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Abstract. Homological Perturbation Theory [11, 13] is a well-known
general method for computing homology, but its main algorithm, the Ba-
sic Perturbation Lemma, presents, in general, high computational costs.
In this paper, we propose a general strategy in order to reduce the com-
plexity in some important formulas (those following a specific pattern)
obtained by this algorithm. Then, we show two examples of application
of this methodology.

1 Introduction

Most algorithms in Algebraic Topology and Homological Algebra carry high
computational costs. We are concerned with the search of techniques that cut
down complexity in processes from these areas. In order to compute homology,
two important tools in Homological Algebra are, on the one hand, the notion
of contraction [6], a special type of homotopy equivalence, between differential
graded modules (DG–modules) and, on the other hand, the Basic Perturbation
Lemma (BPL), which allows one to generate a new contraction by “perturbation”
of a previous one (see [2] or [18]). In fact, the BPL, is an algorithm whose
input is a contraction between two differential graded modules together with a
“perturbation” of the differential structure on the first DG–module; the output
is a contraction from the perturbed module onto the second module, whose
differential comes out to be modified. The formulas of the latter contraction as
well as the modification in the differential structure of the second DG–module
often imply high computational costs. Thanks to a tool introduced in this paper,
compatible grading, we are able to reduce this complexity in time and space.
In fact, we establish some proper conditions under which the calculus implied
in the computation of several formulas obtained by the BPL, with a specific
structure, can be significantly cut down. However, the improvement achieved
in computation will depend on the specific morphisms implied, as well as the
compatible grading considered.
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We describe two important applications, showing the advantages from the
computational point of view in each case. The first one is related to the algebraic
structure of the homology of a truncated polynomial algebra. Another example
of application of the general strategy presented here is the so-called inversion
theory, which was born in [17] and was later used in [4] and [14] in order to
simplify the computation of the perturbed differential of a 1-homological model
for a commutative DGA-algebra. We must say that we only recall here these
results, under the new viewpoint.

This paper is divided as follows. First, we give some preliminaries and nota-
tions. Secondly, we establish the theory of compatible gradings, which represents
the main original contribution of this paper. Finally, two different applications
of this novel strategy for reducing the computational costs of the BPL are shown
in the last two sections.

2 Preliminaries and Notations

Here we will collect some basic definitions and results in the context of Homo-
logical Algebra, as well as the notations that we will adopt. See [5], [16] or [19]
for further information.

Take a commutative ground ring with unit, Λ. We will work with differential
graded modules, DG–modules, which are graded modules endowed with a mor-
phism d of graded modules of degree −1 such that d d = 0. A graded module M
is connected whenever M0 = Λ in which case, the graded module M̄ is defined
as M̄n = Mn for n > 1 and M̄0 = 0.

We strictly adhere to the Koszul conventions with regard to signs, meaning
that if f : M → M ′ and g : N → N ′ are both DG–module morphisms, then

(f ⊗ g)(x ⊗ y) = (−1)|g||x|f(x) ⊗ g(y).

Given a DG–module (M, dM), the suspension of M is the DG–module (sM,
dsM), where (sM)n = Mn−1 and dsM = −dM . Analogously, the desuspension of
M is given by (s−1M)n = Mn+1 with differential −dM . We will denote by ↑ and
↓ the suspension and desuspension morphisms which shift the degree by +1 and
−1, respectively.

Given a DG-module (M, d), the tensor module of M , T (M), is constructed as
follows:

T (M) =
⊕

n≥0

M⊗n.

The (tensor) grading of a homogeneous element of T (M), a1 ⊗ · · · ⊗ an is
given by

∑n
i=1 |ai|. The differential structure in T (M) is provided by the tensor

differential,

dt =
n−1∑

i=0

1⊗i ⊗ dM ⊗ 1⊗n−i−1.

Any morphism of DG–modules f : M → N induces another one T (f) : T (M) →
T (N), being T (f)|M⊗n = f⊗n.
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If a DG–module A is endowed with an associative product with unit, it is
called a DG–algebra, (A, dA, μA). Sometimes we will use the notation ∗A for the
product on A. A DG–coalgebra is a DG–module provided with a compatible
coproduct and counit.

There are several examples of connected commutative DG–algebras with null
differential:

– The polynomial DG–algebra P (v, 2n), generated by v of degree 2n, where n
is a positive integer. The product is the usual one of monomials i.e., vivj =
vi+j .

– The truncated polynomial DG–algebra Qp(v, 2n), which is the quotient alge-
bra P (v, 2n)/(vp).

