interpolation.

Reducing Complexity in Parallel AMG 5

The RS coarsening [11] is an essentially serial realization of the above described
coarsening principles. Each point i is assigned a measure λi, which equals the
number of points that are strongly influenced by i. Then a point with a maximal
λi (there are usual several) is selected to be the first C-point. Now all points that
strongly depend on i become F -points. For each point j that strongly influences
one of these new F -points, λj is increased to improve j’s chances to become a new
C-point. This highly sequential process is repeated until all points are either F - or
C-points. Heuristic H1 is enforced in a second pass over the grid by adding C-points.
The resulting AMG algorithm works optimally for many highly structured problems,
because the structure is preserved on coarse grids due to the systematic marching,
and tends to perform nearly optimally for more unstructured problems: scalable
complexities and convergence factors are obtained for a wide range of problems
[5, 1, 11, 12].

The same heuristics are used as a guideline for the essentially parallel CLJP
coarsening [4, 6]. In CLJP coarsening, the sequential marching strategy from RS
for choosing candidate C points, is avoided by adding a random number between 0
and 1 to each measure, thus making each point distinct. Now the points with local
maximal measure can be selected to be C-points leading to a completely parallel
process. This algorithm retains much of the algorithmic scalability, while adding
good parallel scalability for a large class of problems [6]. Due to the random nature
of the coarsening, fine-grid structure is not preserved on coarse grids, and as a
result, for highly structured problems, complexity and convergence may degrade
compared to RS coarsening. However, the CLJP coarsening has the important
advantage of being parallel, and tests show that it may actually perform somewhat
better for unstructured problems than parallel RS implementations, which use the
RS coarsening in the interior of each processor, but have different ways of handling
boundary points. Examples of parallel RS coarsenings are the RS3 coarsening,
which deals with processor boundaries via a third pass applied to the processor
boundaries, or the Falgout coarsening, which is a hybrid form of the RS and the
CLJP coarsening [6]. It turns out that the Falgout coarsening is often the most
efficient in a parallel environment, for problems with a regular fine-grid structure.
In general, RS, CLJP, and Falgout coarsening all provide good results in terms
of convergence factors, but severe complexity growth may arise, especially for 3D
problems. As will be shown in numerical experiments below, the growth in Cop and
stencil size hampers scalability for large problems on machines with large processor
numbers. This loss of scalability may already become an issue on serial machines,
but for larger problem sizes on parallel machines the effects are more severe, with
additional degradation due to increased communication.

The discussion above has illustrated that, in general, a larger set of C-points
tends to lead to more scalable convergence factors because more accurate interpo-
lation formulas can be constructed, but, at the same time, adding C-points can
significantly increase the complexity of the method.

In 2D, imposing heuristic H1 is important for obtaining an efficient method
with scalable convergence factors and good complexity. However, it appears that
in 3D, the balance may be different: imposing heuristic H1 may be too strong a
requirement, resulting in prohibitive complexity growth. In this paper, we look
for an improved balance between AMG complexity and convergence factors for 3D
problems, by considering more sparse coarse grids while trying to retain acceptable
convergence factors. We present new, simplified coarsening algorithms that are
based on enforcing heuristic H2, while mostly ignoring heuristic H1. In fact, we
replace heuristic H1 by the following much less stringent requirement [9] for our
new coarsening algorithms:

H1
′

: Each F -point needs to strongly depend on at least one C-

6 De Sterck, Yang, Heys

point.

4. Two New Parallel AMG Variants. In this section we give a detailed
description of the newly proposed PMIS and hybrid HMIS coarsening algorithms,
followed by a brief description of the interpolation formula used in our parallel AMG
preconditioners.

4.1. The PMIS Coarsening Algorithm. Given a matrix problem Au = f ,
define V as the set of unknowns (or nodes) of A. Define the auxiliary strength
matrix S as follows:

Sij =

{

1 if i 6= j and |ai,j | ≥ αmax
k 6=i
|aik| ,

0 otherwise.

}

, (4.1)

i.e., Sij = 1 only if i strongly depends on j. Here α is the strength threshold which
is usually chosen between 0.25 and 0.50 [11]. The ith row of S defines Si, the set of
nodes that influence i, while the ith column of S defines ST

i , the set of nodes that
are influenced by i. That is, Si = {j ∈ V | Sij = 1} and S

T
i = {j ∈ V | Sji = 1}.

Define G = (V,E) = g(S) as the undirected graph of S, where V is now the vertex
set of the graph, and E the edge set: E = {{i, j} ∈ V × V | Sij = 1 or Sji = 1}.
Given an undirected graph G = (V,E), I ⊂ V is an independent set of V in G iff

∀i, j ∈ I : {i, j} /∈ E. I ⊂ V is a maximal independent set of V in G iff I is an
independent set of V in G, and ∀j ∈ V \ I, I ∪ {j} is not an independent set of
V in G. Given an undirected graph G = (V,E) = g(S) of a strength matrix S,
G′ = (V ′, E′) = g(V ′, S) is the subgraph of G induced by vertex set V ′ ⊂ V , iff
E′ = {{i, j} ∈ V ′ × V ′ | {i, j} ∈ E}.

A formal description of the PMIS algorithm can be given as follows.

Reducing Complexity in Parallel AMG 7

Fig. 4.1. PMIS coarsening performed for a 2D 9-point Laplace operator on a 7×7-grid.

The PMIS algorithm:

Given G = (V,E) = g(S), define weights w(i) ∀i ∈ V : w(i) = #ST
i +Rand([0, 1]).

The initial set of F -points F = {i ∈ V |#ST
i = 0}.

The initial set of C-points C = ∅.
Take the F -points out of the remaining vertex set: V ′ = V \ F .
The subgraph induced by the remaining vertex set is then G′ = g(V ′, S).
While V ′ 6= ∅ do:

Choose an independent set I of V ′ in G′:
i ∈ I iff w(i) > w(j) ∀ j with {i, j} ∈ E ′.

Make all elements of I C-points: C = C ∪ I.
Make all elements of V ′ \ I that are strongly influenced by a new C-point,

F -points: F = F ∪ Fnew, with Fnew = {j ∈ V
′ \ I | ∃ i ∈ I : i ∈ Sj}.

Remove all new C- and F -points from V ′: V ′ = V ′ \ {I ∪ Fnew}.
The remaining subgraph is then G′ = g(V ′, S).

Enddo.

The PMIS algorithm as described above is basically Luby’s parallel maximal
independent set algorithm [10], with three small modifications. An illustration of the
algorithm applied to a 2D 9-point Laplace operator on a 7×7 grid is given in Figure
4.1. The different steps in the algorithm can briefly be described as follows. First,
every point i in V is given a measure, w(i), which is the sum of the number of points
that i influences, #ST

i (8 for all interior points in the example, 5 on the boundaries
and 3 on the corners), and a random number between 0 and 1. The measure w(i) is
a measure of point i’s eligibility to be a C-point. Points that influence many other
points are likely to be good candidates for becoming C-points, since many strongly

8 De Sterck, Yang, Heys

connected points would be able to interpolate from them, and they thus receive a
large measure w(i). The random number is added to break ties when the numbers of
influenced points of neighboring points are equal. In Luby’s original algorithm, only
random numbers are used to select the independent set, so adding #ST

i is the first
modification to Luby’s algorithm. In every step of the ensuing procedure, all points
in V that have not been assigned yet as C- or F -points, become C-points (black
points in Figure 4.1) if their measure is larger than those of their unassigned strongly
connected neighbors. In Luby’s original algorithm, all unassigned points that are
strongly connected to new C-points, become F -points, and the process repeats with
the selection of new C-points as above. After a finite, typically small number of
iterations, the grid is fully partitioned into C- and F -points. The resulting set of
C-points forms a maximal independent set in the undirected graph of the auxiliary
strength matrix S. The set is independent, because for every new C-point, all its
neighbors are F -points by construction, and the set is maximal, because turning
any F -point into a C-point would violate the independence, as every new F -point
is the neighbor of a C-point by construction.

In order to make the Luby algorithm useful for AMG coarsening, two additional
small modifications have to be made. First, initially all points i of V that do not
influence any other point of V , are made F -points, because they would not be useful
for interpolation as C-points. This also precludes that isolated points stay C-points
on all levels. Because of this modification, the set of C-points determined by the
PMIS algorithm may not strictly be maximal (because isolated points can be made
C-points without violating the independence of the set). Second, directionality of
strong connections is taken into account (heuristic H1

′

): when a new set of C-
points is determined, only unassigned neighbors that are strongly influenced by a
new C-point are made F -points. This assures that all F -points (except for, possibly,
the initially assigned F -points) are influenced by at least one C-point, from which
they will be able to interpolate. Because of this modification, the set of C-points
determined by the PMIS algorithm may not be strictly independent (because points
in C may be strongly connected).

This algorithm is inherently parallel, due to the random nature of C-point selec-
tion. Parallelization is straightforward, and only requires communication of bound-
ary information between neighboring processors. Note also that if we guarantee
that each point has a fixed random number independent of the number of proces-
sors and the distribution of points across processors, the algorithm will generate
the same coarsening independent of the number of processors and the distribution
of points across processors. This algorithm can also be seen as a simplified ver-
sion of the CLJP coarsening algorithm [4, 6]. The CLJP algorithm is also derived
from Luby’s parallel independent set algorithm, with additional operations that
guarantee heuristic H1 of Sec. 3.

4.2. The HMIS Coarsening Algorithm. Inspired by the hybridization con-
cept of Falgout coarsening [6], we decided to use the same idea for a new hybrid
coarsening algorithm that does not enforce heuristic H1. Falgout coarsening pro-
ceeds by first using the classical RS coarsening independently on each processor.
Then all the C-points that have been generated in the RS coarsening process and
that are located in the interior of each processor are combined in a set, which is
used as the first set of C-points (note that this might not be an independent set) for
the CLJP-coarsening strategy. The treatment of the boundary points is completely
handled by the CLJP coarsening scheme.

Now, since we are pursuing a coarsening strategy that does not enforce heuristic
H1, we decided to use only the first pass of the RS coarsening scheme on each
processor independently as our first part of the hybrid algorithm. When this step
has been completed, we use all the interior C-points, i.e. those C-points that are

Reducing Complexity in Parallel AMG 9

Fig. 4.2. Various coarsenings applied to a 2D 5-point Laplace operator on a 10×10-grid
across 4 processors

not located on the processor boundaries, as the first independent set of C-points to
be fed into the PMIS algorithm. We call the resulting new coarsening scheme the
Hybrid Modified Independent Set (HMIS) coarsening scheme, since it is a hybrid
algorithm, which combines one-pass RS coarsening inside the processor interiors
with PMIS coarsening near the processor boundaries (each of which ignore heuristic
H1, but impose H1

′

). An example of the HMIS coarsening applied to the 2D 5-point
Laplacian on a 10 × 10-grid distributed across 4 processors is illustrated in Figure
4.2b, where the black points denote C-points that were generated in the first phase
of the HMIS coarsening, when one-pass RS coarsening is applied independently on
each processor, and the grey points are C-points that were added in the second
phase, when applying PMIS coarsening.