– The exterior DG–algebra E(u, 2n + 1), n ≥ 0, with algebra generator u of
degree 2n + 1 and trivial product u2 = 0.

– The divided polynomial DG–algebra Γ (w, 2n), n ≥ 1, generated by γ1(w) = w

(γ0(w) = 1) with product the one given by γk(w)γh(w) = (k+h)!
k! h! γk+h(w);

Given a connected DG–algebra A, one can construct the reduced bar cons-
truction of A, B̄(A), whose underlying module is T (sĀ). A typical element of
B̄(A), is denoted by ā = [a1| · · · |an] ∈ (sĀ)⊗n. The total differential dB̄ is given
by dB̄ = dt + ds, being dt the natural one on the tensor module and ds the
simplicial differential, that depends on the product on A. This DG–module is
endowed with a structure of DG–coalgebra by the natural coproduct ΔB̄ defined
on the tensor module:

ΔB̄([a1| · · · |ar]) =
r∑

i=0

[a1| · · · |ai] ⊗ [ai+1| · · · |ar].

If A is a commutative DG–algebra, B̄(A) is endowed with an additional struc-
ture of algebra by the shuffle product, �.

Let p and q be two nonnegative integers, a (p, q)–shuffle is defined as a per-
mutation π of the set {0, 1, . . . , p + q − 1} such that π(i) < π(j) whenever
0 ≤ i < j ≤ p − 1 or p ≤ i < j ≤ p + q − 1.

Notice that there are
(

p + q
p

)
different (p, q)–shuffles.

So, the shuffle product � on B̄(A), is defined (up to sign) by:

[a1| · · · |ap] � [b1| · · · |bq] =
∑

π∈{(p,q)−shuffles}

±[cπ(0)| · · · |cπ(p−1)|cπ(p)| · · · |cπ(p+q−1)];

where (c0, . . . , cp−1, cp, . . . , cp+q−1) = (a1, . . . , ap, b1, . . . bq).

Given a simply connected DG–coalgebra C, the reduced cobar construction,
Ω̄(C), is a DG–algebra whose underlying module is T (s−1C̄). A typical element
of Ω̄(C) will be written c̄ = 〈c1| · · · |cn〉. The total differential dΩ̄ is given by the
sum of the tensor differential and the cosimplicial differential:

dcos =
n−1∑

i=0

1⊗i⊗ ↓⊗2 ΔC ↑ ⊗1⊗n−i−1. (1)



36 A. Berciano, M.J. Jiménez, and P. Real

The product μΩ̄ is the natural one on the underlying module, which works by
juxtaposition.

Now we briefly recall the main concepts from Homological Perturbation The-
ory that we will use in this paper.

A contraction c : {N, M, f, g, φ} [6, 13], also denoted by (f, g, φ) : N
c⇒ M ,

from a DG–module (N, dN) to another one (M, dM ) is a especial type of ho-
motopy equivalence given by the morphisms f , g and φ; f : N∗ → M∗ and
g : M∗ → N∗ are two morphisms of DG–modules and φ : N∗ → N∗+1 is a
homotopy operator. This way, apart from the conditions

(c1) fg = 1M , (c2) φdN + dNφ + gf = 1N ,

the following ones must be satisfied

(c3) fφ = 0 , (c4) φg = 0 , (c5) φφ = 0 .

Given two contractions of DG–modules

ci : {Ni, Mi, fi, gi, φi} i = 1, 2,

one can construct the following ones [10, 11]:

1. The suspension contraction of c1, s(c1), which consists in taking the suspen-
sion DG–modules and the induced morphisms:

s(c1) : {s(N1), s(M1), f1, g1, −φ1}.

2. The tensor module contraction, T (c1), obtained by taking the tensor modules
of M1 and N1 and the induced morphisms,

T (c1) : {T (N1), T (M1), T (f1), T (g1), T (φ1)};

where

T (φ1)|N⊗n
1

= φ
[⊗n]
1 =

n−1∑

i=0

1⊗i ⊗ φ1 ⊗ (g1f1)⊗n−i−1.

3. The tensor product contraction:

c1 ⊗ c2 : {N1 ⊗ N2, M1 ⊗ M2, f1 ⊗ f2, g1 ⊗ g2, φ1 ⊗ g2f2 + 1N ⊗ φ2}.

4. In the case that N2 = M1, the composition contraction, given by:

c2 ◦ c1 : {N1, M2, f2f1, g1g2, φ1 + g1φ2f1}.