The HMIS coarsening scheme will be compared in the following sections with
the CLJP, Falgout, and PMIS coarsenings. Due to previous experiences with CLJP
and Falgout coarsenings [6], we anticipate that for problems with regular fine-grid
structure, the HMIS algorithm may perform better than the PMIS algorithm, due
to the preservation of structure within the processor interiors. Figure 4.2 illustrates
the four coarsenings that we will compare applied to a 2D 5-point Laplace operator
distributed across 4 processors. Processor boundaries are not indicated for PMIS
and CLJP, since they generate coarsenings that are independent of the number of
processors. White points denote F -points, whereas black and grey points denote
C-points. Grey C-points are those that have been generated in the second phase of
the hybrid algorithms. This small example already shows that the new coarsenings
will lead to much coarser grids, due to relaxing condition H1.

10 De Sterck, Yang, Heys

4.3. Interpolation. In classical AMG, the interpolation of the error at the
F -point i takes the form

ei =
∑

j∈Ci

wi,jej , (4.2)

where wi,j is an interpolation weight determining the contribution of the value ej

in the final value ei, and Ci is the subset of C-points whose values will be used to
interpolate a value at i. In most classical approaches to AMG interpolation, Ci is
a subset of the nearest neighbors of grid point i, and longer-range interpolation is
normally not considered.

The points, to which i is connected, comprise three sets: the set Ci, the setD
s
i of

points that strongly influence i but are not coarse interpolatory points, and the set
Dw

i of points connected to, but not strongly influencing, i. Based on assumptions on
small residuals for smooth error [1, 11, 12, 2], the following formula can be derived
for the interpolation weights:

wi,j = −
1

ai,i +
∑

k∈Dw
i

ai,k

ai,j +
∑

k∈Ds
i

ai,kak,j
∑

m∈Ci

ak,m

. (4.3)

However, because on our coarse grids heuristic H1 is not strongly imposed
and two strongly connected F -points i and k may not have a common C-point m,
it may happen that some of the terms

∑

m∈Ci
ak,m in Eq. 4.3 vanish. We have

modified interpolation formula Eq. 4.3 such that in case that
∑

m∈Ci
ak,m = 0, ai,k

is added to the so-called diagonal term (the term ai,i +
∑

k∈Dw
i
ai,k in Eq. 4.3), i.e.

a strongly influencing neighbor point k of i that is an F -point is treated like a weak
connection of i if it does not share a common neighbor that is a C-point with i.
We denote the set of strongly connected neighbors of i that are F -points and do
not share a common C-point, by Fi. Although this does not guarantee that the
interpolation formula will be sufficiently accurate (see the numerical convergence
results below and the ensuing discussion for an assessment of this question), it does
guarantee that the interpolation formula remains well-defined, and that constant
error is interpolated accurately. Our interpolation is further modified as proposed
in [6] to avoid extremely large interpolation weights that can lead to divergence.
This leads to the following interpolation formula:

wi,j = −
1

ai,i +
∑

k∈Dw
i
∪Fi

ai,k

ai,j +
∑

k∈Ds
i
\Fi

ai,kâk,j
∑

m∈Ci

âk,m

, (4.4)

where

âi,j =

{

0 if sign(ai,j) = sign(ai,i)
ai,j otherwise.

5. Numerical Results: Scalar Elliptic PDEs. This section contains an ex-
tensive numerical scalability study of the PMIS and HMIS coarsenings as compared
with the existing CLJP and Falgout coarsenings. These results were obtained on the
LLNL Linux cluster MCR. Strength threshold α = 0.25 was used for all PMIS and
HMIS runs. For CLJP and Falgout, the strength thresholds used were the optimal
values determined for the various test cases in earlier work [6], which were in general
α = 0.5 for 3D test runs and α = 0.25 for 2D test runs, unless noted otherwise. A
large class of scalar elliptic PDE problems on structured and unstructured grids is

Reducing Complexity in Parallel AMG 11

considered. For all tests, the AMG solver is accelerated with a GMRES(10) Krylov
solver. Most test cases were discussed in detail in [6] and will only be described
briefly here.

The legend for the tables in all subsections is as follows:
• p: number of processors
• Cop: operator complexity
• #lev: total number of levels in the AMG V-cycle
• savg: maximal average stencil size (average number of nonzeros per matrix row,

largest value that occurs on any of the V-cyle levels)
• lmax: on which V-cycle level this maximum savg occurs
• tsetup: AMG setup time
• tsolve: AMG solve time
• its: number of iterations to convergence
• ttot: total time (AMG setup + solve time)
• dof : total number of degrees of freedom

Method p Cop #lev savg lmax tsetup tsolve its ttot

CLJP 1 14.39 15 157.9 6 1.88 1.47 6 3.35
8 15.75 17 206.3 9 6.03 4.23 8 10.26
64 16.59 20 260.1 11 13.30 7.69 9 20.99
512 17.02 22 307.0 12 22.33 13.50 10 35.83
1000 17.15 23 316.3 12 27.16 15.03 10 42.19
1331 17.19 23 321.4 12 29.57 16.68 10 46.25

Falgout 1 3.61 11 103.6 5 0.77 0.42 5 1.19
8 4.43 13 282.4 8 3.24 1.33 6 5.57
64 5.07 15 451.5 9 11.77 3.15 6 14.93
512 5.45 18 575.4 9 23.19 7.26 7 30.45
1000 5.51 19 598.4 9 26.64 8.59 7 35.23
1331 5.55 19 608.3 9 30.57 8.99 7 39.56