Let N be a graded module and let f : N → N be a morphism of graded
modules. The morphism f is called to be pointwise nilpotent if for each x ∈ N ,
x �= 0, there exists a positive integer n such that fn(x) = 0. A perturbation
of a DG-module N consists in a morphism of graded modules δ : N → N of
degree −1, such that (dN + δ)2 = 0. A perturbation datum of the contraction
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c : {N, M, f, g, φ} is a perturbation δ of the DG-module N such that the com-
position φδ is pointwise nilpotent.

The key in the Homological Perturbation Theory is the Basic Perturbation
Lemma (briefly, BPL) [18, 2, 8, 15], which is an algorithm whose input is a con-
traction of DG–modules c : {N, M, f, g, φ} and a perturbation datum δ of c and
whose output is a new contraction cδ. The only requirement is the pointwise
nilpotency of the composition φδ, that guarantees that the sums involved on the
formulas are finite for each x ∈ N .

Input: c : (N, dN )

φ

�� f
��
(M, dM )

g
�� + perturbation δ

Output: cδ : (N, dN + δ)

φδ

�� fδ ��
(M, dM + dδ)

gδ

��

where fδ, gδ, φδ, dδ are given by the formulas

dδ = f δ Σδ
c g; fδ = f (1 − δ Σδ

c φ); gδ = Σδ
c g; φδ = Σδ

c φ;

and Σδ
c =

∑
i≥0(−1)i (φδ)i .

3 Compatible Gradings

Let us consider a contraction of DG–modules c : {N, M, f, g, φ} and a pertur-
bation datum for this contraction, δ. The BPL allows one to construct, under
certain conditions, a new contraction cδ : {(N, dN + δ), (M, dM + dδ), fδ, gδ, φδ}.
The first motivation of this paper was the search of a general way of determining
“classes” of elements for which the final result in the calculation of dδ would be
zero. However, the results obtained will mean a possibility of reducing costs in
any formula containing the composition f (δ φ)i. In fact, the pattern

f δ φ δ φ · · · δ φψ,

repeatedly appears inside several formulas obtained by BPL (included dδ) where
ψ can be different compositions of morphisms. Obviously, there is a possibility
of reducing the complexity of the morphisms with the pattern above by looking
for the elements such that the application of (δ φ)i to them belongs to the kernel
of f . This simple idea is the key of the original theory developed in this section.

Definition 1. Let c : {N, M, f, g, φ} be a contraction of DG–modules. Let S
be a submodule of N and G = {Si}i≥0 be a grading on S over the nonnegative
integers, that is, S =

⊕
i≥0 Si. This grading is called c–compatible if it satisfies

the following conditions:
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– f(Si) = 0 for i ≥ 1;

– φ(Si) ⊂
⊕

j≥i+1

Sj .

The degree of an element with respect to this new grading will be called G–degree.

Definition 2. Let c : {N, M, f, g, φ} be a contraction of DG–modules, S ⊂ N a
submodule, G a c–compatible grading on S and δ a perturbation datum for the
contraction c. The grading G on S is called to be (c, δ)–compatible if

δ(Si) ⊂
⊕

j≥i−1

Sj .

Taking into account these definitions, it is immediate to state the following
proposition.

Proposition 1. Let c : {N, M, f, g, φ} be a contraction of DG–modules, S ⊂ N
a submodule, δ a perturbation datum for c and G = {Sk}k≥0 a (c, δ)–compatible
grading on S. Then,

f (δ φ)i(
⊕

k≥1

Sk) = 0 for all i ≥ 0.

Proof. It is obvious, because of the previous definitions, that the composition
δ φ keeps the G–degree the same or increases it, that is,

(δ φ)i(Sj) ⊂
⊕

k≥j

Sk

for any i. This way, if j ≥ 1, f(δ φ)i(Sj) = 0.

The desired consequence of this result is to find a reduction in complexity of
formulas containing the sequence of morphisms f (δ φ)i when they are applied
to elements of the submodule S. For instance, the calculus of the perturbed
differential dδ, as well as the projection fδ obtained from the application of the
BPL to the initial contraction could be reduced: on the one hand, (δ φ) will only
have to be applied to elements of G–degree zero and, on the other hand, there
will only have to consider summands of φ giving place to elements with G–degree
1, at the same time that δ must provide elements of G–degree 0.

We now wonder what conditions are needed in order to establish compatible
gradings for tensor product and composition of contractions. In the case of the
tensor product, the compatible gradings have a nice behavior.

Theorem 1. Let c : {N, M, f, g, φ} and c′ : {N ′, M ′, f ′, g′, φ′} be two con-
tractions, let G = {Sk}k≥0 and G′ = {S′

k}k≥0 be c-compatible and c′-compatible
gradings of respective submodules S of N and S′ of N ′. Then the natural grading
on the tensor product G ⊗ G′ = {(S ⊗S′)k}k≥0, with (S ⊗S′)k =

⊕

i+j=k

(Si ⊗S′
j),

is c ⊗ c′–compatible.