PMIS 1 2.32 7 55.4 4 0.41 0.87 13 1.28
8 2.35 8 63.2 4 1.15 2.56 17 3.71
64 2.36 9 68.1 4 2.81 4.86 21 7.67
512 2.37 10 70.7 4 5.04 7.73 25 12.77
1000 2.37 10 71.1 4 6.63 8.39 26 15.02
1331 2.37 10 71.3 4 8.28 9.71 28 17.99

HMIS 1 2.79 7 57.1 5 0.73 0.38 5 1.11
8 2.80 8 76.3 5 1.45 1.74 10 3.19
64 2.80 9 79.3 5 2.62 3.23 12 5.85
512 2.80 10 82.2 5 4.89 5.03 15 9.92
1000 2.80 10 83.6 5 6.18 5.10 15 11.28
1331 2.80 10 83.4 5 7.56 5.62 16 13.18

Table 5.1

AMG-GMRES(10) with different coarsenings applied to the 7-point Laplacian, 403 dof per
processor.

5.1. 3D Laplacian Problems. In Table 5.1, we show the results of paral-
lel scaling tests for a 7-point standard finite difference discretization of Laplace’s
equation

−∆u = f (5.1)

on a cubic regular domain, with problem size per processor 40 × 40 × 40 points.
These results immediately illustrate the complexity growth problems that affect the
CLJP, and, to a somewhat lesser extent, the Falgout coarsening. Operator complex-
ities, total numbers of levels, and stencil sizes are excessively high, and setup times

12 De Sterck, Yang, Heys

are much larger than the solution phase execution times. Interestingly enough,
while CLJP has extremely large operator complexities, its average stencil sizes are
significantly smaller than those of the Falgout coarsening. A closer examination of
the two coarsenings reveals that Falgout coarsening initially coarsens much faster
than CLJP. Stencil sizes grow faster than for CLJP (caused by somewhat larger
interpolation operator stencil sizes), peak in the intermediate levels, at greatly re-
duced grid sizes, and decrease fairly fast in the lowest levels. CLJP coarsens fairly
slow at the beginning. Its stencil sizes decrease gradually, stay close to the maximal
size over various levels and decrease slower than for Falgout in the lowest levels.

PMIS and HMIS, however, are two to three times as fast as CLJP and Falgout,
use less than half the amount of memory, and have much smaller stencil sizes,
leading to significantly smaller setup times. They require more iterations, but the
execution time per iteration is much lower due to a smaller operator complexity,
resulting in overall time savings also for the solution phase. HMIS is slightly faster
and uses only a little more memory than PMIS for this highly structured problem.

Method p Cop #lev savg lmax tsetup tsolve its ttot

Falgout 8 4.23 17 501.6 10 49.56 19.15 6 68.71
512 4.69 21 750 10 133.03 33.73 8 166.76
1331 4.74 23 773.9 10 139.48 32.64 7 172.12

PMIS 8 2.59 9 73.2 5 21.33 55.20 22 76.53
512 2.61 12 79.4 5 36.47 123.00 44 159.47
1331 2.61 12 79.7 5 41.26 131.21 46 172.47

HMIS 8 2.89 9 141 5 44.48 32.17 11 76.65
512 2.88 11 131.3 5 103.37 58.01 19 161.38
1331 2.88 12 130.4 5 114.58 50.26 16 164.84

Table 5.2

AMG-GMRES(10) with various coarsenings applied to the 7-point Laplacian, 1003 dof per
processor.

In Table 5.2 we show scaling results for the 7-point Laplacian problem with
a large problem size per processor. CLJP results were not obtained because the
MCR machine quickly ran out of memory for this coarsening scheme. This is a
structured problem, and therefore the Falgout method, which is capable of keeping
the structure on coarser grids away from subdomain problems, does not suffer as
much from complexity problems at the total scale of the problem considered. The
PMIS and HMIS methods do not have much room to improve the results, and as a
result the PMIS/HMIS timings are very similar to those of Falgout for this problem
with a large ratio of processor interior dof to processor boundary dof. However,
the memory used by PMIS and HMIS is still only about half of the memory used
with Falgout coarsening. Note that the 1331-processor runs feature 1.331 billion
variables, which pushes the scalability of our AMG solver over the one-billion dof
border.

Even though PMIS and HMIS may not always be faster than Falgout coarsening
for large problem sizes per processor, the results presented earlier show that they
can be significantly faster and more scalable for smaller problem sizes per processor,
which is of benefit on architectures with smaller memory capacities, or when the
rest of the application requires a large amount of the memory, which is often the
case.

We also investigate AMG scalability for a 3D unstructured grid problem, since
previous experiments with CLJP and Falgout have shown that CLJP performs
better on unstructured grids [6]. A finite element discretization of the Laplace
equation is applied to a grid with approximately 20,000 dof per processor. Table 5.3
shows that PMIS and HMIS perform better than CLJP and Falgout. PMIS/HMIS

Reducing Complexity in Parallel AMG 13

are more than double as fast as Falgout, and use less than half the memory of
Falgout. We find that CLJP is slightly faster than Falgout, and PMIS is slightly
faster than HMIS. This is an unstructured problem, for which the RS marching
approach is not especially advantageous because there is no fine-grid structure to
be kept. Interestingly, the more random nature of coarse point selection of CLJP
and PMIS seems to be slightly better for unstructured problems.