Reducing Computational Costs in the BPL 39

Proof. – Obviously, (f ⊗ f ′)(Si ⊗ S′
j) = 0 if i + j ≥ 1;

– (φ ⊗ g′ f ′ + 1 ⊗ φ′)(Si ⊗ S′
j) ⊂

⊕

k≥i+j+1

(S ⊗ S′)k, since φ(Si) ⊂
⊕

k≥i+1

Sk and

f ′(S′
j) = 0 if j ≥ 1 and, on the other hand, φ′(S′

j) ⊂
⊕

k≥j+1

S′
k.

We can extend this result, in a natural way, to the tensor module.

Corollary 1. Let c : {N, M, f, g, φ} be a contraction and G = {Sk}k≥0 a
c-compatible grading. Take the tensor module contraction T (c), then the natu-
ral grading on the tensor module T (S) ⊂ T (N), T (G) = {(T (S))k}k≥0, with
(T (S))k =

⊕

i1+···+in=k

(Si1 ⊗ · · · ⊗ Sin) is T (c)–compatible.

The natural grading on the tensor product of two DG–modules is also com-
patible with the perturbation naturally induced by both perturbations of the
initial contractions.

Proposition 2. Under the conditions in the theorem 1, let δ and δ′ be pertur-
bation data of c and c′, respectively, such that the gradings G and G′ on S and
S′ are (c, δ) and (c′, δ′)–compatible, respectively. Then, the grading G ⊗ G′ on
S ⊗ S′ is (c ⊗ c′, δ ⊗ 1 + 1 ⊗ δ′)–compatible.

Corollary 2. Let c : {N, M, f, g, φ} be a contraction and G = {Sk}k≥0 a c-
compatible grading on S ⊂ N ; let δ be a perturbation datum of c such that the
grading G is (c, δ)–compatible. Then, the grading T (G) on T (S) is (T (c), δt)–
compatible, where δt|N⊗n =

∑n−1
i=0 1⊗i ⊗ δ ⊗ 1⊗n−i−1.

Concerning the composition of contractions, we are able to state some condi-
tions under which it is possible to establish a compatible grading for a contraction
c′ ◦ c, starting from a contraction c′ with a compatible grading.

Theorem 2. Let c : {N, M, f, g, φ} and c′ : {M, N ′, f ′, g′, φ′} be two con-
tractions, let G′ = {Mk}k≥0 be a c′-compatible grading on a submodule of M .
Take a grading G = {Nk}k≥0 on a submodule of N such that:

– f(
⊕

k≥0 Nk) ⊂
⊕

k≥0 Mk and f is a morphism of DG-modules of degree 0
with respect to both gradings;

– g(Mk) ⊂
⊕

i≥k

Ni;

– φ(Nk) ⊂
⊕

i≥k+1

Ni.

Then the grading G is (c′ ◦ c)–compatible.

Proof. Recall that

(c′ ◦ c) : {N, N ′, f ′ f, g g′, φ + g φ′ f}.
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– Of course, f ′ f(Nk) ⊂ f ′(Mk) = 0 if k ≥ 1, since G′ is c′–compatible;

– Take now φ + g φ′ f . We must check that g φ′ f(Nk) ⊂
⊕

i≥k+1 Ni, but this
is obvious due to the conditions imposed on f and g and the fact that G′ is
c′–compatible.

Notice that, given a contraction, one may construct lots of compatible grad-
ings, so an important task is to determine which is a good one for our purposes,
depending on the formula we want to reduce. The improvements achieved in
each case will depend on the compatible grading considered.

4 Application 1: The A∞-Structure of the Homology of
Qp(u, 2n)

Here we present an example of using compatible gradings to reduce complexity in
the computation of some morphisms obtained by perturbation theory. We study
the A∞-coalgebra structure of the homology H∗(Qp(u, 2n);Z) of a truncated
polynomial algebra in the ring Z.

An A∞-coalgebra is a DG-module (M, Δ1) endowed with a family of mor-
phisms of graded modules

Δi : M → M⊗i

of degree i − 2 such that, for n ≥ 1,

i∑

n=1

i−n∑

k=0

(−1)n+k+nk(1⊗i−n−k ⊗ Δn ⊗ 1⊗k)Δi−n+1 = 0. (2)

To study the structure of the homology we need to consider the contraction

cBQ : {B(Qp(u, 2n)), E(v, 2n + 1) ⊗ Γ (w, 2np + 2), fBQ, gBQ, φBQ}

From now on, E(v, 2n + 1) ⊗ Γ (w, 2np + 2) will be denoted by E ⊗ Γ as well
as B̄(Qp(u, 2n)) by B̄(Qp), for short.

Then, an A∞–coalgebra structure is induced on E ⊗ Γ , via the tensor trick
(see [9, 12, 11]) and the BPL (using as a perturbation datum the cosimplicial
differential dcos). In fact, it is possible to construct a new contraction

ΩB̄(Qp) ⇒ Ω̃(E ⊗ Γ ),

where Ω̃(E ⊗ Γ ) = (Ts−1(E ⊗ Γ ), d̃) and the morphism d̃, obtained by the
perturbation process, induces an A∞–coalgebra structure (Δ1, Δ2, Δ3, . . .) on
(E ⊗ Γ ). Our aim is to use a compatible grading that allows a complexity re-
duction for the morphisms Δi.

We denote an element of B̄(Qp) of the form [ur1 | . . . |urm ] by [r1| . . . |rm],
where 0 ≤ ri < p.
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The explicit morphisms of the contraction cBQ are described below:

– fBQ : B̄(Qp) → E ⊗ Γ

fBQ[r1|t1| . . . |rm|tm] = {
∏m

k=1 δp,rk+tk
} γm(w),

fBQ[l|r1|t1| . . . |rm|tm] = δ1,l {
∏m

k=1 δp,rk+tk
} v ⊗ γm(w),

where the symbols δi,j are defined by: δi,j =
{

0 if i �= j
1 if i = j

– gBQ : E ⊗ Γ → B̄(Qp)) is defined over the algebra generators as follows:

gBQ(v) = [1], gBQ(γk(w)) = [1|p − 1| k times. . . |1|p − 1].

– φBQ : B̄(Qp) → B̄(Qp) is defined by:

φBQ[ ] = 0;

φBQ[x] = −[1|x − 1] 1 < x < p;

φBQ[x|y] = −[1|x − 1|y];

φBQ([x|y]|z) = −[1|x − 1|y]|z − δp,x+y [1|p − 1]| φ(z)

where z ∈ B̄(Qp) and | denotes the juxtaposing product.

Let us consider the submodule S of B̄(Qp(u, 2n)) generated by the elements
[a1|a2| · · · |ar] such that either a2i+1 = 1 for all i or a2i = 1 for all i.

We now construct a grading, G = {Sk}k≥0, over S in the search of a cBQ–
compatible grading. Take the submodule Sk ⊂ S described bellow:

– S0 is generated by the elements of the form [p − 1|1|p − 1|1 · · ·], of any
simplicial dimension; [a1|1|a2|1 · · ·], with ai = p − 1 except for one of them,
aj , which satisfies 1 ≤ aj ≤ p − 2; [1|p − 1|1|p − 1|1 · · ·], of any simplicial
dimension.

– Sk, for k ≥ 1, is generated by the elements of

type I: [1|a1| · · · |1|ar|1] or [1|a1| · · · |1|ar], where at least one component
ai �= 1 and there are k components (at even positions) satisfying
1 ≤ ai ≤ p − 2;

type II: [a1|1|a2| · · · |1] or [a1|1|a2| · · · |ar] where at least one component ai �=
1 and there are k + 1 components (at odd positions) satisfying
1 ≤ ai ≤ p − 2;

type III: [1|1| · · · |1] with simplicial dimension 2k or 2k + 1.

Then, it is easy to prove that G is cBQ–compatible:

– Obviously, fBQ(Sk) = 0 for any k ≥ 1;
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– φ(Si) ⊂
⊕

j≥i+1

Sj. More specifically, it is easy to prove, by induction, that

φ(Si) ⊂ Si+1. Moreover, that φ(elements of type II) = (elements of type I)
and that φ( elements of type I) = 0 = φ( elements of type III).

The grading G on S induces in a natural way, a grading over Ts−1(S), T (G),
as indicated in corollary 1, that is Ts−1cBQ–compatible.

Moreover, the cosimplicial differential, dcos, which depends on the coproduct
on B̄(Qp) (see formula 1), is a perturbation datum for the latter contraction and
satisfies

dcos(T (S)j) ⊂ ⊕i≥j−1T (S)i.

In fact, it is easy to check that dcos(T (S)j) ⊂ T (S)j−1 ⊕ T (S)j .
All these results lead to the following theorem.

Theorem 3. Let T (G) be the grading naturally induced on Ts−1(S) by corollary
1, being G the grading described above. Then T (G) is (Ts−1cBQ, dcos)-compatible.