Method p Cop savg tsetup tsolve its ttot

CLJP 4 3.84 151.6 1.32 0.89 9 2.21
32 4.47 207.0 5.07 2.76 10 7.83
288 4.68 271.0 12.34 9.35 12 21.69

Falgout 4 4.45 165.6 1.64 1.01 9 2.65
32 5.30 232.4 6.32 2.97 10 9.29
288 5.53 288.4 14.01 9.55 12 23.56

PMIS 4 1.41 39.9 0.39 0.73 15 1.12
32 1.45 49.3 0.92 2.11 18 3.03
288 1.46 53.0 2.41 4.86 24 7.27

HMIS 4 1.48 45.4 0.47 0.75 15 1.22
32 1.59 56.7 1.31 2.09 18 3.40
288 1.60 60.8 2.91 4.94 23 7.85

Table 5.3

AMG-GMRES(10) with various coarsenings applied to a 3D Laplacian on an unstructured grid.

Fig. 5.1. Total times for AMG-GMRES(10) with various coarsenings applied to a 27-point
operator, 403 degrees of freedom per processor.

In Figure 5.1 we present the results of parallel scaling tests for CLJP, Falgout,
PMIS, and HMIS coarsening applied to a 27-point finite element discretization of

14 De Sterck, Yang, Heys

Laplace’s equation on a cubic regular domain. Problem size per processor is 403

degrees of freedom. For this problem CLJP has an operator complexity that is
growing from 2.08 on one processor to 2.99 on 1331 processors, Falgout’s complex-
ities range from 1.62 to 2.48, whereas PMIS and HMIS have constant complexities
of 1.11 and 1.20, respectively. Stencil sizes for CLJP range from 238.4 to 1015, and
for Falgout from 123.8 to 849.0, whereas they only slightly vary for PMIS from 36.4
to 51.4 and for HMIS from 85.4 to 106.3. The stencil size, which is about 27 for this
problem on the finest grid level, thus grows to an astounding order of a thousand for
CLJP and Falgout coarsening. In spite of the fact that Falgout and CLJP require
only about half of the number of iterations as PMIS and HMIS, overall timings for
HMIS and PMIS are up to four times as fast. Just as in the 7-point case, PMIS
and HMIS are more than double as fast and use less than half the memory of CLJP
and Falgout.

Method p Cop #lev savg lmax tsetup tsolve its ttot

Falgout 8 2.29 17 769.8 10 35.68 25.54 8 61.22
512 Out of Memory
1000 Out of Memory

PMIS 8 1.11 8 42.9 4 12.29 32.43 17 44.72
512 1.11 10 51.7 5 17.36 55.35 25 72.71
1000 1.11 11 53.1 6 20.02 59.41 27 79.43

HMIS 8 1.23 9 138.9 5 17.96 24.04 11 42.00
512 1.23 10 151.3 5 24.24 47.17 20 71.41
1000 1.23 11 152.6 5 26.58 53.82 22 80.40

Table 5.4

AMG-GMRES(10) with various coarsenings applied to a 27-point operator, 903 dof per pro-
cessor.

In Table 5.4 scaling results for the 27-point operator are presented using 90 ×
90 × 90 points per processor. Again, CLJP results were not obtained because the
MCR machine quickly ran out of memory for this problem. Here, the Falgout
coarsening also runs out of memory due to growing complexities when using 64 or
more processors. Obviously, PMIS and HMIS are here preferable over the other
coarsenings.

5.2. Anisotropic Laplacian and Convection-Diffusion Problems. In or-
der to test the robustness and generality of the trends observed in the previous sub-
section, we have also tested performance and scalability for an anisotropic problem

−cuxx − uyy − uzz = f (5.2)

with c =0.001 (see Table 5.5), and a convection-diffusion problem

−∆u+ c(ux + uy + uz) = f, (5.3)

with c = 10q and the number of processors p = q3, which leads to a nonsymmetric
matrix (see Table 5.6). For both problems 403 points per processor were used. For
the anisotropic problem we chose as a strength threshold α = 0.25 for the CLJP
and Falgout coarsenings, and α = 0.75 for the nonsymmetric problem.

For both test cases PMIS and HMIS are faster, require less memory, and are
more scalable than CLJP and Falgout very much in the same way as above. In-
terestingly enough, in Table 5.5, we find that the operator complexity of Falgout is
only slightly larger than that of HMIS, but the setup time for HMIS is much lower
due to a significantly smaller stencil size.

Reducing Complexity in Parallel AMG 15

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 7.07 20 241.3 12 24.32 9.59 8 33.91
Falgout 3.95 19 297.2 10 31.41 7.23 6 38.64
PMIS 2.29 13 31.8 6 7.70 11.59 29 19.29
HMIS 3.60 13 35.3 7 8.90 6.99 16 15.89

Table 5.5

Anisotropic Laplacian, 403 dof per processor, 1331 processors.

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 9.62 25 91.2 10 20.57 16.14 16 36.71
Falgout 5.32 22 107.7 8 17.95 9.35 12 27.30
PMIS 2.34 11 68.2 5 8.43 10.59 29 19.02
HMIS 2.89 12 77.0 5 8.75 7.16 17 15.91

Table 5.6

Convection-diffusion problem, 403 dof per processor, 1331 processors.

5.3. 2D Laplacian Problems. It is interesting to see how PMIS and HMIS
perform for 2D problems. As mentioned before, in 2D CLJP and Falgout coarsenings
typically do not show complexity growth, so we do not expect that PMIS and HMIS
can offer much improvement. Table 5.7 shows that for a 9-point 2D Laplacian finite
element discretization with 2502 dof per processor, CLJP and Falgout coarsening
indeed provide scalable AMG methods, and, not contrary to expectation, PMIS
and HMIS are somewhat slower while not saving much memory. Note the very
small maximal stencil sizes for PMIS and HMIS coarsening. Scaling tests for the
2D 5-point Laplacian show very similar results, and are not shown here.