Now, we are in conditions of analyzing the consequences of having a (Ts−1cBQ,
dcos)-compatible grading in the computation of the A∞–coalgebra structure on
E ⊗ Γ .

The differential obtained by the BPL on Ts−1(E ⊗ Γ ) is

d̃ =
∑

i≥0

(−1)iT (f)dcos(T (−φ)dcos)iT (g),

and the morphisms Δi : E ⊗ Γ → (E ⊗ Γ )⊗i, providing an A∞–coalgebra
structure on E ⊗ Γ , are given by

Δi = (−1)[i/2] ↑⊗i f⊗i (dcos T (−φ))i−2 dcos g ↓ (3)

Notice that Im gBQ ⊂ S0 and that according to proposition 1,

T (f) (dcos T (−φ))i(
⊕

k≥1

(T (S))k) = 0 for all i ≥ 0,

so we can conclude that, since T (−φ)(T (S)k) ⊂ T (S)k+1, we only must consider
the summands of dcos such that

dcos(T (S)k) ⊂ T (S)k−1.

This means that any time we apply dcos to an element of cosimplicial dimension
m, one can consider only one summand in formula 1 instead of m. That
summand is the one that applies ΔB̄ on the factor on which φ has just been
applied. Moreover, since the output of φ is always a sum of elements of type I,
we only need to consider the half of the summands of ΔB̄ (those that decrease
the degree by one). So, we could express the “reduced” formula of Δi by

Δ̄i = (−1)[i/2] ↑⊗i f⊗i (d̄cos T (−φ))i−2 dcos g ↓ (4)
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where
d̄cos = 1⊗k⊗ ↓⊗2 Δ̄B̄ ↑ ⊗1⊗n−k−1

and k depends on the factor on which φ has been applied in T (−φ). Then,

Δ̄B̄([a1| · · · |ar]) =
�r/2	∑

i=1

[a1| · · · |a2i−1] ⊗ [a2i| · · · |ar].

Finally, we expose some examples in order to illustrate the improvements
achieved in complexity. The calculations have been made (up to signs) using
MATHEMATICA 4.0, in which we have implemented the formulas of Δi and
Δ̄i, in a Pentium IV 1,6GHz 512MB RAM.

Firstly, we will express the time used in the computation of Δ3(γk(w)) for
different values of k in the case p = 3.

Time used (Seconds) k = 5 k = 10 k = 20 k = 30

Δ3 0.15 1.072 50.282 882, 959

Δ̄3 0.07 0.391 5.859 77.392

The following table shows the time used in computing Δi(γ5(w)) versus
Δ̄i(γ5(w)) for different values of i and p.

Time used (seconds) i = 3 = p i = 4 = p i = 5 = p i = 6 = p

Δi 0.15 1.081 16.373 226.456

Δ̄i 0.07 0.311 2.043 16.213

In the last table we expose the number of summands at different stages of the
computation of Δ6(γ5(w)) as well as Δ̄6(γ5(w)) in the case p = 6.

Number of summands i = 1 i = 2 i = 3 i = 4

(dcos T (−φ))i dcos g(〈γ5(w)〉) 135 945 4410 15876

(d̄cos T (−φ))i dcos g(〈γ5(w)〉) 55 315 1274 4116

5 Application 2: On the 1-Homological Model of a
Commutative Connected DG–Algebra

In [4] and [14] a strategy was developed, called “inversion theory”, with the goal
of improving the computation of some formulas (obtained by the BPL) involved
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in the 1–homological model of a commutative DGA–algebra (see [1]). In this
section, we will see that this theory fits perfectly in the framework developed
before, so we will briefly review the concepts given in the inversion theory under
this new viewpoint to realize that, in fact, it can be considered as an application
of the general methodology of this paper.

Every commutative DGA-algebra A is quasi-isomorphic (there is a homomor-
phism that induces an isomorphism in homology) to a twisted tensor product
(TTP) of exterior and polynomial algebras, that is, a tensor product ⊗i∈IAi,
each Ai being an exterior or a polynomial algebra, endowed with an additional
differential structure ρ (see [3]).

Here we will restrict to the case of commutative connected DG–algebras, in
order to deal with simpler formulas.

Take, then, a TTP of exterior and polynomial algebras A = (⊗i∈IAi, ρ).
In [1] a process is described consisting in composition and tensor product of
contractions followed by the application of the BPL in order to obtain a new
contraction called a 1-homological model for A:

cδ : {(B̄(⊗i∈IAi), δ), (⊗i∈IhBAi, dδ), fδ, gδ, φδ}

where δ is a perturbation on B̄(⊗i∈IAi) induced by ρ and hBAi is an exterior
or a divided polynomial algebra, depending on whether Ai was a polynomial or
an exterior algebra. The search of a (c, δ)–compatible grading on B̄(⊗i∈IAi) is
motivated by the high computational cost of dδ, which is of exponential nature,
since shuffles are involved in the formulas.

The construction of cδ makes use of three basic contractions:

– The contraction given in [7]:

cBP : {B̄(P (v, 2n)), E(s(v), 2n + 1), fBP , gBP , φBP } .

If an element [vr1 | · · · |vrm ] is denoted by [r1| · · · |rm] for short, then,

fBP ([r]) =
{

0 if r �= 1
s(v) if r = 1 ; fBP ([r1| · · · |rm]) = 0

gBP (sv) = [1]; φBP ([r1| · · · |rm]) = [1|r1 − 1| · · · |rm] .

– The isomorphism of DG-algebras (also described in [7]):

cBE : {B̄(E(u, 2n + 1)), Γ (s(u), 2n + 2), fBE, gBE, 0} ,

where

fBE([u| m times· · · |u]) = γm(s(u)); gBE(γm(s(u))) = [u| m times· · · |u] .

– Let A and A′ be two commutative connected DG–algebras. There is a con-
traction cB⊗ : {B̄(A ⊗ A′), B̄(A) ⊗ B̄(A′), fB⊗, gB⊗, φB⊗} (see [7]), whose
formulas (for the connected case) are recalled here:
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• fB⊗ is null except for the case

fB⊗[a1 ⊗ 1| · · · |ai ⊗ 1|1 ⊗ a′
i+1| · · · |1 ⊗ a′

n] = [a1| · · · |ai] ⊗ [a′
i+1| · · · |a′

n] .

• gB⊗([a1| · · · |an] ⊗ [a′
1| · · · |a′

m]) = [a1| · · · |an] � [a′
1| · · · |a′

m] .

• φB̄⊗([a1 ⊗ a′
1| · · · |an−q ⊗ a′

n−q|a′
n−q+1| · · · |a′

n])

=
n−q−1∑

p=0

∑

π

±[a1 ⊗ a′
1| · · · |an̄−1 ⊗ a′

n̄−1|

(a′̄
n ∗A′ · · · ∗A′ a′

n−q)|cπ(0)| · · · |cπ(p+q)] ,

(5)

where π runs over the {(p + 1, q)-shuffles}, n̄ = n − p − q and

(c0, . . . , cp+q) = (an̄, . . . , an−q, a
′
n−q+1, . . . a

′
n).

Notice that gB⊗ and φB⊗ works in exponential time due to the shuffles in-
volved.

So, for a commutative connected DG–algebra (A ⊗ A′, ρ), being A and A′ an
exterior or polynomial algebra, one can construct, by composition and tensor
product of the previous contractions, the contraction c = (cBA ⊗ cBA′) ◦ cB⊗,

(f, g, φ) : B̄(A ⊗ A′) ⇒ B̄(A) ⊗ B̄(A′) ⇒ hBA ⊗ hBA′

where hBA as well as hBA′ are either a polynomial or a divided polynomial
algebra depending on whether A and A′ were, respectively, an exterior or a
polynomial algebra. The morphisms are given by

f = (fBA ⊗ fBA′)fB⊗

g = gB⊗(gBA ⊗ gBA′)
φ = φB⊗ + gB⊗(φBA ⊗ gBA′fBA′ + 1BA ⊗ φBA′)fB⊗

Take the contraction cBP . Consider the grading GBP = {GBP

k }k≥0 by which
GBP

k is the submodule generated by the elements of the form [r1| · · · |rk+1] (that
is, those of simplicial degree k + 1). It is easy to check that GBP is a cBP –
compatible grading.

Consider, now, the contraction cBE. The grading GBE = {GBE

k }k≥0 with
GBE

0 = B̄(E(u, 2n + 1)) and GBE

k = 0 for k ≥ 0 is, trivially, a cBE–compatible
grading.

Then, GBA ⊗ GBA′ is a cBA ⊗ cBA′–compatible grading, by theorem 1.
Then, we must look for a grading on B̄(A⊗A′) (or a submodule of it) such that

the conditions stated in theorem 2 are satisfied, in order to have a c–compatible
grading.