Method p Cop #lev savg lmax tsetup tsolve its ttot

CLJP 1 1.76 10 28.6 6 0.46 0.54 8 1.00
64 1.83 14 35.2 7 1.07 1.93 10 3.00
256 1.83 15 35.6 7 2.02 3.50 10 5.52
1024 1.83 16 36.2 8 6.00 2.76 10 8.76

Falgout 1 1.33 7 9.0 1 0.26 0.35 7 0.61
64 1.35 12 25.5 9 0.75 1.17 7 1.92
256 1.35 14 28.9 9 1.56 1.62 8 3.18
1024 1.35 15 30.9 10 5.74 2.01 8 7.75

PMIS 1 1.24 7 9.3 4 0.21 1.11 21 1.32
64 1.24 10 10.5 5 0.46 4.30 37 4.76
256 1.24 11 10.8 6 1.03 4.97 41 6.00
1024 1.24 12 10.9 6 4.27 6.06 48 10.33

HMIS 1 1.33 7 9.0 1 0.24 0.35 7 0.59
64 1.33 10 11.0 7 0.53 1.91 16 2.44
256 1.33 11 11.4 7 1.08 2.09 17 3.17
1024 1.33 12 11.6 7 4.34 2.60 20 6.94

Table 5.7

AMG-GMRES(10) with various coarsenings applied to a 9-point 2D Laplacian, 2502 dof per
processor.

We also considered the 2-dimensional rotated anisotropic problem

−(c2 + εs2)uxx + 2(1− ε)scuxy − (s
2 + εc2)uyy = 1 (5.4)

with s = sin γ, c = cos γ, and ε =0.001. We again used 2502 dof per processor,
and ran tests for the rotation angles γ = 45o and γ = 60o. Results using 1024

16 De Sterck, Yang, Heys

processors are shown in Tables 5.8 and 5.9. For these test problems, the PMIS
and HMIS coarsenings perform much worse than CLJP and Falgout. Particularly
PMIS convergence degrades. Also, note the small stencil sizes when using PMIS
and HMIS coarsening. These results show that the interpolation we use is not good
enough for these problems.

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 2.96 21 40.8 11 8.02 3.29 9 11.31
Falgout 2.45 21 46.5 10 9.12 3.80 9 12.92
PMIS 1.91 15 11.1 7 5.26 20.47 96 25.73
HMIS 2.26 15 15.7 7 5.40 11.89 55 17.29

Table 5.8

2D rotated anisotropic Laplacian, γ = 45o, 2502 dof per processor, 1024 processors.

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 4.93 20 44.9 9 8.43 11.28 29 19.71
Falgout 3.39 20 38.7 10 7.55 6.09 17 13.64
PMIS 1.75 12 12.8 3 4.21 77.62 550 81.83
HMIS 3.27 14 27.0 3 5.22 10.63 52 15.85

Table 5.9

2D rotated anisotropic Laplacian, γ = 60o, 2502 dof per processor, 1024 processors.

5.4. 3-Dimensional PDEs with Jumps. A similar observation as in the
case of rotated anisotropies can be made for the difficult case of a 3D elliptic PDE
with jumps in the coefficients. We solve the partial differential equation

(aux)x + (auy)y + (auz)z = 1 (5.5)

with Dirichlet boundary conditions on a unit cube, where a(x, y, z) = 1000 on
0.1 < x, y, z < 0.9, a(x, y, z) = 0.01 on 0 < x, y, z < 0.1 and the other cubes of size
0.01× 0.01× 0.01 that are located at the corners of the domain, and a(x, y, z) = 1
elsewhere. The results in Table 5.10 show that for problems with large jumps in
coefficients scalability is lost.

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 17.00 23 306.3 12 27.47 25.01 17 52.48
Falgout 5.77 19 591.4 9 26.28 14.41 13 40.69
PMIS 2.40 10 69.2 5 6.79 205.00 686 211.79
HMIS 2.82 10 87.3 5 6.27 65.99 202 72.26

Table 5.10

3D elliptic PDE with varying coefficients, 403 dof per processor, 1000 processors.

The results in Tables 5.8, 5.9 and 5.10 suggest that, for these difficult problems,
the stencil sizes resulting from PMIS and HMIS coarsening may be too small for
nearest-neighbor interpolation to be sufficiently accurate, and Krylov acceleration
is not effective in this case. Additional C-points or long-range interpolation may
be required here. The number of iterations needed for convergence can be reduced
by increasing the number of relaxation sweeps on each level of a V-cycle, but, for
the 3D example, this does not improve total execution times. Good convergence
can be obtained by using W-cycles (PMIS converges within 40 iterations and HMIS
within 16 iterations for the example in Table 5.10 using this approach), but W-
cycles are very expensive and not scalable. Adding C-points in order to better

Reducing Complexity in Parallel AMG 17

adhere to heuristic H1 would improve interpolation accuracy and convergence, but
the resulting complexity growth may be prohibitive for many large applications.
Another possible approach would be to consider, for this type of difficult problems,
interpolation formulas with an extended range not limited to the nearest neighbors,
for instance techniques along the lines of the multi-pass interpolation proposed
by Stueben [12]. This has to be done carefully, because increasing the range of
interpolation may result in stencil growth due to the RAP Galerkin condition.
Preliminary results for a sequential run are given in Table 5.11. Here the 3D problem
is solved on a 60× 60× 60 cube and CLJP, RS, PMIS and PMIS/MP (PMIS with
multi-pass interpolation) coarsenings are compared. The results show that PMIS
with multi-pass interpolation converges much faster, and interestingly enough, for
this example the complexities of PMIS and PMIS/MP are comparable. Note that,
since this is a sequential run, we cannot make any comparison with Falgout or
HMIS coarsening, and that we can choose here the “classical” RS-coarsening, which
is inherently sequential and in general leads to better complexities than Falgout,
since there is no processor boundary treatment. Improved interpolation formulas
and their use on grids coarsened with the PMIS and HMIS techniques, will be
considered in more detail in future research.