Take the notation GBA ⊗GBA′ = {G⊗B

k }k≥0, meanwhile the desired grading on
B̄(A ⊗ A′) will be denoted by GB⊗ = {GB⊗

k }k≥0.
Let us consider GB⊗

k as the submodule of B̄(A⊗A′) generated by the elements
with k inversions as defined in [14]: Let ā = [a1 ⊗ a′

1|a2 ⊗ a′
2| · · · |an ⊗ a′

n] be
an homogeneous element of B̄(A ⊗ A′). The component ai ⊗ a′

i is said to be an
inversion if one of the the following cases occurs:
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– ai = 1 and there exists an index j > i with aj ∈ Ā (we say that ai is a
⊗–inversion);

– A′ is a polynomial algebra and ai−1 = 1 = ai = · · · = an (we say that ai is
a p–inversion).

– A is a polynomial algebra, ai ∈ Ā and there exists an index j > i such that
aj ∈ Ā (we say that ai is a p1–inversion).

This grading verifies the conditions in theorem 2:

– fB⊗ is a morphism of degree 0 with respect to the gradings GB⊗ and GBA ⊗
GBA′ : This is obvious, since fB⊗(ā) �= 0, only for the elements of the form
ā = [a1| · · · |aj |a′

1| · · · |a′
k], with ai ∈ Ā and a′

i ∈ Ā′, which has the same
degree in GB⊗ than [a1| · · · |aj ] ⊗ [a′

1| · · · |a′
k] in GBA ⊗ GBA′ .

– gB⊗(G⊗B

k ) ⊂
⊕

i≥k

GB⊗
i : this is easy to see since gB⊗ makes the shuffle product.

– φ(GB⊗
k ) ⊂

⊕

i≥k+1

GB⊗
i :

Recall that φ = φB⊗ + gB⊗(φBA ⊗ gBA′fBA′ +1BA ⊗φBA′)fB⊗ and that either
φB⊗ or φBP always produce at least one more inversion [4, 14].

So, GB⊗ is a c–compatible grading on B(A ⊗ A′).

Now, take a perturbation ρ of the tensor product A ⊗ A′, then ρ produces a
perturbation

δ = −
n−1∑

i=0

1⊗i⊗ ↑ ρ ↓ ⊗1⊗n−i−1

on B̄(A ⊗ A′). Then we can state the following result.

Theorem 4. The grading GB⊗ on B(A⊗A′) described above is (c, δ)–compatible.

Proof. We must check that δ(GB⊗
k ) ⊂

⊕
i≥k−1 GB⊗

i , for any k ≥ 1. The key of
the proof lays in the fact that each summand of δ acts only on one component
ai ⊗ a′

i of the element [a1 ⊗ a′
1| · · · |an ⊗ a′

n]. So, at most, only one inversion can
disappear. On the contrary, if ρ is applied to a component which is not implied
in any inversion, the summand obtained could have an amount of inversions
greater or equal to the original one.

We then have a (c, δ)–compatible grading, what means that

f (δ φ)i(
⊕

k≥1

GB⊗
k ) = 0 for all i ≥ 0.

This way, we can conclude that, in order to compute dδ, whose formula is

dδ =
∑

i≥0

(−1)if δ (φ δ)i g,

we can ignore those summands of φ that increase more than by one the degree
of the element. This conclusion leads to the following result already proved by
inversion theory.
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Corollary 3. [4, 14] The formula for φ, involved in the perturbed differential,
dδ, of the 1–homological model of a commutative connected DG–algebra (A ⊗
A′, ρ) can be reduced to the following one:

φ = φ̄B⊗ + ḡB⊗(φBA ⊗ gBA′fBA′ + 1 ⊗ φBA′)fB⊗,

where

– φ̄B⊗([a1 ⊗ a′
1| · · · |an ⊗ a′

n])

=
∑

0≤p≤n−q−1≤n−1

±[a1 ⊗ a′
1| · · · |an̄−1 ⊗ a′

n̄−1|(a′
n̄ ∗A′ · · · ∗A′ a′

n−q)

|an̄| · · · |an−q|a′
n−q+1| · · · |a′

n].

– ḡB⊗([a1| · · · |an] ⊗ [a′
1| · · · |a′

m]) = [a1| · · · |an|a′
1| · · · |a′

m].

This way, the formula of φB⊗ comes out to be of quadratic instead of expo-
nential order. On the other hand, the formula for gB⊗ is reduced to 1 summand

in contrast with the original
(

m + n
n

)
.

These results can be extended, recursively, to the general case of a commu-
tative connected DG–algebra factored as a twisted tensor product (⊗n

i=1Ai, ρ),
being Ai an exterior or polynomial algebra, i = 1, 2, . . . , n and ρ a differential,
such that ρ(Ak) ⊂ ⊗k

i=1Ai.
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