Method Cop #lev savg lmax tsetup tsolve its ttot

CLJP 15.20 15 170.2 9 9.02 10.73 11 19.75
RS 5.00 13 185.3 8 3.94 2.77 7 6.71
PMIS 2.55 7 52.9 4 2.26 18.54 70 20.80
PMIS/MP 2.57 7 55.0 4 1.84 6.87 25 8.71

Table 5.11

3D elliptic PDE with varying coefficients, 603 on one processor

6. Numerical Results: 3D FOSLS Stokes System. In this section, we
present numerical results for 3D Stokes fluid flow simulations using a First-Order
System Least-Squares (FOSLS) finite element discretization. These results were
obtained on the linux cluster Hemisphere at CU Boulder, using Jeff Heys’ parallel
FOSLS code Parafos, coupled to hypre’s AMG-code BoomerAMG.

The Stokes equations for modeling low Reynolds number (Re << 1) flow can
be written as:

−∇ q +∆v = 0 in Ω, (6.1)

∇ · v = 0 in Ω, (6.2)

where q is pressure and v = (v1, v2, v3) is velocity. The standard Galerkin finite ele-
ment method for discretizing equations 6.1 and 6.2 does not produce an H1-elliptic
form and multigrid schemes typically perform poorly. An alternative formulation is
based on reformulating the Stokes equation as a first-order system and minimizing
the least-squares norm of residual equations in the resulting system – the so-called,
First-Order System Least-Squares (FOSLS) approach [3]. Defining a 3 by 3 matrix
of new variables, U , the first-order system for the Stokes equation is

U −∇vT = 0 in Ω, (6.3)

∇ · U − (∇q)T = 0 in Ω, (6.4)

∇ · v = 0 in Ω. (6.5)

To achieve a fully H1 elliptic functional and to help expose divergence free error [3],
the previous first-order system is augmented with the following consistent equations:

∇× U = 0 in Ω, (6.6)

∇tr(U) = 0 in Ω, (6.7)

18 De Sterck, Yang, Heys

where tr(U) = U11 + U22 + U33. For the first-order system, bold letters indicate
a vector, capital letters indicate a second-order tensor, and the shape of zero is
implied by the left side.

The least-squares functional resulting from the system of first-order Eqs. (6.3-
6.7) is given by

G(U,v, q) := ‖U −∇vT ‖20,Ω + ‖∇ · U − (∇q)
T ‖20,Ω+

‖∇ · v‖20,Ω + ‖∇ × U‖
2
0,Ω + ‖∇tr(U)‖

2
0,Ω

. (6.8)

The boundary conditions have been omitted from G because they can be imposed
directly on the finite element (approximation) space.

Fig. 6.1. Unstructured grid section for the 3D Stokes flow test problem.

The functional is minimized by setting the Gateaux derivative to zero in the
weak sense. A finite element basis is then chosen so that the weak form generates
a matrix problem. All of the simulations presented in this Section utilized a tri-
linear finite element basis for all of the variables. The FOSLS formulation allows
the solution spaces for the variables to be chosen independently, and there is no
restrictive stability condition to satisfy. As a result, both the pressure and velocity
in the Stokes equations can be approximated with a trilinear basis. The functional,
G, measures the first derivative of the error in the primary variables (i.e., velocity
and pressure), unlike the error in the L2 sense. Therefore, error characterized by
‘wiggles’ in the solution, which may be small and hidden in the L2 norm, are fully
exposed and thus controllable in the functional norm.

Scaling results are presented below for a 3D Stokes simulation of flow between
two plates with a cylindrical obstacle. Fig. 6.1 shows the grid and the domain for
the simulation. The grid is unstructured. Fig. 6.2 shows the resulting Stokes flow
as a simulation result obtained with our codes.

Table 6.1 compares the algorithmic scalability of the Falgout and PMIS coars-
enings for this problem. Conjugate Gradient (CG) acceleration could be used as a
Krylov accelerator, because the FOSLS-matrices have the advantageous property of
being symmetric. This results in some memory savings as compared to GMRES(10)
acceleration because only two previous iteration vectors need to be stored. Because
this PDE system is highly coupled with 13 degrees of freedom per node, approx-
imately 300 nonzeros are present in every matrix row on the finest grid level, on
average. Parallel scaling tests were performed with approximately 55,000 degrees of

Reducing Complexity in Parallel AMG 19

Fig. 6.2. 3D Stokes flow test problem. Gray scales represent the pressure, and the streamlines
of the fluid flow are shown.

Method p dof Cop #lev savg tsetup tsolve its ttot

Falgout 1 55359 3.06 11 770.4 7.94 50.35 28 58.28
8 422463 2.73 13 942.7 168.32 132.93 48 301.25
64 3224991 3.10 16 1079.0 1280.42 689.74 91 1970.16

PMIS 1 55359 1.34 6 485.9 7.11 18.35 21 25.46
8 422463 1.37 7 598.6 53.95 43.38 34 97.33
64 3224991 1.40 8 733.1 333.16 125.86 52 459.02

Table 6.1

AMG-CG with different coarsenings.

freedom per processor. Strength treshold α = 0.9 was used for Falgout coarsening
in order to keep complexity at an acceptable level. Lower α would allow for better
convergence, but at the cost of prohibitively high complexity.

The table confirms, for this PDE system, the results that were shown above
for scalar PDEs. The PMIS coarsening uses less than half the memory of Falgout,
the stencil size grows substantially less, and both setup times and solve times are
about four times faster for PMIS than for Falgout coarsening. The PMIS results
are also more scalable than the Falgout results. One can note that the setup and
solution times, in absolute terms, scale, in fact, poorly for both approaches. This
is mostly due to a software problem beyond our control on the machine we had
available for these tests, which forced us to use slow plain ethernet communication
between cluster nodes. In any case, in this paper it is our main goal to compare
PMIS and RS-based coarsenings, and the results clearly show that PMIS coarsening
performs much better than Falgout coarsening for this problem. It is interesting
that, for this complex PDE system problem, PMIS leads to much less iterations than
Falgout coarsening. This behavior was not seen in the previously discussed scalar
problems, and, even though we do not have an immediate explanation for this, it
may point to an additional advantage of the PMIS approach for PDE systems, to
be confirmed by further tests and analysis.

7. Conclusions. In this paper, simple coarsening schemes for parallel AMG
were proposed, that are based solely on enforcing a maximum independent set prop-
erty, resulting in coarse grids that are sparser than the grids obtained by adhering to
the original Ruge-Stueben coarsening heuristics. The new PMIS and HMIS coars-
ening techniques remedy memory and execution time complexity growth for large
3D problems, and, combined with Krylov acceleration, the resulting AMG-Krylov
methods also tend to perform well in terms of the number of iterations required
for convergence. Numerical results were presented showing that for an extensive
class of large 3D problems on parallel machines in the several 1,000-processor class,

20 De Sterck, Yang, Heys

the newly proposed methods use less than half the memory, and require less than
half the computer time of AMG methods that use a Ruge-Stueben type coarsen-
ing. Also, for the problem sizes and machines tested, the scalability in memory
and execution time (especially AMG setup times) is generally much better than for
existing approaches. Efficient and scalable results were obtained for a large class of
scalar and system problems on both structured and unstructured grids. However,
for some difficult problems, including rotated anisotropic problems and problems
with large jumps in coefficients, standard AMG interpolation that only relies on
nearest neighbors for interpolation, is not sufficiently accurate on the coarse grids
that result from the new coarsenings, and Krylov acceleration turns out not to be
effective in this case. For these difficult cases interpolation formulas with an ex-
tended range may need to be considered, for instance techniques along the lines of
the multi-pass interpolation proposed by Stueben [12]. Such improved interpolation
formulas and their use on grids coarsened with the PMIS and HMIS techniques, are
the subject of further research.

Acknowledgments.

This work was performed under the auspices of the U.S. Department of Energy
by University of California Lawrence Livermore National Laboratory under con-
tract No. W-7405-Eng-48. It was also sponsored by the Department of Energy
under grant numbers DE-FC02-01ER25479 and DE-FG02-03ER25574, Lawrence
Livermore National Laboratory under contract number B533502, Sandia National
Laboratory under contract number 15268, and the National Science Foundation
under VIGRE grant number DMS-9810751 and grant number DMS-0410318.

REFERENCES

[1] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for automatic
multigrid solutions with application to geodetic computations. Report, Inst. for Compu-
tational Studies, Fort Collins, Colo., October 1982.

[2] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial (SIAM, Philadelphia,
PA, second ed., 2000).

[3] Z. Cai, Thomas A. Manteuffel, and Stephen F. McCormick, First-order system least squares
for second-order partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997),
425–454.

[4] A. J. Cleary, R. D. Falgout, V. E. Henson, and J. E. Jones, Coarse grid selection for par-
allel algebraic multigrid, in Proceedings of the fifth international symposium on solving
irregularly structured problems in parallel (Springer-Verlag, New York, 1998).

[5] A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F. McCormick,
G. N. Miranda, and J. W. Ruge, Robustness and scalability of algebraic multigrid, SIAM
Journal on Scientific Computing, 21 (2000), 1886–1908.

[6] V. E. Henson and U. M. Yang, BoomerAMG: a parallel algebraic multigrid solver and pre-
conditioner, Applied Numerical Mathematics 41 (2002) 155–177.

[7] M. T. Jones and P. E. Plassman, A parallel graph coloring heuristic, SIAM Journal on
Scientific Computing 14 (1993) 654–669.

[8] W. Joubert and J. Cullum, Scalable algebraic multigrid on 3500 processors, Los Alamos Na-
tional Laboratory Technical Report No. LAUR03-568. Submitted to Electronic Trans-
actions on Numerical Analysis (2003).

[9] A. Krechel and K. Stüben, Parallel algebraic multigrid based on subdomain blocking, GMD
Report 71, GMD, Sankt Augustin, Germany, submitted to Parallel Computing.

[10] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
Journal on Computing 15 (1986) 1036–1053.

[11] J. W. Ruge and K. Stüben, Algebraic multigrid (AMG), in : S. F. McCormick, ed., Multigrid
Methods, vol. 3 of Frontiers in Applied Mathematics (SIAM, Philadelphia, 1987) 73–130.

[12] K. Stüben, Algebraic multigrid (AMG): an introduction with applications, in : U. Trotten-
berg, C. Oosterlee and A. Schüller, eds., Multigrid (Academic Press, 2000).

[13] U. Trottenberg, C. Oosterlee and A. Schüller, Multigrid (Academic Press, 2000).

